research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­aqua­(1,4,8,11-tetra­aza­undeca­ne)nickel(II) bis­­(pyridine-2,6-di­carboxyl­ato)nickel(II)

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028 Kiev, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str., 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 October 2021; accepted 24 October 2021; online 29 October 2021)

The asymmetric unit of the title compound, trans-di­aqua­(1,4,8,11-tetra­aza­undecane-κ4N1,N4,N8,N11)nickel(II) bis­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)nickel(II) {[Ni(L)(H2O)2][Ni(pdc)2] where L = 1,4,8,11-tetra­aza­undecane (C7H20N4) and pdc = the dianion of pyridine-2,6-di­carb­oxy­lic acid (C7H3NO42−)} consists of an [Ni(L)(H2O)2]2+ complex cation and a [Ni(pdc)2]2– anion. The metal ion in the cation is coordinated by the four N atoms of the tetra­amine ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally elongated octa­hedral geometry with the average equatorial Ni—N bond length slightly shorter than the average axial Ni—O bond [2.087 (4) versus 2.128 (4) Å]. The ligand L adopts its energetically favored conformation with five-membered and six-membered chelate rings in gauche and chair conformations, respectively. In the complex anion, the NiII ion is coordinated by the two tridentate pdc2– ligands via their carboxyl­ate and nitro­gen atom donors in a distorted octa­hedral trans-NiO4N2 geometry with nearly orthogonal orientation of the planes defining the carboxyl­ate rings and the average Ni—N bond length [1.965 (4) Å] shorter than the average Ni—O bond distance [2.113 (7) Å]. In the crystal, the NH donor groups of the tetra­amine, the carb­oxy­lic groups of the pdc2– anion and the coordinated water mol­ecules are involved in numerous N—H⋯O and O—H⋯O hydrogen bonds, leading to electroneutral sheets oriented parallel to the (001) plane.

1. Chemical context

Crystalline coordination polymers possessing permanent porosity (metal–organic frameworks, MOFs) are of enormous current inter­est because of their potential for applications in different areas including gas storage, separation, catalysis, etc. (MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials. Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.]). Nickel(II) complexes of the 14-membered macrocyclic tetra­amine ligands, in particular of cyclam and its C-alkyl­ated derivatives (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), are widely used as metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]; Lee & Moon, 2018[Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237-249.]). At the same time, nickel(II) complexes of 1,4,8,11-tetra­aza­undecane (C7H20N4; L) – the closest open-chain analogue of cyclam – are rarely utilized for the construction of MOFs and only a few examples of coordin­ation polymers formed by the [Ni(L)]2+ cation with azide (Escuer et al., 1993[Escuer, A., Vicente, R., Ribas, J., El Fallah, M. S., Solans, X. & Font-Bardia, M. (1993). Inorg. Chem. 32, 3727-3732.]), cyanide (Koo et al., 2003[Koo, J. E., Kim, D. H., Kim, Y. S. & Do, Y. (2003). Inorg. Chem. 42, 2983-2987.]), and cyano­metalate (Koo et al., 2003[Koo, J. E., Kim, D. H., Kim, Y. S. & Do, Y. (2003). Inorg. Chem. 42, 2983-2987.]; Shek et al., 2005[Shek, I. Y., Yeung, W.-F., Lau, T.-C., Zhang, J., Gao, S., Szeto, L. & Wong, W.-T. (2005). Eur. J. Inorg. Chem. pp. 364-370.]; Talukder et al., 2012[Talukder, P., Shit, S., Nöth, H., Westerhausen, M., Kneifel, A. N. & Mitra, S. (2012). Transition Met. Chem. 37, 71-77.]; Ni et al., 2014[Ni, W.-W., Chen, X., Cui, A.-L., Liu, C.-M. & Kou, H.-Z. (2014). Polyhedron, 81, 450-456.]) bridging anions have been characterized by single-crystal X-ray diffraction.

[Scheme 1]

Multidentate aromatic carboxyl­ates are known as the most common linkers in MOFs (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). Although the bridging properties of one of the simplest representative of this class of compounds, 1,3-benzene­dicarboxyl­ate, with macrocyclic nickel(II) cations are well studied (see, for example, Tsymbal et al., 2021[Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355-2370.]), coordination polymers based on its structural analogue, pyridine-2,6-di­carboxyl­ate (C7H3NO42–; pdc2–), are confined to a sole example (Choi et al., 2003[Choi, K.-Y., Ryu, H., Lim, Y.-M., Sung, N.-D., Shin, U.-S. & Suh, M. (2003). Inorg. Chem. Commun. 6, 412-415.]). Inter­estingly, an attempt to prepare a coordination polymer containing the [Ni(cyclam)]2+ cation with pdc2– led to the ionic product [Ni(cyclam)(H2O)2][Ni(pdc)2]·2.5H2O due to sequestering of the metal ion from the cavity of the macrocycle by this chelating ligand (Park et al., 2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.]).

As part of our research on MOFs formed by nickel(II) tetra­aza cations and aromatic carboxyl­ates, we report here the synthesis and crystal structure of the product of the reaction of [Ni(L)]2+ with pdc2–, namely [trans-di­aqua­(1,4,8,11-tetra­aza­undecane-k4N1N4N8N11)nickel(II)][bis­(pyridine-2,6-di­carb­oxy­lato-κ3N,O,O)nickel(II)], [Ni(L)(H2O)2][Ni(pdc)2], I. Similar to the reaction of pyridine-2,6-di­carboxyl­ate with the [Ni(cyclam)]2+ cation, the formation of the title compound is explained by the sequestering of the metal ion from the starting cation with the formation of the [Ni(pdc)2]2– anion. Additionally, to the best of our knowledge, the structure of the [trans-di­aqua­(1,4,8,11-tetra­aza­undeca­ne)nickel(II)] moiety has not previously been reported in the literature.

2. Structural commentary

The mol­ecular structure of the title compound I is shown in Fig. 1[link]. Atom Ni1 is coordinated by the two tridentate pdc2– ligands via their carboxyl­ate and nitro­gen donors, resulting in the formation of the [Ni(pdc)2]2– divalent anion, which is charge-balanced by the [Ni(L)(H2O)2]2+ divalent cation formed by atom Ni2.

[Figure 1]
Figure 1
View of the mol­ecular structure of I, showing the partial atom-labeling scheme, with displacement ellipsoids drawn at the 40% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines.

The coordination polyhedron of Ni1II in the complex anion ion can be described as a tetra­gonally compressed trans-NiO4N2 octa­hedron with the Ni—N bond lengths [average value 1.965 (4) Å] shorter than the Ni—O ones [average value 2.113 (7) Å] (Table 1[link]). Another source of distortion is the alternating displacement (by ca 0.43 Å) of the coordinated oxygen atoms of deprotonated carb­oxy­lic groups from the mean equatorial plane formed by the four oxygen atoms. The values of the bite angles in the five-membered chelate rings in the complex anion are very similar (Table 1[link]). The pdc2– carboxyl­ate rings are oriented nearly orthogonally with an angle of 81.5 (3)° between their mean planes.

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.099 (2) Ni2—O1W 2.131 (2)
Ni1—O3 2.109 (2) Ni2—O2W 2.124 (2)
Ni1—O5 2.111 (2) Ni2—N3 2.074 (2)
Ni1—O7 2.1343 (19) Ni2—N4 2.088 (2)
Ni1—N1 1.961 (2) Ni2—N5 2.095 (2)
Ni1—N2 1.969 (2) Ni2—N6 2.089 (3)
       
O1—Ni1—O3 156.79 (8) O2W—Ni2—O1W 174.88 (8)
O1—Ni1—O5 95.74 (8) N3—Ni2—O1W 86.26 (9)
O1—Ni1—O7 89.96 (8) N3—Ni2—O2W 92.25 (9)
O3—Ni1—O5 89.36 (8) N3—Ni2—N4 84.10 (10)
O3—Ni1—O7 94.68 (8) N3—Ni2—N5 174.54 (10)
O5—Ni1—O7 155.62 (7) N3—Ni2—N6 101.01 (10)
N1—Ni1—O1 78.63 (9) N4—Ni2—O1W 87.83 (9)
N1—Ni1—O3 78.19 (9) N4—Ni2—O2W 96.90 (9)
N1—Ni1—O5 105.53 (9) N4—Ni2—N5 90.45 (10)
N1—Ni1—O7 98.84 (9) N4—Ni2—N6 172.57 (10)
N1—Ni1—N2 176.06 (10) N5—Ni2—O1W 93.07 (9)
N2—Ni1—O1 99.61 (9) N5—Ni2—O2W 88.86 (9)
N2—Ni1—O3 103.60 (9) N6—Ni2—O1W 87.13 (9)
N2—Ni1—O5 78.10 (9) N6—Ni2—O2W 88.34 (9)
N2—Ni1—O7 77.58 (9) N6—Ni2—N5 84.36 (10)

The Ni2II ion in the complex cation is coordinated by the four N atoms of the ligand L and the mutually trans O atoms of the water mol­ecules in a tetra­gonally elongated trans-NiN4O2 octa­hedral geometry with the average equatorial Ni—N bond length slightly shorter than the average axial Ni—O bond [2.087 (4) and 2.128 (4) Å, respectively (Table 1[link])]. The ligand L in I adopts its energetically favored conformation with the five-membered and six-membered chelate rings in gauche and chair conformations, respectively, which resemble the trans-III configuration usually observed in cyclam complexes (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]). This conformation is also characteristic of the macrocyclic ligand in [Ni(cyclam)(H2O)2]2+ (Park et al., 2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.]), although the bite angles in the five-membered (85.54°) and six-membered (94.46°) chelate rings are correspondingly larger and smaller compared to those in I (Table 1[link]).

3. Supra­molecular features

The crystals of I are composed of [Ni(L)(H2O)2]2+ complex cations and [Ni(pdc)2]2– anions connected by numerous hydrogen bonds (Table 2[link]). Each ion is surrounded by four counter-ions (Figs. 2[link] and 3[link]); the cation acts as the hydrogen-bond donor due to the presence of the N—H fragments of amino groups and the O—H groups of coordinated water mol­ecules, while the anion displays proton-acceptor properties because of the availability of the carb­oxy­lic groups. These aggregates are further arranged into two-dimensional sheets oriented parallel to the (001) plane (Fig. 4[link]). There are no hydrogen-bonding contacts between the sheets, and the three-dimensional coherence of the crystal is provided by van der Waals inter­actions.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O8i 0.91 2.41 3.213 (3) 147
N3—H3B⋯O4ii 0.91 2.11 3.015 (3) 176
N4—H4A⋯O1 1.00 2.07 3.054 (3) 167
N5—H5A⋯O2 1.00 2.08 3.054 (3) 163
N6—H6A⋯O3ii 0.91 2.14 2.986 (3) 154
N6—H6B⋯O6iii 0.91 2.07 2.943 (3) 160
O1W—H1WA⋯O1 0.86 2.56 3.088 (3) 121
O1W—H1WA⋯O2 0.86 2.00 2.795 (3) 154
O1W—H1WB⋯O3ii 0.86 1.91 2.757 (3) 170
O2W—H2WA⋯O7i 0.87 1.80 2.663 (3) 169
O2W—H2WB⋯O6iii 0.87 1.90 2.742 (3) 160
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Nearest surroundings of the cation in I formed by hydrogen bonding (dotted lines). [Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 2, y + [{1\over 2}], −z + [{3\over 2}].]
[Figure 3]
Figure 3
Nearest surroundings of the anion in I formed by hydrogen bonding (dotted lines). [Symmetry codes: (i) x + 1, y, z; (ii) −x + 2, y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]
[Figure 4]
Figure 4
Electroneutral sheets of the complex ions in I parallel to the (001) plane. C-bound H atoms are omitted for clarity. C atoms of the cation and anion are shown in purple and green, respectively. Hydrogen bonds are shown as dotted lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that no compounds containing the [Ni(L)(H2O)2]2+ cation have been structurally characterized to date, the closest analogue being the complex [Ni(L)(H2O)(Cl)]Cl (refcode UMOFEH; Oblezov et al., 2003[Oblezov, A. E., Talham, D. R. & Abboud, K. A. (2003). Acta Cryst. E59, m1070-m1071.]). In general, the geometrical parameters of both cations in these compounds are similar, although the Ni—O bond length in the latter is longer (2.182 Å), probably because of the trans influence of the chloride ligand.

As far as the structures of the cations in the compounds with the same bis­(pyridine-2,6-di­carboxyl­ato)-nickel(II) anion are concerned, {[Ni(L)(H2O)2]2+ in I and [Ni(cyclam)(H2O)2]2+ in TICJEV (Park et al., 2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.])}, a higher tetra­gonal distortion of the coordination polyhedron in the latter case [average Ni—N bond length of 2.068 (6) Å and Ni—O bond length of 2.152 Å] should be mentioned, which can be explained by the stronger cis influence of the macrocyclic ligand compared to the non-cyclic one (Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.)]).

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The complex [Ni(L)](ClO4)2 was prepared by mixing equimolar amount of L and nickel perchlorate hexa­hydrate in ethanol. The title compound I was prepared as follows. A solution of [Ni(L)](ClO4)2 (11 mg, 0.026 mmol) in 1 ml of DMF was added to 0.4 ml of an aqueous solution of Na2(pdc) (2.7 mg, 0.013 mmol). Blue crystals formed in a day, which were filtered off, washed with diethyl ether and dried in air. Yield: 1.3 mg (15.5%). Analysis calculated for C21H30N6Ni2O10: C 39.17, H 4.66, N 13.06%. Found: C 39.04, H 5.0, N 13.21%. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 Å (aliphatic H atoms), N—H distances of 0.91 (primary amino groups) or 1.00 Å (secondary amino­groups) with Uiso(H) values of 1.2Ueq of the parent atoms. Water H atoms were positioned geometrically (O—H = 0.71–0.85 Å) and refined as riding with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C7H20N4)(H2O)2][Ni(C7H3NO4)2]
Mr 643.93
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.3219 (6), 16.3211 (10), 16.9483 (8)
V3) 2578.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.53
Crystal size (mm) 0.25 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.705, 0.737
No. of measured, independent and observed [I > 2σ(I)] reflections 36128, 4909, 4668
Rint 0.045
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.04
No. of reflections 4909
No. of parameters 356
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.26
Absolute structure Flack x determined using 1953 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaqua(1,4,8,11-tetraazaundecane-κ4N1,N4,N8,N11)nickel(II) bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6)nickel(II) top
Crystal data top
[Ni(C7H20N4)(H2O)2][Ni(C7H3NO4)2]Dx = 1.659 Mg m3
Mr = 643.93Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8341 reflections
a = 9.3219 (6) Åθ = 2.5–25.3°
b = 16.3211 (10) ŵ = 1.53 mm1
c = 16.9483 (8) ÅT = 100 K
V = 2578.6 (3) Å3Prism, clear light pink
Z = 40.25 × 0.2 × 0.2 mm
F(000) = 1336
Data collection top
Bruker APEXII CCD
diffractometer
4668 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
φ and ω scansθmax = 25.7°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1111
Tmin = 0.705, Tmax = 0.737k = 1919
36128 measured reflectionsl = 2020
4909 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.7375P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.49 e Å3
4909 reflectionsΔρmin = 0.26 e Å3
356 parametersAbsolute structure: Flack x determined using 1953 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.010 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.09379 (4)0.79146 (2)0.79300 (2)0.01132 (9)
O10.9734 (2)0.89973 (12)0.80207 (12)0.0156 (4)
O31.2374 (2)0.69917 (13)0.82970 (11)0.0150 (4)
O20.9525 (2)1.01235 (13)0.87640 (12)0.0190 (5)
O41.3661 (3)0.65997 (13)0.93534 (13)0.0250 (5)
O50.9208 (2)0.71131 (13)0.81555 (11)0.0178 (4)
O71.2475 (2)0.85377 (12)0.72153 (10)0.0151 (4)
O60.7669 (2)0.62760 (13)0.75366 (12)0.0208 (5)
O81.2894 (2)0.88805 (13)0.59530 (12)0.0197 (5)
N11.1543 (3)0.83219 (15)0.89664 (13)0.0117 (5)
N21.0390 (3)0.75735 (15)0.68573 (13)0.0124 (5)
C11.0034 (3)0.94313 (19)0.86156 (17)0.0147 (6)
C21.1083 (3)0.90574 (17)0.91977 (15)0.0136 (6)
C31.1561 (3)0.93967 (19)0.98988 (17)0.0160 (6)
H31.1272550.9931021.0054420.019*
C41.2481 (3)0.89317 (19)1.03707 (17)0.0178 (7)
H41.2789440.9138811.0866230.021*
C51.2944 (3)0.81687 (19)1.01178 (16)0.0155 (6)
H51.3577330.7850351.0432170.019*
C61.2463 (3)0.78819 (18)0.93978 (16)0.0136 (6)
C71.2889 (3)0.70808 (19)0.90009 (17)0.0154 (6)
C80.8683 (3)0.67716 (17)0.75527 (17)0.0149 (6)
C90.9355 (3)0.70262 (18)0.67704 (17)0.0131 (6)
C100.8957 (4)0.67512 (17)0.60250 (17)0.0166 (6)
H100.8217980.6355870.5963140.020*
C110.9667 (3)0.7068 (2)0.53760 (18)0.0194 (7)
H110.9419430.6887280.4860840.023*
C121.0745 (3)0.76525 (18)0.54766 (16)0.0164 (6)
H121.1232250.7877790.5034660.020*
C131.1087 (3)0.78960 (17)0.62377 (16)0.0132 (6)
C141.2247 (3)0.84969 (18)0.64704 (16)0.0147 (6)
Ni20.58765 (4)1.01066 (2)0.76468 (2)0.01201 (9)
O1W0.8016 (2)1.04716 (13)0.73792 (12)0.0192 (5)
H1WA0.8698281.0417460.7713680.031 (10)*
H1WB0.7976981.0929060.7129180.040 (11)*
O2W0.3684 (2)0.98471 (13)0.78767 (12)0.0172 (4)
H2WA0.3257060.9397830.7722230.042 (12)*
H2WB0.3083761.0253330.7811130.069 (16)*
N30.5586 (3)1.00016 (16)0.64375 (14)0.0192 (6)
H3A0.4650770.9895480.6323440.023*
H3B0.5848591.0473170.6189990.023*
N40.6569 (3)0.88925 (15)0.75663 (15)0.0174 (5)
H4A0.7634670.8901940.7631310.021*
N50.6255 (3)1.01005 (15)0.88651 (13)0.0163 (5)
H5A0.7315071.0131240.8949200.020*
N60.5419 (3)1.13467 (15)0.78184 (14)0.0170 (6)
H6A0.5867321.1657000.7446660.020*
H6B0.4457361.1436790.7784880.020*
C150.6505 (4)0.9317 (2)0.61828 (18)0.0236 (7)
H15A0.7523690.9488180.6182680.028*
H15B0.6243390.9145090.5641350.028*
C160.6286 (4)0.8613 (2)0.67532 (19)0.0226 (8)
H16A0.5288930.8408400.6712220.027*
H16B0.6943900.8158050.6617960.027*
C170.6005 (4)0.83218 (18)0.81722 (18)0.0210 (7)
H17A0.6397860.7767600.8073460.025*
H17B0.4948660.8290250.8122440.025*
C180.6383 (4)0.8580 (2)0.90014 (19)0.0234 (8)
H18A0.7439060.8633510.9036320.028*
H18B0.6094030.8135100.9365470.028*
C190.5716 (4)0.93725 (19)0.92903 (18)0.0230 (7)
H19A0.4662360.9340350.9225370.028*
H19B0.5921260.9436370.9860100.028*
C200.5617 (4)1.0860 (2)0.91737 (18)0.0216 (8)
H20A0.6017111.0982660.9701760.026*
H20B0.4565711.0793480.9226250.026*
C210.5947 (4)1.15564 (18)0.86117 (17)0.0207 (7)
H21A0.5478561.2065070.8798170.025*
H21B0.6995591.1652290.8593540.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01194 (18)0.01160 (18)0.01043 (16)0.00100 (17)0.00079 (17)0.00127 (13)
O10.0139 (10)0.0152 (11)0.0177 (10)0.0013 (9)0.0033 (8)0.0023 (9)
O30.0179 (11)0.0130 (11)0.0142 (10)0.0014 (9)0.0025 (9)0.0030 (8)
O20.0168 (11)0.0133 (11)0.0270 (11)0.0034 (9)0.0032 (8)0.0013 (9)
O40.0324 (14)0.0204 (13)0.0222 (11)0.0110 (10)0.0066 (10)0.0003 (9)
O50.0170 (11)0.0199 (11)0.0164 (10)0.0050 (11)0.0015 (9)0.0006 (8)
O70.0161 (11)0.0165 (11)0.0126 (11)0.0039 (9)0.0008 (8)0.0009 (8)
O60.0182 (12)0.0174 (11)0.0267 (12)0.0069 (10)0.0006 (9)0.0020 (9)
O80.0209 (12)0.0198 (12)0.0185 (11)0.0028 (10)0.0058 (9)0.0036 (9)
N10.0110 (12)0.0126 (13)0.0115 (12)0.0015 (10)0.0003 (10)0.0001 (10)
N20.0113 (12)0.0116 (13)0.0141 (12)0.0025 (10)0.0014 (9)0.0013 (10)
C10.0084 (16)0.0155 (17)0.0203 (15)0.0004 (13)0.0032 (12)0.0010 (12)
C20.0135 (16)0.0124 (15)0.0148 (13)0.0028 (13)0.0030 (12)0.0004 (11)
C30.0179 (16)0.0148 (17)0.0153 (14)0.0031 (13)0.0037 (12)0.0031 (12)
C40.0216 (18)0.0201 (17)0.0117 (13)0.0037 (14)0.0006 (12)0.0027 (12)
C50.0159 (16)0.0180 (17)0.0127 (14)0.0021 (13)0.0009 (12)0.0028 (12)
C60.0123 (15)0.0138 (15)0.0148 (14)0.0024 (13)0.0020 (11)0.0025 (11)
C70.0150 (15)0.0151 (16)0.0160 (14)0.0002 (13)0.0029 (12)0.0002 (12)
C80.0126 (16)0.0118 (15)0.0204 (16)0.0002 (12)0.0017 (12)0.0001 (12)
C90.0103 (15)0.0100 (14)0.0190 (14)0.0026 (12)0.0021 (11)0.0010 (11)
C100.0160 (16)0.0127 (15)0.0212 (15)0.0007 (14)0.0074 (14)0.0018 (11)
C110.0226 (17)0.0200 (17)0.0154 (14)0.0049 (14)0.0060 (12)0.0026 (13)
C120.0194 (17)0.0177 (16)0.0122 (13)0.0032 (14)0.0009 (12)0.0019 (11)
C130.0132 (15)0.0121 (14)0.0142 (13)0.0041 (13)0.0001 (12)0.0012 (11)
C140.0110 (15)0.0142 (16)0.0191 (15)0.0044 (13)0.0012 (12)0.0013 (12)
Ni20.01145 (18)0.01053 (18)0.01407 (17)0.00027 (16)0.00135 (15)0.00039 (13)
O1W0.0169 (12)0.0177 (12)0.0231 (11)0.0015 (9)0.0018 (9)0.0056 (9)
O2W0.0143 (10)0.0127 (11)0.0247 (11)0.0001 (9)0.0021 (8)0.0009 (9)
N30.0191 (15)0.0190 (15)0.0195 (13)0.0019 (12)0.0024 (10)0.0010 (11)
N40.0147 (13)0.0142 (14)0.0232 (13)0.0001 (11)0.0017 (10)0.0007 (11)
N50.0148 (14)0.0166 (13)0.0174 (12)0.0005 (11)0.0015 (10)0.0031 (10)
N60.0156 (13)0.0147 (13)0.0207 (14)0.0001 (10)0.0007 (10)0.0028 (11)
C150.0248 (18)0.0260 (19)0.0201 (16)0.0000 (15)0.0007 (13)0.0062 (14)
C160.0199 (19)0.0188 (18)0.0292 (17)0.0016 (14)0.0029 (13)0.0074 (14)
C170.0163 (16)0.0118 (15)0.0350 (17)0.0008 (14)0.0018 (15)0.0018 (12)
C180.0204 (18)0.0197 (18)0.0301 (18)0.0005 (14)0.0004 (14)0.0097 (14)
C190.0228 (19)0.0250 (19)0.0213 (15)0.0020 (15)0.0025 (14)0.0091 (13)
C200.025 (2)0.0221 (18)0.0179 (15)0.0019 (14)0.0001 (13)0.0043 (13)
C210.0234 (17)0.0136 (15)0.0252 (16)0.0018 (16)0.0012 (16)0.0046 (12)
Geometric parameters (Å, º) top
Ni1—O12.099 (2)Ni2—N32.074 (2)
Ni1—O32.109 (2)Ni2—N42.088 (2)
Ni1—O52.111 (2)Ni2—N52.095 (2)
Ni1—O72.1343 (19)Ni2—N62.089 (3)
Ni1—N11.961 (2)O1W—H1WA0.8563
Ni1—N21.969 (2)O1W—H1WB0.8593
O1—C11.264 (4)O2W—H2WA0.8743
O3—C71.294 (3)O2W—H2WB0.8744
O2—C11.251 (4)N3—H3A0.9100
O4—C71.221 (4)N3—H3B0.9100
O5—C81.262 (3)N3—C151.473 (4)
O7—C141.282 (3)N4—H4A1.0000
O6—C81.245 (3)N4—C161.475 (4)
O8—C141.235 (4)N4—C171.483 (4)
N1—C21.334 (4)N5—H5A1.0000
N1—C61.336 (4)N5—C191.477 (4)
N2—C91.323 (4)N5—C201.471 (4)
N2—C131.343 (4)N6—H6A0.9100
C1—C21.517 (4)N6—H6B0.9100
C2—C31.385 (4)N6—C211.472 (4)
C3—H30.9500C15—H15A0.9900
C3—C41.396 (4)C15—H15B0.9900
C4—H40.9500C15—C161.515 (5)
C4—C51.386 (4)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C5—C61.382 (4)C17—H17A0.9900
C6—C71.523 (4)C17—H17B0.9900
C8—C91.524 (4)C17—C181.509 (4)
C9—C101.391 (4)C18—H18A0.9900
C10—H100.9500C18—H18B0.9900
C10—C111.384 (4)C18—C191.517 (5)
C11—H110.9500C19—H19A0.9900
C11—C121.396 (5)C19—H19B0.9900
C12—H120.9500C20—H20A0.9900
C12—C131.387 (4)C20—H20B0.9900
C13—C141.512 (4)C20—C211.515 (4)
Ni2—O1W2.131 (2)C21—H21A0.9900
Ni2—O2W2.124 (2)C21—H21B0.9900
O1—Ni1—O3156.79 (8)N5—Ni2—O1W93.07 (9)
O1—Ni1—O595.74 (8)N5—Ni2—O2W88.86 (9)
O1—Ni1—O789.96 (8)N6—Ni2—O1W87.13 (9)
O3—Ni1—O589.36 (8)N6—Ni2—O2W88.34 (9)
O3—Ni1—O794.68 (8)N6—Ni2—N584.36 (10)
O5—Ni1—O7155.62 (7)Ni2—O1W—H1WA121.7
N1—Ni1—O178.63 (9)Ni2—O1W—H1WB107.9
N1—Ni1—O378.19 (9)H1WA—O1W—H1WB116.6
N1—Ni1—O5105.53 (9)Ni2—O2W—H2WA123.4
N1—Ni1—O798.84 (9)Ni2—O2W—H2WB116.2
N1—Ni1—N2176.06 (10)H2WA—O2W—H2WB107.9
N2—Ni1—O199.61 (9)Ni2—N3—H3A110.5
N2—Ni1—O3103.60 (9)Ni2—N3—H3B110.5
N2—Ni1—O578.10 (9)H3A—N3—H3B108.7
N2—Ni1—O777.58 (9)C15—N3—Ni2106.06 (18)
C1—O1—Ni1114.33 (19)C15—N3—H3A110.5
C7—O3—Ni1115.29 (18)C15—N3—H3B110.5
C8—O5—Ni1115.02 (18)Ni2—N4—H4A106.6
C14—O7—Ni1115.00 (19)C16—N4—Ni2107.41 (19)
C2—N1—Ni1118.40 (19)C16—N4—H4A106.6
C2—N1—C6122.0 (3)C16—N4—C17112.9 (2)
C6—N1—Ni1119.5 (2)C17—N4—Ni2116.20 (19)
C9—N2—Ni1118.88 (19)C17—N4—H4A106.6
C9—N2—C13122.1 (2)Ni2—N5—H5A107.9
C13—N2—Ni1119.07 (19)C19—N5—Ni2115.30 (19)
O1—C1—C2115.9 (3)C19—N5—H5A107.9
O2—C1—O1125.6 (3)C20—N5—Ni2106.17 (18)
O2—C1—C2118.5 (3)C20—N5—H5A107.9
N1—C2—C1112.2 (2)C20—N5—C19111.5 (2)
N1—C2—C3120.6 (3)Ni2—N6—H6A110.4
C3—C2—C1127.2 (3)Ni2—N6—H6B110.4
C2—C3—H3120.9H6A—N6—H6B108.6
C2—C3—C4118.1 (3)C21—N6—Ni2106.50 (18)
C4—C3—H3120.9C21—N6—H6A110.4
C3—C4—H4119.9C21—N6—H6B110.4
C5—C4—C3120.2 (3)N3—C15—H15A110.1
C5—C4—H4119.9N3—C15—H15B110.1
C4—C5—H5120.8N3—C15—C16108.1 (3)
C6—C5—C4118.4 (3)H15A—C15—H15B108.4
C6—C5—H5120.8C16—C15—H15A110.1
N1—C6—C5120.6 (3)C16—C15—H15B110.1
N1—C6—C7112.8 (2)N4—C16—C15109.7 (3)
C5—C6—C7126.6 (3)N4—C16—H16A109.7
O3—C7—C6114.0 (3)N4—C16—H16B109.7
O4—C7—O3126.7 (3)C15—C16—H16A109.7
O4—C7—C6119.3 (3)C15—C16—H16B109.7
O5—C8—C9115.1 (2)H16A—C16—H16B108.2
O6—C8—O5126.8 (3)N4—C17—H17A109.0
O6—C8—C9118.0 (3)N4—C17—H17B109.0
N2—C9—C8112.7 (2)N4—C17—C18112.8 (3)
N2—C9—C10120.9 (3)H17A—C17—H17B107.8
C10—C9—C8126.4 (3)C18—C17—H17A109.0
C9—C10—H10120.8C18—C17—H17B109.0
C11—C10—C9118.3 (3)C17—C18—H18A108.2
C11—C10—H10120.8C17—C18—H18B108.2
C10—C11—H11119.9C17—C18—C19116.3 (3)
C10—C11—C12120.1 (3)H18A—C18—H18B107.4
C12—C11—H11119.9C19—C18—H18A108.2
C11—C12—H12120.8C19—C18—H18B108.2
C13—C12—C11118.4 (3)N5—C19—C18112.9 (3)
C13—C12—H12120.8N5—C19—H19A109.0
N2—C13—C12120.2 (3)N5—C19—H19B109.0
N2—C13—C14113.4 (2)C18—C19—H19A109.0
C12—C13—C14126.4 (3)C18—C19—H19B109.0
O7—C14—C13114.2 (3)H19A—C19—H19B107.8
O8—C14—O7126.3 (3)N5—C20—H20A109.9
O8—C14—C13119.5 (3)N5—C20—H20B109.9
O2W—Ni2—O1W174.88 (8)N5—C20—C21109.1 (2)
N3—Ni2—O1W86.26 (9)H20A—C20—H20B108.3
N3—Ni2—O2W92.25 (9)C21—C20—H20A109.9
N3—Ni2—N484.10 (10)C21—C20—H20B109.9
N3—Ni2—N5174.54 (10)N6—C21—C20109.4 (2)
N3—Ni2—N6101.01 (10)N6—C21—H21A109.8
N4—Ni2—O1W87.83 (9)N6—C21—H21B109.8
N4—Ni2—O2W96.90 (9)C20—C21—H21A109.8
N4—Ni2—N590.45 (10)C20—C21—H21B109.8
N4—Ni2—N6172.57 (10)H21A—C21—H21B108.2
Ni1—O1—C1—O2175.1 (2)C2—C3—C4—C53.0 (4)
Ni1—O1—C1—C26.2 (3)C3—C4—C5—C60.7 (4)
Ni1—O3—C7—O4175.0 (3)C4—C5—C6—N11.7 (4)
Ni1—O3—C7—C65.5 (3)C4—C5—C6—C7177.3 (3)
Ni1—O5—C8—O6179.7 (2)C5—C6—C7—O3174.5 (3)
Ni1—O5—C8—C92.3 (3)C5—C6—C7—O45.0 (5)
Ni1—O7—C14—O8171.5 (2)C6—N1—C2—C1179.3 (2)
Ni1—O7—C14—C1310.1 (3)C6—N1—C2—C30.7 (4)
Ni1—N1—C2—C14.6 (3)C8—C9—C10—C11178.3 (3)
Ni1—N1—C2—C3175.4 (2)C9—N2—C13—C120.7 (4)
Ni1—N1—C6—C5177.8 (2)C9—N2—C13—C14178.9 (3)
Ni1—N1—C6—C71.4 (3)C9—C10—C11—C120.4 (4)
Ni1—N2—C9—C82.9 (3)C10—C11—C12—C130.6 (5)
Ni1—N2—C9—C10178.3 (2)C11—C12—C13—N20.1 (4)
Ni1—N2—C13—C12178.5 (2)C11—C12—C13—C14177.9 (3)
Ni1—N2—C13—C140.3 (3)C12—C13—C14—O7171.3 (3)
O1—C1—C2—N11.4 (4)C12—C13—C14—O87.2 (5)
O1—C1—C2—C3178.6 (3)C13—N2—C9—C8177.9 (2)
O2—C1—C2—N1179.8 (3)C13—N2—C9—C101.0 (4)
O2—C1—C2—C30.2 (5)Ni2—N3—C15—C1645.9 (3)
O5—C8—C9—N20.2 (4)Ni2—N4—C16—C1534.9 (3)
O5—C8—C9—C10178.9 (3)Ni2—N4—C17—C1859.1 (3)
O6—C8—C9—N2178.0 (3)Ni2—N5—C19—C1860.4 (3)
O6—C8—C9—C100.8 (4)Ni2—N5—C20—C2141.5 (3)
N1—C2—C3—C43.0 (4)Ni2—N6—C21—C2040.1 (3)
N1—C6—C7—O34.6 (4)N3—C15—C16—N455.3 (3)
N1—C6—C7—O4175.8 (3)N4—C17—C18—C1965.8 (4)
N2—C9—C10—C110.4 (4)N5—C20—C21—N656.4 (3)
N2—C13—C14—O76.8 (4)C16—N4—C17—C18176.1 (3)
N2—C13—C14—O8174.7 (3)C17—N4—C16—C15164.3 (3)
C1—C2—C3—C4177.0 (3)C17—C18—C19—N567.0 (4)
C2—N1—C6—C51.8 (4)C19—N5—C20—C21167.8 (3)
C2—N1—C6—C7177.4 (3)C20—N5—C19—C18178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O8i0.912.413.213 (3)147
N3—H3B···O4ii0.912.113.015 (3)176
N4—H4A···O11.002.073.054 (3)167
N5—H5A···O21.002.083.054 (3)163
N6—H6A···O3ii0.912.142.986 (3)154
N6—H6B···O6iii0.912.072.943 (3)160
O1W—H1WA···O10.862.563.088 (3)121
O1W—H1WA···O20.862.002.795 (3)154
O1W—H1WB···O3ii0.861.912.757 (3)170
O2W—H2WA···O7i0.871.802.663 (3)169
O2W—H2WB···O6iii0.871.902.742 (3)160
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

References

First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationChoi, K.-Y., Ryu, H., Lim, Y.-M., Sung, N.-D., Shin, U.-S. & Suh, M. (2003). Inorg. Chem. Commun. 6, 412–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationEscuer, A., Vicente, R., Ribas, J., El Fallah, M. S., Solans, X. & Font-Bardia, M. (1993). Inorg. Chem. 32, 3727–3732.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationKoo, J. E., Kim, D. H., Kim, Y. S. & Do, Y. (2003). Inorg. Chem. 42, 2983–2987.  CrossRef PubMed CAS Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249.  Web of Science CrossRef CAS Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNi, W.-W., Chen, X., Cui, A.-L., Liu, C.-M. & Kou, H.-Z. (2014). Polyhedron, 81, 450–456.  CrossRef CAS Google Scholar
First citationOblezov, A. E., Talham, D. R. & Abboud, K. A. (2003). Acta Cryst. E59, m1070–m1071.  CrossRef IUCr Journals Google Scholar
First citationPark, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShek, I. Y., Yeung, W.-F., Lau, T.-C., Zhang, J., Gao, S., Szeto, L. & Wong, W.-T. (2005). Eur. J. Inorg. Chem. pp. 364–370.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTalukder, P., Shit, S., Nöth, H., Westerhausen, M., Kneifel, A. N. & Mitra, S. (2012). Transition Met. Chem. 37, 71–77.  CrossRef CAS Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.)  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds