Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the past decade, sustained progress has been made in the field of time-resolved X-ray diffraction and photocrystallography. Laser systems have been developed rapidly, and the combination of pulsed laser sources with pulsed X-ray sources, particularly by using synchrotron X-ray radiation and X-rays generated by plasma sources, has made the application of pump-probe schemes routine. So far, however, most studies have been focused on two questions: (i) the refinement of structural changes during the course of a reaction, and (ii) possible relations between transient structural changes and the intermediates found by optical spectroscopy. In this work, a kinetic description for different time laws in time-resolved X-ray diffraction experiments is derived in the framework of time-dependent correlation functions. The derived time laws were applied to time-resolved studies on a [2+2] photodimerization and a reversible reaction undergoing structural reorganization.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds