research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of di­aqua­bis­­(hexa­methyl­enetramine-κN)bis­­(thio­cyanato-κN)cobalt(II)–hexa­methyl­ene­tetra­mine–aceto­nitrile (1/2/2)

crossmark logo

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany, and bInstitute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland
*Correspondence e-mail: ckrebs@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 August 2021; accepted 27 September 2021; online 8 October 2021)

The crystal structure of the title solvated coordination compound, [Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3N, consists of discrete complexes in which the Co2+ cations (site symmetry [\overline{1}]) are sixfold coordinated by two N-bonded thio­cyanate anions, two water mol­ecules and two hexa­methyl­ene­tetra­mine (HMT) mol­ecules to generate distorted trans-CoN4O2 octa­hedra. The discrete complexes are each connected by two HMT solvate mol­ecules into chains via strong O—H⋯N hydrogen bonds. These chains are further linked by additional O—H⋯N and C—H⋯N and C—H⋯S hydrogen bonds into a three-dimensional network. Within this network, channels are formed that propagate along the c-axis direction and in which additional aceto­nitrile solvent mol­ecules are embedded, which are hydrogen bonded to the network. The CN stretching vibration of the thio­cyanate ion occurs at 2062 cm−1, which is in agreement with the presence of N-bonded anionic ligands. XRPD investigations prove the formation of the title compound as the major phase accompanied by a small amount of a second unknown phase.

1. Chemical context

For several years, we have been inter­ested in the synthesis of coordination compounds based on cobalt thio­cyanate and additional co-ligands that in most cases consist of N-donor ligands. As is the case for, e.g. cyanides and azides, even this anionic ligand is able to mediate reasonable magnetic exchange (Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Mousavi et al., 2020[Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]). Therefore, we have focused especially on compounds in which the metal cations are linked by anionic ligands into coordination polymers. Most of the compounds with monocoordinating co-ligands consist of linear chains and show anti­ferromagnetic or ferromagnetic ordering or are single-chain magnets (Shi et al., 2006[Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909-1913.]; Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Ceglarska et al., 2021[Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281-10289.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149-14158.]), whereas in compounds with non-linear chains the magnetic exchange is completely suppressed (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]). In some cases, layered compounds are obtained, that are exclusively ferromagnets (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Wellm et al., 2020[Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707-16714.]). All these compounds have in common that only monocoordinating co-ligands are used, which means that the thio­cyanate substructures are not additionally connected into structures of higher dimensionality. We have therefore tried to link the Co(NCS)2 chains or layers by bridging co-ligands.

In this context, we became inter­ested in urotropine, C6H12N4 (also called hexa­methyl­ene­tetra­mine or 1,3,5,7-tetra­aza­adamantane), as a co-ligand. On one hand, this ligand is magnetically silent and on the other hand it is able to form tetra­hedral networks and some examples have been reported in the literature (Czubacka et al., 2012[Czubacka, E., Kruszynski, R. & Sieranski, T. (2012). Struct. Chem. 23, 451-459.]; Li et al., 2012[Li, J., Meng, S., Zhang, J., Song, Y., Huang, Z., Zhao, H., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2012). CrystEngComm, 14, 2787-2796.]). It is noted that some compounds with this ligand and Co(NCS)2 have already been reported in the literature. In all cases, discrete complexes are formed in which the cobalt cations are octa­hedrally coordinated by two thio­cyanate anions and some water, methanol or urotropine ligands (see Database survey). Compounds with urotropine in which the cobalt cations are linked by bridging thio­cyanate anions have not been reported.

[Scheme 1]

In the course of this project, we reacted Co(NCS)2 with urotropine in aceto­nitrile, resulting in the formation of a light-yellow-colored crystalline phase, for which IR spectroscopic investigations revealed the CN stretching vibration to be 2062 cm−1. This indicates the presence of only N-bonded thio­cyanate anions (see Fig. S1 in the supporting information). To identify this compound, a single-crystal structure analysis was performed, which proves that a discrete complex has formed. Comparison of the X-ray powder pattern of this crystalline phase with that calculated from single-crystal data reveals that the title compound has formed as the major phase, but that there are still some reflections indicating the formation of an additional and unknown crystalline phase (Fig. S2).

2. Structural commentary

In the crystal structure of the title compound, [Co(NCS)2(H2O)2(C6H12N4)2]·(C6H12N4)2(C2H3N)2, the cobalt cations are each octa­hedrally coordinated by two N-bonded thio­cyanate anions, two urotropine mol­ecules and two water mol­ecules to form discrete complexes that are located on centers of inversion (Fig. 1[link]). The Co1—O1 and the thio­cyanate Co1—N1 bond lengths are similar, whereas the Co1—N11 bond length to the neutral co-ligand is significantly longer (Table 1[link]). The cis-angles around the Co centers deviate from ideal values, showing that the octa­hedra are slightly distorted [range of cis bond angles = 87.51 (4)–92.49 (4)°]. This is also apparent from the value of the octa­hedral angle variance of 2.540°2 and the mean octa­hedral quadratic elong­ation of 1.006 calculated by the method of Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.0744 (10) Co1—N11 2.3112 (9)
Co1—O1 2.0661 (8)    
       
C1—N1—Co1 161.53 (9)    
[Figure 1]
Figure 1
Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry operation for the generation of equivalent atoms: (A) −x + 1, −y + 1, −z + 1.

3. Supra­molecular features

The crystal structure of the title compound is dominated by a variety of inter­molecular O—H⋯N, C—H⋯N and C—H⋯S hydrogen bonds (Table 2[link]). Each complex mol­ecule is connected to two adjacent non-coordinating urotropine solvate mol­ecules via O—H⋯N hydrogen bonds from one of the water H atoms. The O—H⋯N angle is close to linear and the N⋯H distance amounts to 1.85 (2) Å, which indicates a very strong inter­action (Fig. 2[link]). The complex mol­ecules are linked by the urotropine solvate mol­ecules into chains (Fig. 3[link]). The chains are further connected by an O—H⋯N hydrogen bond arising from the second water hydrogen atom into layers, and these layers are further linked into a three-dimensional network by a number of weak C—H⋯N and C—H⋯S hydrogen bonds. In this way, channels are formed along the crystallographic c-axis direction in which additional aceto­nitrile mol­ecules are located (Fig. 4[link]). These mol­ecules are linked to the main network via C—H⋯N inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N21 0.88 (2) 1.85 (2) 2.7298 (13) 171.8 (18)
O1—H1B⋯N22i 0.88 (2) 2.01 (2) 2.8759 (13) 167.7 (19)
C12—H12B⋯O1 0.97 2.60 3.0752 (14) 111
C13—H13A⋯S1i 0.97 2.95 3.8089 (12) 148
C13—H13B⋯N24ii 0.97 2.66 3.5045 (16) 146
C16—H16A⋯O1iii 0.97 2.52 3.0571 (14) 115
C16—H16B⋯N1 0.97 2.70 3.2713 (15) 118
C21—H21A⋯S1 0.97 3.00 3.9471 (12) 165
C23—H23B⋯S1iv 0.97 2.89 3.6683 (12) 138
C26—H26A⋯N31iii 0.97 2.56 3.4794 (17) 158
C32—H32A⋯S1v 0.96 3.02 3.9560 (15) 166
C32—H32B⋯N23vi 0.96 2.58 3.4685 (16) 154
C32—H32C⋯N14v 0.96 2.61 3.4750 (17) 149
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y+1, -z+2]; (v) [-x, -y+1, -z+1]; (vi) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
View of a discrete complex that is connected to two hexa­methyl­enetramine solvent mol­ecules via O—H⋯N hydrogen bonds (dashed lines).
[Figure 3]
Figure 3
Part of the crystal structure of the title compound showing the connection of discrete complexes by hexa­methyl­enetramine solvate mol­ecules via O—H⋯N hydrogen bonds (dashed lines).
[Figure 4]
Figure 4
Crystal structure of the title compound viewed along the c-axis.

4. Database survey

Some crystal structures have already been deposited in the Cambridge Structure Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) that contain cobalt cations, thio­cyanate anions and urotropine mol­ecules. These include [Co(NCS)2(C6H12N4)(CH3OH)2(H2O)] (refcode: POFGAT; Shang et al., 2008[Shang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184-m1185.]), which consists of neutral complexes in which the cobalt cations are octa­hedrally coord­inated by the N atoms of two thio­cyanate anions, two methanol, one water and one urotropine ligand to generate a mer-CoN3O3 coordination polyhedron. [Co(NCS)2(H2O)4]·2C6H12N4 (XILXOG; Li et al., 2007[Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.]) is a discrete complex with a cobalt cation coordinated octa­hedrally by two thio­cyanate anions and four water ligands (as a trans-CoN2O4 octa­hedron) with two additional urotropine solvent mol­ecules. The structure of [Co(NCS)2(C6H12N4)2(H2O)2][Co(NCS)2(H2O)4]·2H2O has been determined several times (MOTNIS; Liu et al., 2002[Liu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355-359.]; MOTNIS01; Zhang et al., 1999[Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191-196.]; MOTNIS02; Chakraborty et al., 2006[Chakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006-3016.]; MOTNIS03; Lu et al., 2010[Lu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641-647.]) and contains two discrete octa­hedral cobalt complexes: one metal ion is coord­inated by two thio­cyanate anions, two water mol­ecules and two urotropine mol­ecules (trans-CoN4O2 octa­hedron) and the other by two thio­cyanate anions and four water mol­ecules (trans-CoO4N2 octa­hedron); two water mol­ecules of crystallization complete the structure.

5. Synthesis and crystallization

Synthesis

Co(NCS)2 and urotropine were purchased from Merck. All chemicals were used without further purification.

Light-yellow-colored single crystals suitable for single crystal X-ray analysis were obtained after heating 0.15 mmol Co(NCS)2 (26.3 mg) and 0.30 mmol urotropine (42.1 mg) in 0.5 ml MeCN up to 353 K and then storing the mixture at 333 K overnight.

Since it was not possible to obtain a crystalline powder of the title component from solution, a sample was taken from the single crystal batch, crushed and measured.

IR: ν = 2967 (w), 2958 (sh), 2930 (sh), 2920 (w), 2881 (w), 2309 (vw), 2281 (w), 2252 (vw), 2234 (vw), 2185 (vw), 2168 (vw), 2062 (s), 1952 (vw), 1684–1560 (vw), 1461 (m), 1417 (sh), 1378 (w), 1372 (w), 1363 (w), 1325 (vw), 1231 (s), 1049 (w), 994 (vs), 935 (w), 917 (m), 825 (m), 800 (m), 782 (m), 770 (m), 731 (sh), 690 (s), 662 (s), 506 (m) cm−1.

Experimental details

The data collection for the single-crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation.

The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe transmission powder diffraction system (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR spectrometer, control software: WINFIRST, from ATI Mattson.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. Water O atoms were freely refined. The C-bound H atoms were located in a difference map but positioned with idealized geometry (C—H = 0.96–0.97 Å, methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3N
Mr 854.01
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.0008 (2), 12.5903 (2), 12.9988 (2)
β (°) 114.899 (2)
V3) 1929.93 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.99
Crystal size (mm) 0.20 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.779, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25388, 4088, 3972
Rint 0.021
(sin θ/λ)max−1) 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.09
No. of reflections 4088
No. of parameters 259
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaquabis(hexamethylenetramine-κN)bis(thiocyanato-κN)cobalt(II)–hexamethylenetetramine–acetonitrile (1/2/2) top
Crystal data top
[Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3NF(000) = 906
Mr = 854.01Dx = 1.470 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.0008 (2) ÅCell parameters from 20611 reflections
b = 12.5903 (2) Åθ = 3.7–77.9°
c = 12.9988 (2) ŵ = 4.99 mm1
β = 114.899 (2)°T = 100 K
V = 1929.93 (6) Å3Needle, light yellow
Z = 20.20 × 0.04 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4088 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3972 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 78.0°, θmin = 3.8°
ω scansh = 1216
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1515
Tmin = 0.779, Tmax = 1.000l = 1616
25388 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.5759P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4088 reflectionsΔρmax = 0.20 e Å3
259 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01162 (8)
N10.49434 (8)0.46285 (8)0.65301 (8)0.01532 (19)
C10.46823 (9)0.46250 (9)0.72848 (10)0.0135 (2)
S10.43052 (3)0.46382 (2)0.83365 (3)0.02096 (8)
O10.62345 (7)0.61232 (7)0.58179 (7)0.01480 (16)
H1A0.6441 (16)0.6265 (15)0.6543 (17)0.034 (5)*
H1B0.6416 (17)0.6677 (18)0.5509 (18)0.046 (6)*
N110.36295 (8)0.62692 (8)0.47457 (8)0.01335 (19)
N120.31137 (9)0.78613 (8)0.55340 (9)0.0178 (2)
N130.23595 (9)0.76282 (8)0.34775 (9)0.0188 (2)
C110.32652 (10)0.68571 (9)0.36510 (10)0.0175 (2)
H11A0.3913550.7227320.3637170.021*
H11B0.3001270.6351320.3030390.021*
C120.40035 (10)0.70880 (9)0.56706 (10)0.0163 (2)
H12A0.4231720.6733660.6396120.020*
H12B0.4659400.7460480.5677190.020*
C130.27803 (11)0.83883 (9)0.44318 (11)0.0194 (2)
H13A0.3428090.8766600.4426610.023*
H13B0.2191870.8905150.4329940.023*
C140.21257 (10)0.72912 (10)0.55236 (11)0.0194 (2)
H14A0.1532120.7798340.5433550.023*
H14B0.2336230.6935170.6245880.023*
C150.13874 (10)0.70598 (10)0.35186 (10)0.0196 (2)
H15A0.1103060.6549440.2902890.023*
H15B0.0785320.7564060.3406110.023*
C160.25985 (9)0.57494 (9)0.47493 (10)0.0156 (2)
H16A0.2319420.5228090.4144190.019*
H16B0.2808300.5375410.5461670.019*
N140.16833 (8)0.64994 (8)0.46020 (9)0.0173 (2)
N210.70755 (8)0.64919 (8)0.80957 (8)0.01507 (19)
N220.71117 (9)0.72608 (8)0.98413 (9)0.0167 (2)
N230.87597 (9)0.74634 (8)0.93941 (9)0.0184 (2)
N240.83066 (8)0.57193 (8)0.99309 (8)0.0165 (2)
C210.64056 (10)0.70037 (9)0.86374 (10)0.0166 (2)
H21A0.5796570.6532030.8588040.020*
H21B0.6067140.7650880.8230900.020*
C220.75820 (10)0.55052 (9)0.87319 (10)0.0159 (2)
H22A0.6979960.5022450.8678300.019*
H22B0.8028360.5160730.8389240.019*
C230.76143 (11)0.62520 (10)1.04253 (10)0.0184 (2)
H23A0.8082480.6397981.1219470.022*
H23B0.7009790.5778251.0384210.022*
C240.80542 (11)0.79507 (10)0.98977 (11)0.0195 (2)
H24A0.7743730.8611360.9506110.023*
H24B0.8527160.8119211.0685130.023*
C250.92101 (10)0.64522 (10)0.99882 (10)0.0197 (2)
H25A0.9666050.6113220.9653000.024*
H25B0.9698960.6599371.0776980.024*
C260.80131 (10)0.72159 (10)0.82069 (10)0.0180 (2)
H26A0.8458700.6891370.7851690.022*
H26B0.7697100.7871500.7806420.022*
N310.02532 (10)0.44658 (10)0.24906 (11)0.0297 (3)
C310.03061 (10)0.46842 (10)0.29362 (11)0.0198 (2)
C320.10137 (13)0.49834 (10)0.35086 (13)0.0242 (3)
H32A0.1796240.4971880.2975890.036*
H32B0.0813810.5685480.3816690.036*
H32C0.0897670.4490260.4110800.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01283 (13)0.01259 (14)0.01083 (13)0.00162 (9)0.00635 (10)0.00092 (9)
N10.0171 (5)0.0161 (5)0.0139 (5)0.0003 (4)0.0077 (4)0.0002 (4)
C10.0131 (5)0.0120 (5)0.0148 (5)0.0004 (4)0.0052 (4)0.0002 (4)
S10.02595 (16)0.02425 (17)0.01980 (15)0.00071 (11)0.01660 (12)0.00011 (11)
O10.0176 (4)0.0156 (4)0.0124 (4)0.0034 (3)0.0074 (3)0.0018 (3)
N110.0151 (4)0.0126 (4)0.0136 (4)0.0011 (3)0.0072 (4)0.0004 (4)
N120.0189 (5)0.0153 (5)0.0207 (5)0.0013 (4)0.0099 (4)0.0024 (4)
N130.0229 (5)0.0147 (5)0.0199 (5)0.0035 (4)0.0099 (4)0.0022 (4)
C110.0226 (6)0.0159 (5)0.0164 (5)0.0025 (4)0.0104 (5)0.0022 (4)
C120.0164 (5)0.0145 (5)0.0178 (5)0.0002 (4)0.0071 (4)0.0040 (4)
C130.0232 (6)0.0125 (5)0.0245 (6)0.0008 (4)0.0120 (5)0.0004 (4)
C140.0208 (6)0.0197 (6)0.0220 (6)0.0026 (5)0.0133 (5)0.0008 (5)
C150.0186 (5)0.0175 (6)0.0197 (6)0.0023 (4)0.0051 (5)0.0012 (4)
C160.0140 (5)0.0133 (5)0.0201 (5)0.0002 (4)0.0078 (4)0.0008 (4)
N140.0157 (5)0.0156 (5)0.0216 (5)0.0024 (4)0.0088 (4)0.0013 (4)
N210.0186 (5)0.0135 (4)0.0142 (4)0.0001 (4)0.0080 (4)0.0003 (4)
N220.0219 (5)0.0151 (5)0.0170 (5)0.0011 (4)0.0119 (4)0.0011 (4)
N230.0202 (5)0.0178 (5)0.0195 (5)0.0041 (4)0.0107 (4)0.0024 (4)
N240.0174 (5)0.0173 (5)0.0153 (5)0.0001 (4)0.0074 (4)0.0009 (4)
C210.0172 (5)0.0160 (5)0.0178 (6)0.0015 (4)0.0084 (4)0.0002 (4)
C220.0194 (5)0.0129 (5)0.0159 (5)0.0001 (4)0.0079 (4)0.0011 (4)
C230.0240 (6)0.0190 (6)0.0159 (5)0.0006 (5)0.0120 (5)0.0017 (4)
C240.0252 (6)0.0159 (5)0.0203 (6)0.0051 (5)0.0124 (5)0.0059 (4)
C250.0162 (5)0.0235 (6)0.0189 (6)0.0017 (5)0.0067 (4)0.0007 (5)
C260.0247 (6)0.0171 (5)0.0167 (6)0.0022 (4)0.0130 (5)0.0000 (4)
N310.0242 (6)0.0341 (6)0.0311 (6)0.0005 (5)0.0119 (5)0.0095 (5)
C310.0180 (6)0.0164 (6)0.0216 (6)0.0005 (5)0.0051 (5)0.0009 (5)
C320.0226 (7)0.0262 (7)0.0267 (7)0.0014 (5)0.0131 (6)0.0011 (5)
Geometric parameters (Å, º) top
Co1—N1i2.0744 (10)C16—H16B0.9700
Co1—N12.0744 (10)C16—N141.4670 (14)
Co1—O1i2.0661 (8)N21—C211.4786 (14)
Co1—O12.0661 (8)N21—C221.4840 (14)
Co1—N112.3112 (9)N21—C261.4797 (15)
Co1—N11i2.3112 (9)N22—C211.4788 (15)
N1—C11.1654 (16)N22—C231.4827 (15)
C1—S11.6352 (12)N22—C241.4784 (15)
O1—H1A0.88 (2)N23—C241.4669 (15)
O1—H1B0.88 (2)N23—C251.4763 (16)
N11—C111.4931 (14)N23—C261.4695 (15)
N11—C121.5008 (14)N24—C221.4673 (15)
N11—C161.4934 (14)N24—C231.4697 (15)
N12—C121.4645 (14)N24—C251.4707 (15)
N12—C131.4690 (16)C21—H21A0.9700
N12—C141.4665 (15)C21—H21B0.9700
N13—C111.4685 (15)C22—H22A0.9700
N13—C131.4773 (16)C22—H22B0.9700
N13—C151.4727 (16)C23—H23A0.9700
C11—H11A0.9700C23—H23B0.9700
C11—H11B0.9700C24—H24A0.9700
C12—H12A0.9700C24—H24B0.9700
C12—H12B0.9700C25—H25A0.9700
C13—H13A0.9700C25—H25B0.9700
C13—H13B0.9700C26—H26A0.9700
C14—H14A0.9700C26—H26B0.9700
C14—H14B0.9700N31—C311.1377 (18)
C14—N141.4764 (16)C31—C321.4554 (18)
C15—H15A0.9700C32—H32A0.9600
C15—H15B0.9700C32—H32B0.9600
C15—N141.4740 (15)C32—H32C0.9600
C16—H16A0.9700
N1i—Co1—N1180.0N11—C16—H16B108.9
N1—Co1—N11i92.49 (4)H16A—C16—H16B107.7
N1i—Co1—N11i87.51 (4)N14—C16—N11113.40 (9)
N1—Co1—N1187.51 (4)N14—C16—H16A108.9
N1i—Co1—N1192.49 (4)N14—C16—H16B108.9
O1—Co1—N1i90.32 (4)C15—N14—C14107.93 (9)
O1i—Co1—N1i89.68 (4)C16—N14—C14108.13 (9)
O1—Co1—N189.68 (4)C16—N14—C15107.69 (9)
O1i—Co1—N190.32 (4)C21—N21—C22108.15 (9)
O1i—Co1—O1180.0C21—N21—C26108.13 (9)
O1—Co1—N1189.16 (3)C26—N21—C22107.90 (9)
O1i—Co1—N1190.84 (3)C21—N22—C23107.32 (9)
O1—Co1—N11i90.84 (3)C24—N22—C21108.26 (9)
O1i—Co1—N11i89.16 (3)C24—N22—C23107.49 (9)
N11i—Co1—N11180.0C24—N23—C25108.18 (9)
C1—N1—Co1161.53 (9)C24—N23—C26107.26 (9)
N1—C1—S1179.08 (11)C26—N23—C25107.92 (9)
Co1—O1—H1A120.6 (12)C22—N24—C23108.11 (9)
Co1—O1—H1B127.1 (14)C22—N24—C25108.12 (9)
H1A—O1—H1B107.8 (18)C23—N24—C25108.33 (9)
C11—N11—Co1113.28 (7)N21—C21—N22111.82 (9)
C11—N11—C12106.78 (9)N21—C21—H21A109.3
C11—N11—C16107.17 (9)N21—C21—H21B109.3
C12—N11—Co1112.96 (7)N22—C21—H21A109.3
C16—N11—Co1109.60 (7)N22—C21—H21B109.3
C16—N11—C12106.68 (8)H21A—C21—H21B107.9
C12—N12—C13108.19 (9)N21—C22—H22A109.2
C12—N12—C14108.65 (9)N21—C22—H22B109.2
C14—N12—C13108.33 (10)N24—C22—N21111.96 (9)
C11—N13—C13108.05 (9)N24—C22—H22A109.2
C11—N13—C15108.54 (9)N24—C22—H22B109.2
C15—N13—C13107.73 (9)H22A—C22—H22B107.9
N11—C11—H11A109.0N22—C23—H23A109.1
N11—C11—H11B109.0N22—C23—H23B109.1
N13—C11—N11112.72 (9)N24—C23—N22112.71 (9)
N13—C11—H11A109.0N24—C23—H23A109.1
N13—C11—H11B109.0N24—C23—H23B109.1
H11A—C11—H11B107.8H23A—C23—H23B107.8
N11—C12—H12A109.0N22—C24—H24A108.9
N11—C12—H12B109.0N22—C24—H24B108.9
N12—C12—N11112.74 (9)N23—C24—N22113.15 (9)
N12—C12—H12A109.0N23—C24—H24A108.9
N12—C12—H12B109.0N23—C24—H24B108.9
H12A—C12—H12B107.8H24A—C24—H24B107.8
N12—C13—N13112.28 (10)N23—C25—H25A109.1
N12—C13—H13A109.1N23—C25—H25B109.1
N12—C13—H13B109.1N24—C25—N23112.47 (10)
N13—C13—H13A109.1N24—C25—H25A109.1
N13—C13—H13B109.1N24—C25—H25B109.1
H13A—C13—H13B107.9H25A—C25—H25B107.8
N12—C14—H14A109.2N21—C26—H26A109.1
N12—C14—H14B109.2N21—C26—H26B109.1
N12—C14—N14112.24 (9)N23—C26—N21112.70 (9)
H14A—C14—H14B107.9N23—C26—H26A109.1
N14—C14—H14A109.2N23—C26—H26B109.1
N14—C14—H14B109.2H26A—C26—H26B107.8
N13—C15—H15A109.1N31—C31—C32178.95 (14)
N13—C15—H15B109.1C31—C32—H32A109.5
N13—C15—N14112.61 (10)C31—C32—H32B109.5
H15A—C15—H15B107.8C31—C32—H32C109.5
N14—C15—H15A109.1H32A—C32—H32B109.5
N14—C15—H15B109.1H32A—C32—H32C109.5
N11—C16—H16A108.9H32B—C32—H32C109.5
Co1—N11—C11—N13177.50 (7)C16—N11—C12—N1256.82 (12)
Co1—N11—C12—N12177.30 (7)C21—N21—C22—N2458.62 (12)
Co1—N11—C16—N14179.51 (7)C21—N21—C26—N2359.00 (12)
N11—C16—N14—C1458.13 (12)C21—N22—C23—N2458.82 (12)
N11—C16—N14—C1558.26 (12)C21—N22—C24—N2358.16 (13)
N12—C14—N14—C1558.00 (12)C22—N21—C21—N2258.99 (12)
N12—C14—N14—C1658.24 (12)C22—N21—C26—N2357.76 (12)
N13—C15—N14—C1458.10 (12)C22—N24—C23—N2258.82 (12)
N13—C15—N14—C1658.43 (12)C22—N24—C25—N2359.03 (12)
C11—N11—C12—N1257.52 (12)C23—N22—C21—N2158.65 (12)
C11—N11—C16—N1457.18 (12)C23—N22—C24—N2357.48 (12)
C11—N13—C13—N1258.92 (12)C23—N24—C22—N2158.22 (12)
C11—N13—C15—N1458.66 (12)C23—N24—C25—N2357.90 (12)
C12—N11—C11—N1357.52 (12)C24—N22—C21—N2157.10 (12)
C12—N11—C16—N1456.90 (12)C24—N22—C23—N2457.44 (12)
C12—N12—C13—N1358.99 (12)C24—N23—C25—N2457.61 (12)
C12—N12—C14—N1458.86 (12)C24—N23—C26—N2158.72 (12)
C13—N12—C12—N1158.73 (12)C25—N23—C24—N2257.80 (13)
C13—N12—C14—N1458.46 (12)C25—N23—C26—N2157.63 (12)
C13—N13—C11—N1158.71 (12)C25—N24—C22—N2158.86 (12)
C13—N13—C15—N1458.10 (12)C25—N24—C23—N2258.11 (12)
C14—N12—C12—N1158.67 (12)C26—N21—C21—N2257.60 (12)
C14—N12—C13—N1358.62 (12)C26—N21—C22—N2458.13 (11)
C15—N13—C11—N1157.84 (12)C26—N23—C24—N2258.38 (13)
C15—N13—C13—N1258.16 (12)C26—N23—C25—N2458.14 (12)
C16—N11—C11—N1356.49 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N210.88 (2)1.85 (2)2.7298 (13)171.8 (18)
O1—H1B···N22ii0.88 (2)2.01 (2)2.8759 (13)167.7 (19)
C12—H12B···O10.972.603.0752 (14)111
C13—H13A···S1ii0.972.953.8089 (12)148
C13—H13B···N24iii0.972.663.5045 (16)146
C16—H16A···O1i0.972.523.0571 (14)115
C16—H16B···N10.972.703.2713 (15)118
C21—H21A···S10.973.003.9471 (12)165
C23—H23B···S1iv0.972.893.6683 (12)138
C26—H26A···N31i0.972.563.4794 (17)158
C32—H32A···S1v0.963.023.9560 (15)166
C32—H32B···N23vi0.962.583.4685 (16)154
C32—H32C···N14v0.962.613.4750 (17)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+2; (v) x, y+1, z+1; (vi) x1, y+3/2, z1/2.
 

Funding information

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (grant No. NA720/5-2).

References

First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006–3016.  Web of Science CSD CrossRef CAS Google Scholar
First citationCzubacka, E., Kruszynski, R. & Sieranski, T. (2012). Struct. Chem. 23, 451–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J., Meng, S., Zhang, J., Song, Y., Huang, Z., Zhao, H., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2012). CrystEngComm, 14, 2787–2796.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355–359.  CAS Google Scholar
First citationLu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641–647.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603–7613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationShang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184–m1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909–1913.  CAS Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707–16714.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191–196.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds