research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [{[Ni(C10H24N4)][Ni(CN)4]}·2H2O]n, a one-dimensional coordination polymer formed from the [Ni(cyclam)]2+ cation and the [Ni(CN)4]2– anion

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghika Voda41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 October 2021; accepted 20 October 2021; online 21 October 2021)

The asymmetric unit of the title compound, catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-cyanido-κ2N:C-[bis­(cyanido-κC)nickel(II)]-μ-cyanido-κ2C:N] dihydrate], {[Ni2(CN)4(C10H24N4)]·2H2O]n or [{[Ni(C10H24N4)][Ni(CN)4]}·2H2O]n, consists of a pair of crystallographically non-equivalent macrocyclic cations and anions. The nickel(II) ions (all with site symmetry [\overline{1}]) are coordinated by the four secondary N atoms of the macrocyclic ligands, which adopt the most energetically stable trans-III conformation, and the mutually trans N atoms of the tetra­cyano­nickelate anion in a slightly tetra­gonally distorted NiN6 octa­hedral coordination geometry. The [Ni(CN)4)]2– anion exhibits a bridging function, resulting in the formation of parallel polymeric chains running along the [1[\overline{1}]0] direction. The water mol­ecules of crystallization play a pivotal role in the three-dimensional supra­molecular organization of the crystal. Acting as acceptors, they form N—H⋯Ow (w = water) hydrogen bonds with the secondary amino groups of the macrocycles, forming layers oriented parallel to the (001) plane. At the same time, as donors, they inter­act with the non-coordinated cyano groups of the anion via Ow—H⋯Nc (c = cyanide) hydrogen bonds, giving two-dimensional layers oriented parallel to the (100) plane and thus generating a three-dimensional network.

1. Chemical context

Transition-metal complexes of tetra­aza­macrocyclic ligands, in particular of 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam, L), have been intensively studied for decades. This is explained by their unique properties, in particular, exceptionally high thermodynamic stability, kinetic inertness and the ability to stabilize uncommon oxidation states of coordinated metals (Melson, 1979[Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.]; Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian)]). Because of their conformational rigidity during chemical transformation (preservation of two vacant or labile trans axial positions in the coordination sphere of the metal ion), these complexes are also promising secondary building units for the construction of metal–organic frameworks (MOFs) (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]), which possess great potential for applications in different areas including gas storage, separation, catalysis, sensing, etc (MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials. Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, 2 volumes. Weinheim: Wiley-VCH.]).

Cyano­metallate anions refer to a type of bridging ligands for the creation of MOFs of different topologies possessing promising magnetic and electronic properties (Ohkoshi et al., 2019[Ohkoshi, S., Namai, A. & Tokoro, H. (2019). Coord. Chem. Rev. 380, 572-583.]). Among such linkers, the tetra­cyano­nickelate(II) dianion has attracted less attention compared to hexa- and octa­cyano­metallates and only one work describing the structure of the coordination polymer formed by the metal(cyclam) complex and this anion, i.e., {Cu(L)[Ni(CN)4]}n, has been published to date (Černák et al., 2010[Černák, J., Kuchár, J., Stolárová, M., Kajňaková, M., Vavra, M., Potočňák, I., Falvello, L. R. & Tomás, M. (2010). Transition Met. Chem. 35, 737-744.]). Inter­estingly, despite the diamagnetic nature of the bridging fragment, this complex displays a weak anti­ferromagnetic exchange coupling between the paramagnetic copper(II) centres.

[Scheme 1]

We report herein the synthesis and crystal structure of the coordination polymer built up of the nickel(II) complex of L and the tetra­cyano­nickelate(II) dianion, namely, catena-[bis­(μ2-cyano-κ2C,N)-di­cyano-(1,4,8,11-tetra­aza­cyclo­tetra­dec­ane-κ4N1,N4,N8,N11)-dinickel(II) dihydrate], [{[Ni(L)][Ni(CN)4]}·2H2O]n, (I).

2. Structural commentary

The mol­ecular structure of I is shown in Fig. 1[link]. It represents a one-dimensional coordination polymer built up from two crystallographically independent centrosymmetric tetra­gonal macrocyclic [Ni(L)]2+ cations and tetra­cyano­nickelate anions [Ni(CN)4]2–. The coordination of the trans cyanide groups of the anions in the axial positions of the coordination sphere of the metal ions in cations results in the formation of two structurally non-equivalent parallel polymeric chains (Ni1/Ni3 and Ni2/Ni4) running along the [1[\overline{1}]0] direction.

[Figure 1]
Figure 1
The extended asymmetric unit in I showing the coordination environment of the Ni atoms and the atom-labelling scheme (displacement ellipsoids are drawn at the 40% probability level). C-bound H atoms are omitted for clarity. Dotted lines represent hydrogen-bonding inter­actions. Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x, −y + 2, −z; (iii) x − 1, y + 1, z; (iv) −x + 1, −y, −z + 1; (v) −x, −y + 1, −z + 1.

The location of the metal ions on inversion centres enforces strict planarity of the Ni(N4) and Ni(C4) coordination moieties. The macrocyclic ligand in the complex cations adopts the most common and energetically favorable trans-III (R,R,S,S) conformation (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]) with almost equal Ni—N bond lengths (Table 1[link]). The five-membered chelate rings are present in gauche (bite angles ca 85.5°) and the six-membered in chair (bite angles ca 94.5°) conformations (Table 1[link]). The geometric parameters observed are characteristic of high-spin d8 nickel(II) complexes with macrocyclic 14-membered tetra­amine ligands (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Tsymbal et al., 2021[Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355-2370.]). The axial Ni—N(CN) bond lengths are somewhat longer than the Ni—N(amine) ones, resulting in a slight tetra­gonal distortion of the trans-NiN4N2 coordination polyhedron.

Table 1
Selected bond lengths (Å)

Ni1—N5 2.100 (4) Ni2—N4 2.079 (4)
Ni1—N2 2.070 (4) Ni3—C11 1.874 (6)
Ni1—N1 2.082 (4) Ni3—C12 1.857 (6)
Ni2—N3 2.069 (4) Ni4—C13 1.866 (6)
Ni2—N7 2.095 (4) Ni4—C14 1.863 (6)

The Ni—C—N angles in the anion deviate only slightly (less than 4°) from linearity. In I, each tetra­cyano­nickelate unit uses two trans cyanide groups for coordination to two macrocyclic moieties in a bent fashion [Ni—N—C = 166.1 (4)°], giving rise to a linear polymeric chain, whereas the two remaining trans CN groups are monodentate. The adjacent Ni⋯Ni distance in the chain is 5.0558 (5) Å, and the shortest inter­chain Ni⋯Ni distance is 6.6159 (5) Å.

3. Supra­molecular features

The crystals of I are composed of linear polymeric chains of [Ni(L)]2+ cations bridged by the [Ni(CN)4]2− anions, which propagate along the [1[\overline{1}]0] direction. There are no direct contacts between the chains and the water mol­ecules of crystallization play a key role in assembling them into a three-dimensional supra­molecular network. In particular, serving as the acceptor for N—H⋯O hydrogen bonds arising from the secondary amino groups of different macrocyclic ligands in the crystallographically equivalent chains (O1W for Ni1/Ni3, O2W for Ni2/Ni4), the water mol­ecules link them in two-dimensional layers oriented parallel to the (001) plane (Table 2[link], Fig. 2[link]a). At the same time, acting as the donors in O—H⋯N hydrogen-bonding inter­actions with the nitro­gen atoms of the non-coordinating cyanide groups of the anions belonging to crystallographically non-equivalent polymeric chains, they form two-dimensional layers oriented parallel to the (100) plane (Table 2[link], Fig. 2[link]b) thus realizing a three-dimensional system of hydrogen bonds in the crystal.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1Wi 0.98 2.28 3.115 (6) 143
N2—H2⋯O1Wii 0.98 2.10 3.020 (6) 156
N3—H3⋯O2Wi 0.98 2.15 3.083 (7) 159
N4—H4⋯O2Wiii 0.98 2.26 3.080 (6) 140
O1W—H1WA⋯N8 0.85 2.03 2.872 (7) 173
O1W—H1WB⋯N6iv 0.85 2.27 3.112 (7) 171
O2W—H2WA⋯N6 0.85 2.03 2.853 (6) 164
O2W—H2WB⋯N8i 0.85 2.30 3.149 (7) 175
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x, y, z-1]; (iii) [x, y-1, z]; (iv) [-x, -y+2, -z+1].
[Figure 2]
Figure 2
View of the sheets of polymeric chains formed due to the hydrogen-bond acceptor (a) and donor (b) properties of the water mol­ecules of crystallization. The macrocyclic ligands in the crystallographically non-equivalent nickel ions are shown in violet (Ni1/Ni3) and green (Ni2/Ni4) colors.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that several one-dimensional coordination polymers formed by di­aza­cyclam nickel(II) cations (di­aza­cyclam = 1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne) and the tetra­cyano­nickelate anion have been characterized structurally. They include compounds with monomacrocylic (refcode MIMJIB; Kou et al., 2002[Kou, H.-Z., Si, S.-F., Gao, S., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. & Wang, G.-L. (2002). Eur. J. Inorg. Chem. pp. 699-702.]) and macrotricyclic [NADVOE (Zhou et al., 2004[Zhou, H.-B., Dong, W., Zhu, L.-N., Yu, L.-H., Wang, Q.-L., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2004). J. Mol. Struct. 703, 103-106.]), YUBHEK, YUBHIO and YUBHOU (Jiang et al., 2015[Jiang, X., Tao, B., Yu, X., Wang, Y. & Xia, H. (2015). RSC Adv. 5, 19034-19040.])] tetra­dentate ligands. The structures of the polymeric chains in these compounds are very similar. In particular, because of comparable Ni—N(CN) bond lengths and Ni—N—C bond angles, the inter­chain Ni⋯Ni distances fall in the range 5.07–5.15 Å and are slightly longer than that observed in I. Surprisingly, a similar value for this parameter (5.056 Å) is also observed in the complex of the [Cu(L)]2+ cation with [Ni(CN)4]2− (XABGEO; Černák et al., 2010[Černák, J., Kuchár, J., Stolárová, M., Kajňaková, M., Vavra, M., Potočňák, I., Falvello, L. R. & Tomás, M. (2010). Transition Met. Chem. 35, 737-744.]), despite the substanti­ally longer Cu—N(CN) distance (2.532 Å). This feature is explained by the considerable bending of the Cu—N—C (133.0°) angle as compared the nickel analogues.

5. Synthesis and crystallization

All reagents and solvents used in this work were analytical grade and were used without further purification. The macrocyclic nickel(II) complex Ni(L)(ClO4)2 was prepared according to procedures described previously (Barefield et al., 1976[Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220-224.]).

[{[Ni(L)][Ni(CN)4]}·2H2O]n, (I)[link]: A solution of 121 mg (0.50 mmol) of K2[Ni(CN)4] in 15 ml of water was added under stirring to a solution of 290 mg (0.50 mmol) Ni(L)(ClO4)2 in 10 ml of di­methyl­formamide. Filtration and slow evaporation of the resulting solution gave after several days a light-yellow crystalline precipitate, which was washed with DMF, methanol and dried in air. Yield 160 mg (35%). Analysis calculated for C14H28N8Ni2O2: C, 36.72; H, 6.16; N, 24.47%. Found: C, 36.62; H, 6.26; N, 24.19%. Single crystals suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis. Safety note: perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å, N—H = 0.98 Å and water O—H = 0.85 Å, with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Ni2(CN)4(C10H24N4)]·2H2O
Mr 457.86
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 7.7325 (6), 8.8809 (7), 15.7780 (12)
α, β, γ (°) 88.673 (6), 85.682 (7), 74.623 (7)
V3) 1041.74 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.83
Crystal size (mm) 0.30 × 0.20 × 0.06
 
Data collection
Diffractometer Rigaku Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.852, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7144, 3673, 2417
Rint 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.159, 1.07
No. of reflections 3673
No. of parameters 247
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.31, −0.42
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-cyanido-κ2N:C-[bis(cyanido-κC)nickel(II)]-µ-cyanido-κ2C:N] dihydrate] top
Crystal data top
[Ni2(CN)4(C10H24N4)]·2H2OZ = 2
Mr = 457.86F(000) = 480
Triclinic, P1Dx = 1.460 Mg m3
a = 7.7325 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8809 (7) ÅCell parameters from 2303 reflections
c = 15.7780 (12) Åθ = 2.7–28.8°
α = 88.673 (6)°µ = 1.83 mm1
β = 85.682 (7)°T = 180 K
γ = 74.623 (7)°Block, colourless
V = 1041.74 (15) Å30.30 × 0.20 × 0.06 mm
Data collection top
Rigaku Xcalibur, Eos
diffractometer
3673 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.0797 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 910
Tmin = 0.852, Tmax = 1.000l = 1718
7144 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.064P)2 + 1.1599P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3673 reflectionsΔρmax = 1.31 e Å3
247 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni40.0000000.5000000.5000000.0201 (3)
Ni30.0000001.0000000.0000000.0195 (3)
Ni10.5000000.5000000.0000000.0172 (3)
Ni20.5000000.0000000.5000000.0177 (3)
C130.1682 (7)0.3061 (6)0.4882 (3)0.0190 (11)
N50.2721 (5)0.6907 (5)0.0165 (3)0.0232 (10)
C80.3761 (7)0.2867 (6)0.4659 (4)0.0312 (14)
H8A0.4961310.3534570.4720140.037*
H8B0.3165560.3389240.4285280.037*
N80.0359 (7)0.4416 (6)0.6889 (3)0.0424 (14)
N30.3772 (6)0.0524 (5)0.6138 (3)0.0259 (11)
H30.2540630.0152130.6174900.031*
N60.0089 (7)1.0667 (7)0.1866 (3)0.0459 (14)
N20.4008 (6)0.4404 (5)0.1091 (3)0.0247 (11)
H20.2781180.5073740.1114580.030*
C110.1664 (7)0.8059 (7)0.0125 (3)0.0205 (12)
O2W0.0288 (6)0.9077 (5)0.3461 (2)0.0374 (10)
H2WA0.0369230.9596800.3008500.056*
H2WB0.0324800.8143930.3335530.056*
C140.0241 (7)0.4667 (6)0.6168 (4)0.0273 (13)
C100.5288 (8)0.0021 (7)0.3194 (4)0.0322 (14)
H10A0.6013990.0073290.2659080.039*
H10B0.4155960.0791530.3122460.039*
N10.3727 (5)0.3666 (5)0.0802 (3)0.0224 (10)
H10.2472980.4271270.0907950.027*
C30.3903 (7)0.2784 (7)0.1143 (4)0.0336 (14)
H3A0.5109490.2091770.1178350.040*
H3B0.3342520.2655660.1656120.040*
N70.2769 (5)0.1898 (5)0.4838 (3)0.0231 (10)
C40.5107 (7)0.4876 (7)0.1807 (3)0.0289 (14)
H4A0.4489160.4950590.2324830.035*
H4B0.6250880.4095780.1890270.035*
C120.0032 (7)1.0368 (6)0.1155 (4)0.0273 (13)
O1W0.0212 (6)0.5830 (5)0.8426 (3)0.0383 (11)
H1WA0.0046670.5416810.7989360.057*
H1WB0.0276850.6752110.8307100.057*
C10.3698 (7)0.2153 (6)0.0457 (4)0.0300 (14)
H1A0.3035860.1637450.0861840.036*
H1B0.4919130.1496790.0377380.036*
N40.3896 (5)0.1378 (5)0.4269 (3)0.0225 (10)
H40.2670230.0771430.4170910.027*
C20.2837 (7)0.2331 (7)0.0382 (4)0.0373 (15)
H2A0.1692630.3113480.0311870.045*
H2B0.2584980.1350020.0507640.045*
C60.3638 (7)0.2135 (7)0.6248 (4)0.0336 (15)
H6A0.2959700.2221070.6781080.040*
H6B0.4833870.2830610.6274830.040*
C50.5424 (7)0.6439 (7)0.1614 (3)0.0295 (14)
H5A0.6197980.6724750.2066940.035*
H5B0.4288310.7237640.1577820.035*
C90.4941 (7)0.1553 (7)0.3439 (3)0.0323 (14)
H9A0.4274450.1875870.3012670.039*
H9B0.6072900.2341120.3476890.039*
C70.2724 (7)0.2638 (7)0.5524 (4)0.0364 (16)
H7A0.2445580.3611960.5687470.044*
H7B0.1590670.1862260.5464290.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni40.0180 (5)0.0115 (5)0.0275 (6)0.0020 (4)0.0016 (4)0.0006 (4)
Ni30.0170 (5)0.0117 (5)0.0265 (6)0.0015 (4)0.0005 (4)0.0005 (4)
Ni10.0152 (5)0.0111 (5)0.0234 (6)0.0001 (4)0.0012 (4)0.0006 (4)
Ni20.0177 (5)0.0099 (5)0.0228 (6)0.0010 (4)0.0005 (4)0.0019 (4)
C130.017 (3)0.020 (3)0.020 (3)0.006 (2)0.002 (2)0.001 (2)
N50.015 (2)0.012 (3)0.037 (3)0.005 (2)0.0038 (19)0.002 (2)
C80.024 (3)0.020 (3)0.051 (4)0.007 (3)0.007 (3)0.009 (3)
N80.058 (4)0.029 (3)0.037 (3)0.005 (3)0.004 (3)0.001 (3)
N30.022 (2)0.025 (3)0.029 (3)0.002 (2)0.0016 (19)0.002 (2)
N60.055 (4)0.045 (4)0.037 (4)0.012 (3)0.000 (3)0.002 (3)
N20.020 (2)0.023 (3)0.028 (3)0.001 (2)0.0050 (18)0.003 (2)
C110.024 (3)0.019 (3)0.020 (3)0.007 (2)0.006 (2)0.001 (2)
O2W0.041 (2)0.030 (3)0.039 (3)0.004 (2)0.0061 (19)0.005 (2)
C140.020 (3)0.014 (3)0.044 (4)0.004 (2)0.005 (2)0.002 (3)
C100.035 (3)0.029 (4)0.029 (3)0.001 (3)0.002 (2)0.005 (3)
N10.022 (2)0.018 (3)0.026 (3)0.0045 (19)0.0040 (18)0.000 (2)
C30.032 (3)0.025 (4)0.046 (4)0.008 (3)0.008 (3)0.011 (3)
N70.017 (2)0.014 (3)0.034 (3)0.002 (2)0.0014 (18)0.003 (2)
C40.028 (3)0.034 (4)0.023 (3)0.006 (3)0.001 (2)0.003 (3)
C120.027 (3)0.015 (3)0.039 (4)0.005 (2)0.003 (2)0.005 (3)
O1W0.038 (2)0.033 (3)0.042 (3)0.003 (2)0.0109 (19)0.006 (2)
C10.019 (3)0.012 (3)0.057 (4)0.004 (2)0.008 (2)0.007 (3)
N40.021 (2)0.013 (2)0.034 (3)0.0037 (19)0.0065 (18)0.006 (2)
C20.025 (3)0.026 (4)0.064 (4)0.011 (3)0.003 (3)0.010 (3)
C60.027 (3)0.027 (4)0.045 (4)0.006 (3)0.003 (3)0.010 (3)
C50.024 (3)0.030 (4)0.028 (3)0.002 (3)0.003 (2)0.009 (3)
C90.038 (3)0.030 (4)0.026 (3)0.002 (3)0.004 (2)0.012 (3)
C70.018 (3)0.027 (4)0.064 (5)0.008 (3)0.002 (3)0.010 (3)
Geometric parameters (Å, º) top
Ni1—N52.100 (4)N2—C41.482 (7)
Ni1—N5i2.100 (4)O2W—H2WA0.8491
Ni1—N2i2.070 (4)O2W—H2WB0.8493
Ni1—N22.070 (4)C10—H10A0.9700
Ni1—N1i2.082 (4)C10—H10B0.9700
Ni1—N12.082 (4)C10—C91.528 (8)
Ni2—N3ii2.069 (4)N1—H10.9800
Ni2—N32.069 (4)N1—C11.468 (7)
Ni2—N72.095 (4)N1—C5i1.474 (6)
Ni2—N7ii2.095 (4)C3—H3A0.9700
Ni2—N42.079 (4)C3—H3B0.9700
Ni2—N4ii2.079 (4)C3—C21.512 (8)
Ni3—C111.874 (6)C4—H4A0.9700
Ni3—C11iii1.874 (6)C4—H4B0.9700
Ni3—C12iii1.857 (6)C4—C51.514 (8)
Ni3—C121.857 (6)O1W—H1WA0.8499
Ni4—C13iv1.866 (6)O1W—H1WB0.8492
Ni4—C131.866 (6)C1—H1A0.9700
Ni4—C14iv1.863 (6)C1—H1B0.9700
Ni4—C141.863 (6)C1—C21.511 (8)
C13—N71.145 (7)N4—H40.9800
N5—C111.132 (7)N4—C91.475 (7)
C8—H8A0.9700C2—H2A0.9700
C8—H8B0.9700C2—H2B0.9700
C8—N41.470 (6)C6—H6A0.9700
C8—C71.521 (8)C6—H6B0.9700
N8—C141.156 (7)C6—C71.521 (8)
N3—H30.9800C5—H5A0.9700
N3—C10ii1.466 (7)C5—H5B0.9700
N3—C61.468 (7)C9—H9A0.9700
N6—C121.154 (7)C9—H9B0.9700
N2—H20.9800C7—H7A0.9700
N2—C31.467 (7)C7—H7B0.9700
C13iv—Ni4—C13180.0N3ii—C10—C9109.3 (4)
C14iv—Ni4—C13iv89.7 (2)H10A—C10—H10B108.3
C14—Ni4—C13iv90.3 (2)C9—C10—H10A109.8
C14iv—Ni4—C1390.3 (2)C9—C10—H10B109.8
C14—Ni4—C1389.7 (2)Ni1—N1—H1107.1
C14iv—Ni4—C14180.0C1—N1—Ni1115.1 (3)
C11—Ni3—C11iii180.0C1—N1—H1107.1
C12—Ni3—C1190.1 (2)C1—N1—C5i114.3 (4)
C12iii—Ni3—C11iii90.1 (2)C5i—N1—Ni1105.7 (3)
C12—Ni3—C11iii89.9 (2)C5i—N1—H1107.1
C12iii—Ni3—C1189.9 (2)N2—C3—H3A109.2
C12iii—Ni3—C12180.0N2—C3—H3B109.2
N5i—Ni1—N5180.0N2—C3—C2111.9 (5)
N2—Ni1—N589.31 (17)H3A—C3—H3B107.9
N2—Ni1—N5i90.69 (17)C2—C3—H3A109.2
N2i—Ni1—N5i89.31 (17)C2—C3—H3B109.2
N2i—Ni1—N590.69 (17)C13—N7—Ni2166.1 (4)
N2i—Ni1—N2180.00 (11)N2—C4—H4A109.8
N2—Ni1—N1i85.61 (17)N2—C4—H4B109.8
N2i—Ni1—N185.61 (17)N2—C4—C5109.6 (5)
N2i—Ni1—N1i94.39 (17)H4A—C4—H4B108.2
N2—Ni1—N194.39 (17)C5—C4—H4A109.8
N1i—Ni1—N590.34 (17)C5—C4—H4B109.8
N1—Ni1—N589.66 (17)N6—C12—Ni3176.9 (5)
N1i—Ni1—N5i89.66 (17)H1WA—O1W—H1WB109.4
N1—Ni1—N5i90.34 (17)N1—C1—H1A109.2
N1i—Ni1—N1180.0N1—C1—H1B109.2
N3ii—Ni2—N3180.0N1—C1—C2111.9 (4)
N3ii—Ni2—N7ii89.44 (17)H1A—C1—H1B107.9
N3—Ni2—N7ii90.56 (17)C2—C1—H1A109.2
N3ii—Ni2—N790.56 (17)C2—C1—H1B109.2
N3—Ni2—N789.44 (17)Ni2—N4—H4107.0
N3ii—Ni2—N485.36 (17)C8—N4—Ni2115.6 (3)
N3—Ni2—N4ii85.36 (17)C8—N4—H4107.0
N3—Ni2—N494.64 (17)C8—N4—C9113.8 (4)
N3ii—Ni2—N4ii94.64 (17)C9—N4—Ni2105.9 (3)
N7ii—Ni2—N7180.0C9—N4—H4107.0
N4ii—Ni2—N7ii89.87 (17)C3—C2—H2A108.1
N4ii—Ni2—N790.13 (17)C3—C2—H2B108.1
N4—Ni2—N7ii90.13 (17)C1—C2—C3116.7 (4)
N4—Ni2—N789.87 (17)C1—C2—H2A108.1
N4ii—Ni2—N4180.0C1—C2—H2B108.1
N7—C13—Ni4176.4 (5)H2A—C2—H2B107.3
C11—N5—Ni1166.1 (4)N3—C6—H6A109.2
H8A—C8—H8B107.9N3—C6—H6B109.2
N4—C8—H8A109.2N3—C6—C7111.9 (4)
N4—C8—H8B109.2H6A—C6—H6B107.9
N4—C8—C7112.1 (5)C7—C6—H6A109.2
C7—C8—H8A109.2C7—C6—H6B109.2
C7—C8—H8B109.2N1i—C5—C4109.3 (4)
Ni2—N3—H3106.9N1i—C5—H5A109.8
C10ii—N3—Ni2105.8 (3)N1i—C5—H5B109.8
C10ii—N3—H3106.9C4—C5—H5A109.8
C10ii—N3—C6113.3 (4)C4—C5—H5B109.8
C6—N3—Ni2116.6 (4)H5A—C5—H5B108.3
C6—N3—H3106.9C10—C9—H9A110.1
Ni1—N2—H2107.0C10—C9—H9B110.1
C3—N2—Ni1116.2 (3)N4—C9—C10108.2 (5)
C3—N2—H2107.0N4—C9—H9A110.1
C3—N2—C4113.7 (4)N4—C9—H9B110.1
C4—N2—Ni1105.5 (3)H9A—C9—H9B108.4
C4—N2—H2107.0C8—C7—C6117.0 (4)
N5—C11—Ni3176.5 (5)C8—C7—H7A108.1
H2WA—O2W—H2WB109.4C8—C7—H7B108.1
N8—C14—Ni4178.0 (5)C6—C7—H7A108.1
N3ii—C10—H10A109.8C6—C7—H7B108.1
N3ii—C10—H10B109.8H7A—C7—H7B107.3
Ni1—N2—C3—C254.8 (5)N2—C4—C5—N1i56.3 (6)
Ni1—N2—C4—C540.9 (5)C10ii—N3—C6—C7177.7 (5)
Ni1—N1—C1—C256.5 (5)N1—C1—C2—C371.8 (7)
Ni2—N3—C6—C754.5 (5)C3—N2—C4—C5169.4 (4)
Ni2—N4—C9—C1040.9 (5)C4—N2—C3—C2177.5 (4)
C8—N4—C9—C10169.0 (4)N4—C8—C7—C670.7 (6)
N3ii—C10—C9—N457.3 (6)C5i—N1—C1—C2179.1 (4)
N3—C6—C7—C869.7 (6)C7—C8—N4—Ni255.4 (5)
N2—C3—C2—C170.5 (7)C7—C8—N4—C9178.2 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x, y+2, z; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wiv0.982.283.115 (6)143
N2—H2···O1Wv0.982.103.020 (6)156
N3—H3···O2Wiv0.982.153.083 (7)159
N4—H4···O2Wvi0.982.263.080 (6)140
O1W—H1WA···N80.852.032.872 (7)173
O1W—H1WB···N6vii0.852.273.112 (7)171
O2W—H2WA···N60.852.032.853 (6)164
O2W—H2WB···N8iv0.852.303.149 (7)175
Symmetry codes: (iv) x, y+1, z+1; (v) x, y, z1; (vi) x, y1, z; (vii) x, y+2, z+1.
 

References

First citationBarefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224.  CAS Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationČernák, J., Kuchár, J., Stolárová, M., Kajňaková, M., Vavra, M., Potočňák, I., Falvello, L. R. & Tomás, M. (2010). Transition Met. Chem. 35, 737–744.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, X., Tao, B., Yu, X., Wang, Y. & Xia, H. (2015). RSC Adv. 5, 19034–19040.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications, 2 volumes. Weinheim: Wiley-VCH.  Google Scholar
First citationKou, H.-Z., Si, S.-F., Gao, S., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. & Wang, G.-L. (2002). Eur. J. Inorg. Chem. pp. 699–702.  CSD CrossRef Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMelson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.  Google Scholar
First citationOhkoshi, S., Namai, A. & Tokoro, H. (2019). Coord. Chem. Rev. 380, 572–583.  CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian)  Google Scholar
First citationZhou, H.-B., Dong, W., Zhu, L.-N., Yu, L.-H., Wang, Q.-L., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2004). J. Mol. Struct. 703, 103–106.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds