Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals are the elementary constituents of Laue lenses, an emerging technology which could allow the realization of a space-borne telescope 10–100 times more sensitive than existing ones, in the 100 keV–1.5 MeV energy range. This paper addresses the development of efficient crystals for the realization of a Laue lens. In the theoretical part, 35 candidate crystals, both pure and two-component crystals, are considered. Their peak reflectivity at 100, 500 keV and 1 MeV is calculated assuming they are mosaic crystals. It is found that, by careful selection of crystals, it is possible to achieve a reflectivity above 30% over the whole energy range, and even up to 40% in the lower part of the energy range. In the experimental part, three different materials (Si1−xGex with a gradient of composition, mosaic Cu and Au) have been measured at both ESRF and ILL using highly monochromatic beams ranging from 300 to 816 keV. The aim was to check their homogeneity, quality and angular spread (mosaicity). These crystals have shown outstanding performance, such as reflectivity up to 31% at ∼600 keV (Au) or 60% at 300 keV (SiGe) and angular spread as low as 15 arcsec for Cu, fulfilling very well the requirements for a Laue lens application. An unexpected finding is that there are important discrepancies with Darwin's model when a crystal is measured using various energies.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds