research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the hydro­chloride salt of 8-{4-[(6-phenyl­pyridin-3-yl)meth­yl]piperazin-1-yl}-3,4-di­hydro­quinolin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, King Fahd University of Petroleum and Minerals, 31261 Dahran, Saudi Arabia, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 January 2021; accepted 27 January 2021; online 29 January 2021)

The amine 8-{4-[(6-phenyl­pyridin-3-yl)meth­yl]piperazin-1-yl}-3,4-di­hydro­quinolin-2(1H)-one was crystallized as the hydro­chloride salt, 4-(2-oxo-1,2,3,4-tetra­hydro­quinolin-8-yl)-1-[(6-phenyl­pyridin-3-yl)meth­yl]piperazin-1-ium chloride, C25H27N4+·Cl (I·HCl). The conformation of the organic cation is half-moon in shape enclosing the chloride anion. The piperidine ring of the 3,4-di­hydro­quinolin-2(1H)-one moiety has a screw-boat conformation, while the piperazine ring has a chair conformation. In the biaryl group, the pyridine ring is inclined to the phenyl ring by 40.17 (7) and by 36.86 (8)° to the aromatic ring of the quinoline moiety. In the crystal, the cations are linked by pairwise N—H⋯O hydrogen bonds, forming inversion dimers enclosing an R22(8) ring motif. The Cl anion is linked to the cation by an N—H⋯Cl hydrogen bond. These units are linked by a series of C—H⋯O, C—H⋯N and C—H⋯Cl hydrogen bonds, forming layers lying parallel to the ab plane.

1. Chemical context

Schizophrenia is a psychiatric illness afflicting over 1% of the world's population. Adoprazine© and Bifeprunox© (Fig. 1[link]) are two drugs that were developed for the treatment of Schizophrenia in the early 2000s. The main action of these two compounds is to combine dopamine D2 receptor blockade with serotonin 5-HT1A receptor activation rather than antagonism (Feenstra et al., 2001[Feenstra, R. W., de Moes, J., Hofma, J. J., Kling, H., Kuipers, W., Long, S. K., Tulp, M. T. M., van der Heyden, J. A. M. & Kruse, C. G. (2001). Bioorg. Med. Chem. Lett. 11, 2345-2349.], 2006[Feenstra, R. W., van den Hoogenband, A., Stroomer, C. N. J., van Stuivenberg, H. H., Tulp, M. T. M., Long, S. K., van der Heyden, J. A. M. & Kruse, C. G. (2006). Chem. Pharm. Bull. 54, 1326-1330.]). In continuing efforts in this field, Ullah and collaborators have synthesized a series of compounds that are structural analogues of Adoprazine© and Bifeprunox© (Ullah, 2012[Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75-84.], 2014a[Ullah, N. (2014a). Med. Chem. 10, 484-496.],b[Ullah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281-291.]; Ullah & Al-Shaheri, 2012[Ullah, N. & Al-Shaheri, A. A. Q. (2012). J. Chem. Sci. 67, 253-262.]). These include a number of 1-aryl-4-(bi­aryl­methyl­ene)piperazines (Ullah, 2012[Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75-84.]), such as 8-{4-[(6-phenylpyridin-3-yl)methyl]piperazin-1-yl}-3,4-dihydroquinolin-2(1H)-one (I), and 8-(4-{[6-(4-fluorophenyl)pyridin-3-yl]methyl}piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (II) Ghani et al. (2014[Ghani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258-8362.]) have reported that the D2 receptor binding affinity of compounds I and II are Ki = 28.4 nM for I and 42.0 nM for II. The 5-HT1A receptor binding affinities were reported to be Ki = 4.30 nM for I and 52.5 nM for II. Hence, inserting a fluorine atom in the phenyl­pyridine unit in II did not improve its binding affinity compared to that of I. Full details concerning these assays are given in Ghani et al. (2014[Ghani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258-8362.]).

[Figure 1]
Figure 1
Chemical diagrams for adoprazine, bifeprunoc and compounds I and II.

The crystal structure of the hydro­chloride salt of II has been reported previously (Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]) and will be compared here to that of the hydro­chloride salt of compound I.

2. Structural commentary

Due to the difficulty of forming suitable crystals for X-ray diffraction analysis compounds I and II were converted to their hydro­chloride salts by treatment with HCl in MeOH.

[Scheme 1]

The organic cation of I·HCl has a half-moon shape enclosing the chloride anion (Fig. 2[link]). The mol­ecular salt II·HCl crystallized as a monohydrate and here, while the cation also has a half-moon shape, it encloses the water mol­ecule of crystallization (Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]; see Fig. S1 in the supporting information). The two cations differ essentially in the conformation of the biaryl group (rings B = N4/C15–C19 and C = C20–C25) and their orientation with respect to the aromatic ring (A = C4–C9) of the 3,4-di­hydro­quinolin-2(1H)-one moiety. This is illustrated by the view of their structural overlap, shown in Fig. 3[link]. In I·HCl, pyridine ring B is inclined to phenyl ring C by 40.17 (8)° while in II·HCl the equivalent dihedral angle is 10.06 (11)°. In I·HCl, ring A is inclined to rings B and C by 36.86 (8) and 14.16 (8)°, respectively. These dihedral angles differ considerably from the dihedral angles in II·HCl, where ring A is inclined to rings B and C by 51.20 (9) and 41.40 (11)°, respectively. In both compounds, the piperidine ring (N1/C1–C4/C9) has a screw-boat conformation with the torsion angle C1—C2—C3—C4 being −56.17 (18)° in I·HCl and −55.6 (2)° in II·HCl. In both compounds, the piperazine ring (N2/N3/C10–C13) has a chair conformation.

[Figure 2]
Figure 2
A view of the mol­ecular structure of I·HCl, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A view of the structural overlap of the cations of salts I·HCl and II·HCl; r.m.s. deviation 0.125 Å (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The structure of the II·HCl cation is given in red with the F atom in yellow (see also supplementary figure S1; Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]).

3. Supra­molecular features

In the crystal of I·HCl, the organic cations are linked by a pair of N—H⋯O hydrogen bonds, forming an inversion dimer enclosing an R22(8) ring motif (Fig. 4[link] and Table 1[link]). The Cl anion is linked to the cation by an N—H⋯Cl hydrogen bond (Fig. 4[link] and Table 1[link]). The dimers are linked by a C—H⋯O hydrogen bond, forming ribbons propagating along the a-axis direction. The ribbons are then linked via C—H⋯Cl hydrogen bonds to form layers lying parallel to the ab plane (Fig. 5[link] and Table 1[link]). There are C—H⋯π(C4–C9) contacts present within the layers (Table 1[link]), but there are no significant contacts present between the layers.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.01 (2) 2.844 (2) 168 (2)
N3—H3N⋯Cl1ii 0.97 (2) 2.12 (2) 3.065 (1) 167 (2)
C10—H10B⋯O1iii 0.99 2.40 3.151 (2) 132
C11—H11A⋯Cl1iii 0.99 2.80 3.668 (2) 147
C12—H12A⋯Cl1 0.99 2.81 3.520 (2) 129
C12—H12B⋯O1i 0.99 2.26 3.123 (2) 144
C13—H13A⋯N1 0.99 2.53 3.138 (2) 120
C14—H14A⋯Cl1iii 0.99 2.71 3.585 (2) 147
C21—H21⋯Cl1 0.95 2.83 3.757 (2) 165
C18—H18⋯Cgii 0.95 2.83 3.487 (2) 127
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [-x+1, -y+2, -z]; (iii) x+1, y, z.
[Figure 4]
Figure 4
A view of the hydrogen bonded dimer formation in the crystal of salt I·HCl. Hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 5]
Figure 5
A view along the [111] direction of the crystal packing of salt I·HCl. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal of II·HCl (Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]; see Figs. S2 and S3, and Table S1 in the supporting information), the cations are linked by the water mol­ecules of crystallization via N—H⋯Ow and Ow—H⋯O hydrogen bonds to form dimers with R44(12) ring motifs. The dimers are in turn linked by the Cl anions, via Ow—H⋯Cl⋯H—N hydrogen bonds, to form chains propagating along the b-axis direction. The chains are linked via C—H⋯Cl and C—H⋯O hydrogen bonds, forming layers parallel to the ab plane.

In both cases, hydrogen-bonded layers are formed stacking along the c-axis direction and lying parallel to the ab plane. There are no significant directional inter-layer contacts present in either crystal structure.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) following the protocol of Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]).

The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of I·HCl and II·HCl mapped over dnorm are given in Fig. 6[link]. It is evident from Fig. 6[link]a and 6b that there are important contacts present in the crystals of both compounds, the strong hydrogen bonds (Table 1[link] and Table S1) being indicated by the large red zones.

[Figure 6]
Figure 6
The Hirshfeld surfaces of compounds I·HCl and II·HCl, mapped over dnorm in the colour ranges of −0.5847 to 1.5642 au. and −0.5555 to 1.5111 au., respectively.

The percentage contributions of inter-atomic contacts to the HS for both compounds are compared in Table 2[link]. The two-dimensional fingerprint plots for the title salt, I·HCl, and those for II·HCl, are compared in Figs. 7[link] and 8[link]. They reveal, as expected, that the principal contributions to the overall HS surface involve H⋯H contacts at 51.5 and 42.1%, respectively. The difference is attributed to the presence of F⋯H/H⋯F contacts in the crystal of II·HCl, amounting to 7.5%. The second most important contribution to the HS is from the C⋯H/H⋯C contacts at 20.2 and 20.5%, for I·HCl and II·HCl, respectively. These are followed by the Cl⋯H⋯Cl contacts at 10.1 and 12.8% for I·HCl and II·HCl, respectively, and O⋯H/H⋯O contacts at, respectively, 7.4 and 8.7%. The N⋯H/H⋯N contacts contribute, respectively, 6.5 and 5.3%. The C⋯C contacts in I·HCl contribute 2.9%, while the C⋯F contacts in II·HCl contribute 1.4%. All other atom⋯atom contacts contribute <1% to the HS for both compounds.

Table 2
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I·HCl and II·HCl.

Contact I·HCl % contribution II·HCl % contribution
H⋯H 51.5 42.1
C⋯H/H⋯C 20.2 20.5
Cl⋯H/H⋯Cl 10.1 12.8
O⋯H/H⋯O 7.4 8.7
N⋯H/H⋯N 6.5 5.3
F⋯H/H⋯F 7.5
C⋯F/F⋯C 1.4
C⋯C 2.9 0.8
[Figure 7]
Figure 7
The two-dimensional fingerprint plots for compounds (a) I·HCl and (b) II·HCl, and those delineated into H⋯H, C⋯H/H⋯C, and Cl⋯H/H⋯Cl contacts.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots for compounds (a) I·HCl delineated into O⋯H/H⋯O, N⋯H/H⋯N and C⋯C, and (b) II·HCl delineated into O⋯H/H⋯O, N⋯H/H⋯N, F⋯H/H⋯F, C⋯F/F⋯C and C⋯C contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 8-(piperazin-1-yl)-3,4-di­hydro­quinolin-2(1H)-ones gave three hits for compounds 8-{1-[(4′-fluoro-[1,1′-biphen­yl]-3-yl)meth­yl]piperidin-4-yl}-3,4-di­hydro­quinolin-2(1H)-one (III), that crystallized as a chloro­form 0.25-solvate (CSD refcode FITSEI; Ullah & Stoeckli-Evans, 2014[Ullah, N. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, o103-o104.]), 8-[4-([1,1′-biphen­yl]-3-ylmeth­yl)piperazin-1-yl]quinolin-2(1H)-one (IV) (REYHIP; Ullah et al., 2017[Ullah, N., Altaf, M. & Mansha, M. (2017). Z. Naturforsch. Teil B, 58, 1697-1702.]) and 8-[1-([1,1′-biphen­yl]-3-ylmeth­yl)piperidin-4-yl]-3,4-di­hydro­quinolin-2(1H)-one (V) (REYHEL; Ullah et al., 2017[Ullah, N., Altaf, M. & Mansha, M. (2017). Z. Naturforsch. Teil B, 58, 1697-1702.]). Their chemical structures are shown in Fig. 9[link], together with those for compounds 8-[4-([1,1′-biphen­yl]-3-ylmeth­yl)piperazin-1-yl]-2-meth­oxy­quinoline (VI) (AKUXIQ; Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]), 8-(1-{[5-(cyclo­pent-1-en-1-yl)pyridin-3-yl]meth­yl}piperidin-4-yl)-3,4-di­hydro­quin­olin-2(1H)-one (VII) (AKUWOV; Ullah et al., 2015[Ullah, N., Altaf, M., Mansha, M. & Ba-Salem, A. O. (2015). J. Struct. Chem. 56, 1441-1445.]) and 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-3,4-di­hydro­quinolin-2(1H)-one (VIII) (AKUWUB; Ullah et al., 2015[Ullah, N., Altaf, M., Mansha, M. & Ba-Salem, A. O. (2015). J. Struct. Chem. 56, 1441-1445.]). The CIFs for compounds II·HCl (AKUXEM; Ullah & Altaf, 2014[Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057-1062.]) and VIVIII have been updated recently in the CSD.

[Figure 9]
Figure 9
Chemical diagrams of similar compounds deposited with the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]); see § 5 Database survey.

Compounds III to VIII all have a similar conformation; a curved or half-moon shape, as shown for the cation of I·HCl in Fig. 2[link]. The piperidine rings of the di­hydro­quinoline units in compounds I·HCl, II·HCl, III, V, VII and VIII have screw-boat conformations. The piperidine or piperazine rings in all eight compounds have chair conformations.

6. Synthesis and crystallization

The synthesis of compounds I and II has been reported (Ullah, 2012[Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75-84.]; compounds 5c and 5d in that paper). Colourless plate-like crystals of their hydro­chloride salts were obtained by slow evaporation of solutions in di­chloro­methane and methanol; ratios (8:3) and (8.5:1.5), respectively.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH H atoms were located in a difference electron-density map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding on the parent atom: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C25H27N4O+·Cl
Mr 434.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.4791 (8), 10.4091 (10), 13.6862 (14)
α, β, γ (°) 90.138 (8), 94.833 (8), 113.745 (7)
V3) 1100.88 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.45 × 0.33 × 0.18
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.379, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13410, 4156, 2912
Rint 0.077
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.071, 0.83
No. of reflections 4156
No. of parameters 289
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.22
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

4-(2-Oxo-1,2,3,4-tetrahydroquinolin-8-yl)-1-[(6-phenylpyridin-3-yl)methyl]piperazin-1-ium chloride top
Crystal data top
C25H27N4O+·ClZ = 2
Mr = 434.95F(000) = 460
Triclinic, P1Dx = 1.312 Mg m3
a = 8.4791 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4091 (10) ÅCell parameters from 9997 reflections
c = 13.6862 (14) Åθ = 1.5–26.1°
α = 90.138 (8)°µ = 0.20 mm1
β = 94.833 (8)°T = 173 K
γ = 113.745 (7)°Rod, colourless
V = 1100.88 (19) Å30.45 × 0.33 × 0.18 mm
Data collection top
Stoe IPDS 2
diffractometer
4156 independent reflections
Radiation source: fine-focus sealed tube2912 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.077
φ + ω scansθmax = 25.6°, θmin = 1.5°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 109
Tmin = 0.379, Tmax = 1.000k = 1212
13410 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0262P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max = 0.001
4156 reflectionsΔρmax = 0.22 e Å3
289 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17052 (13)0.47203 (11)0.07307 (8)0.0288 (3)
N10.07882 (16)0.49233 (13)0.13301 (10)0.0234 (3)
H1N0.122 (2)0.5073 (18)0.0734 (13)0.034 (5)*
N20.44879 (14)0.63611 (12)0.11540 (9)0.0220 (3)
N30.68062 (15)0.82122 (13)0.04180 (9)0.0217 (3)
H3N0.746 (2)0.906 (2)0.0090 (13)0.052 (5)*
N40.94060 (18)1.20937 (14)0.25205 (11)0.0399 (4)
C10.09235 (18)0.46487 (15)0.14318 (11)0.0236 (3)
C20.1799 (2)0.42765 (18)0.24529 (12)0.0329 (4)
H2A0.1607590.5145120.2809870.040*
H2B0.3060020.3751190.2426250.040*
C30.1077 (2)0.33797 (19)0.29954 (13)0.0392 (4)
H3A0.1359090.2472860.2673590.047*
H3B0.1608660.3182220.3681360.047*
C40.0858 (2)0.41520 (16)0.29844 (12)0.0302 (4)
C50.1751 (2)0.41199 (19)0.37763 (13)0.0392 (4)
H50.1141790.3602410.4361400.047*
C60.3535 (2)0.48412 (19)0.37196 (13)0.0392 (4)
H60.4147900.4808120.4262640.047*
C70.4424 (2)0.56092 (17)0.28716 (12)0.0310 (4)
H70.5643890.6108060.2845140.037*
C80.35719 (18)0.56693 (15)0.20549 (11)0.0230 (3)
C90.17520 (18)0.49231 (15)0.21240 (11)0.0228 (3)
C100.63546 (18)0.67238 (16)0.10867 (11)0.0266 (4)
H10A0.6926240.7558750.1475620.032*
H10B0.6567200.5934490.1363320.032*
C110.71077 (19)0.70267 (16)0.00407 (11)0.0256 (4)
H11A0.8367210.7272720.0010240.031*
H11B0.6578450.6172570.0337660.031*
C120.49249 (17)0.79433 (16)0.02658 (11)0.0238 (3)
H12A0.4769730.8785170.0492570.029*
H12B0.4258840.7151700.0667600.029*
C130.42172 (18)0.75986 (15)0.08004 (11)0.0232 (3)
H13A0.2966470.7393950.0867980.028*
H13B0.4814550.8413770.1201100.028*
C140.74694 (19)0.83801 (16)0.14807 (11)0.0271 (4)
H14A0.8635590.8369050.1535320.033*
H14B0.6703760.7559990.1825490.033*
C150.75825 (19)0.96984 (16)0.19971 (11)0.0259 (4)
C160.6286 (2)0.97397 (16)0.25369 (11)0.0276 (4)
H160.5219480.8941160.2533160.033*
C170.6549 (2)1.09519 (16)0.30836 (11)0.0289 (4)
C180.8145 (2)1.20792 (17)0.30499 (12)0.0354 (4)
H180.8353051.2902780.3433770.042*
C190.9109 (2)1.09080 (17)0.20072 (13)0.0351 (4)
H190.9988751.0890410.1628070.042*
C200.5209 (2)1.10509 (17)0.36734 (12)0.0326 (4)
C210.3467 (2)1.04802 (18)0.33182 (13)0.0366 (4)
H210.3127141.0017440.2688360.044*
C220.2225 (3)1.0581 (2)0.38747 (14)0.0480 (5)
H220.1039781.0173540.3629240.058*
C230.2710 (3)1.1276 (2)0.47900 (15)0.0557 (6)
H230.1861961.1350710.5170870.067*
C240.4438 (3)1.1856 (2)0.51400 (14)0.0515 (5)
H240.4777531.2335930.5764000.062*
C250.5676 (3)1.17463 (19)0.45928 (13)0.0436 (5)
H250.6858291.2148520.4844990.052*
Cl10.16918 (5)0.91117 (4)0.07387 (3)0.02965 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (5)0.0315 (6)0.0325 (6)0.0094 (5)0.0034 (5)0.0009 (5)
N10.0193 (6)0.0251 (7)0.0233 (8)0.0067 (5)0.0005 (6)0.0016 (6)
N20.0166 (6)0.0211 (7)0.0291 (7)0.0082 (5)0.0028 (5)0.0021 (5)
N30.0168 (6)0.0190 (6)0.0284 (7)0.0063 (5)0.0026 (5)0.0015 (5)
N40.0338 (8)0.0276 (8)0.0486 (9)0.0042 (6)0.0047 (7)0.0027 (7)
C10.0190 (7)0.0168 (7)0.0326 (9)0.0045 (6)0.0034 (7)0.0017 (6)
C20.0223 (8)0.0363 (10)0.0332 (9)0.0056 (7)0.0024 (7)0.0034 (8)
C30.0324 (9)0.0379 (10)0.0365 (10)0.0046 (8)0.0038 (8)0.0151 (8)
C40.0314 (9)0.0255 (9)0.0318 (9)0.0100 (7)0.0002 (7)0.0055 (7)
C50.0440 (10)0.0421 (11)0.0304 (10)0.0168 (8)0.0004 (8)0.0131 (8)
C60.0448 (11)0.0452 (11)0.0306 (10)0.0196 (9)0.0129 (8)0.0062 (8)
C70.0277 (8)0.0314 (9)0.0346 (9)0.0120 (7)0.0074 (7)0.0004 (7)
C80.0253 (8)0.0197 (8)0.0259 (8)0.0109 (6)0.0035 (7)0.0009 (6)
C90.0253 (8)0.0182 (7)0.0255 (8)0.0089 (6)0.0037 (7)0.0004 (6)
C100.0182 (7)0.0260 (8)0.0366 (9)0.0093 (6)0.0059 (7)0.0005 (7)
C110.0184 (7)0.0223 (8)0.0383 (10)0.0105 (6)0.0021 (7)0.0009 (7)
C120.0152 (7)0.0248 (8)0.0313 (9)0.0079 (6)0.0029 (6)0.0023 (6)
C130.0183 (7)0.0217 (8)0.0302 (9)0.0091 (6)0.0007 (6)0.0018 (6)
C140.0217 (8)0.0273 (9)0.0311 (9)0.0092 (6)0.0006 (7)0.0032 (7)
C150.0261 (8)0.0246 (8)0.0242 (8)0.0085 (6)0.0037 (7)0.0011 (6)
C160.0281 (8)0.0232 (8)0.0267 (9)0.0063 (6)0.0019 (7)0.0001 (7)
C170.0379 (9)0.0271 (9)0.0216 (9)0.0144 (7)0.0041 (7)0.0001 (7)
C180.0448 (10)0.0227 (9)0.0325 (10)0.0099 (7)0.0103 (8)0.0043 (7)
C190.0278 (9)0.0305 (10)0.0404 (10)0.0057 (7)0.0010 (8)0.0003 (8)
C200.0492 (11)0.0253 (9)0.0252 (9)0.0179 (8)0.0002 (8)0.0013 (7)
C210.0497 (11)0.0336 (10)0.0296 (9)0.0197 (8)0.0049 (8)0.0003 (7)
C220.0534 (12)0.0526 (12)0.0471 (12)0.0299 (10)0.0099 (10)0.0062 (10)
C230.0860 (17)0.0597 (14)0.0428 (13)0.0481 (13)0.0242 (12)0.0077 (10)
C240.0872 (17)0.0492 (12)0.0286 (11)0.0380 (12)0.0067 (11)0.0037 (9)
C250.0672 (13)0.0374 (10)0.0294 (10)0.0259 (9)0.0023 (9)0.0025 (8)
Cl10.02283 (19)0.0261 (2)0.0381 (2)0.00758 (15)0.00489 (17)0.00481 (17)
Geometric parameters (Å, º) top
O1—C11.2298 (17)C10—H10B0.9900
N1—C11.3562 (19)C11—H11A0.9900
N1—C91.4136 (19)C11—H11B0.9900
N1—H1N0.852 (17)C12—C131.515 (2)
N2—C81.4233 (19)C12—H12A0.9900
N2—C101.4665 (18)C12—H12B0.9900
N2—C131.4832 (19)C13—H13A0.9900
N3—C141.4981 (19)C13—H13B0.9900
N3—C121.5002 (17)C14—C151.507 (2)
N3—C111.5031 (19)C14—H14A0.9900
N3—H3N0.967 (18)C14—H14B0.9900
N4—C181.336 (2)C15—C161.390 (2)
N4—C191.340 (2)C15—C191.395 (2)
C1—C21.498 (2)C16—C171.394 (2)
C2—C31.527 (2)C16—H160.9500
C2—H2A0.9900C17—C181.394 (2)
C2—H2B0.9900C17—C201.484 (2)
C3—C41.507 (2)C18—H180.9500
C3—H3A0.9900C19—H190.9500
C3—H3B0.9900C20—C251.395 (2)
C4—C51.381 (2)C20—C211.393 (2)
C4—C91.400 (2)C21—C221.387 (2)
C5—C61.387 (2)C21—H210.9500
C5—H50.9500C22—C231.389 (3)
C6—C71.384 (2)C22—H220.9500
C6—H60.9500C23—C241.382 (3)
C7—C81.395 (2)C23—H230.9500
C7—H70.9500C24—C251.380 (3)
C8—C91.415 (2)C24—H240.9500
C10—C111.496 (2)C25—H250.9500
C10—H10A0.9900
C1—N1—C9123.74 (14)C10—C11—H11B109.3
C1—N1—H1N112.8 (11)N3—C11—H11B109.3
C9—N1—H1N123.5 (11)H11A—C11—H11B107.9
C8—N2—C10114.51 (12)N3—C12—C13112.12 (12)
C8—N2—C13118.19 (12)N3—C12—H12A109.2
C10—N2—C13108.27 (11)C13—C12—H12A109.2
C14—N3—C12112.69 (12)N3—C12—H12B109.2
C14—N3—C11108.66 (12)C13—C12—H12B109.2
C12—N3—C11110.14 (11)H12A—C12—H12B107.9
C14—N3—H3N109.2 (11)N2—C13—C12109.53 (12)
C12—N3—H3N108.5 (11)N2—C13—H13A109.8
C11—N3—H3N107.6 (11)C12—C13—H13A109.8
C18—N4—C19116.51 (14)N2—C13—H13B109.8
O1—C1—N1122.03 (14)C12—C13—H13B109.8
O1—C1—C2121.99 (13)H13A—C13—H13B108.2
N1—C1—C2115.97 (14)N3—C14—C15115.00 (13)
C1—C2—C3110.04 (14)N3—C14—H14A108.5
C1—C2—H2A109.7C15—C14—H14A108.5
C3—C2—H2A109.7N3—C14—H14B108.5
C1—C2—H2B109.7C15—C14—H14B108.5
C3—C2—H2B109.7H14A—C14—H14B107.5
H2A—C2—H2B108.2C16—C15—C19117.83 (15)
C4—C3—C2109.40 (13)C16—C15—C14122.94 (13)
C4—C3—H3A109.8C19—C15—C14119.00 (15)
C2—C3—H3A109.8C15—C16—C17120.04 (14)
C4—C3—H3B109.8C15—C16—H16120.0
C2—C3—H3B109.8C17—C16—H16120.0
H3A—C3—H3B108.2C18—C17—C16116.57 (15)
C5—C4—C9119.99 (15)C18—C17—C20121.22 (15)
C5—C4—C3122.79 (15)C16—C17—C20122.21 (14)
C9—C4—C3117.22 (14)N4—C18—C17125.19 (16)
C4—C5—C6120.19 (16)N4—C18—H18117.4
C4—C5—H5119.9C17—C18—H18117.4
C6—C5—H5119.9N4—C19—C15123.81 (17)
C7—C6—C5119.99 (15)N4—C19—H19118.1
C7—C6—H6120.0C15—C19—H19118.1
C5—C6—H6120.0C25—C20—C21118.47 (17)
C6—C7—C8121.68 (14)C25—C20—C17120.38 (17)
C6—C7—H7119.2C21—C20—C17121.13 (15)
C8—C7—H7119.2C22—C21—C20120.67 (18)
C7—C8—N2121.99 (13)C22—C21—H21119.7
C7—C8—C9117.59 (14)C20—C21—H21119.7
N2—C8—C9120.26 (13)C21—C22—C23120.2 (2)
C4—C9—N1118.14 (13)C21—C22—H22119.9
C4—C9—C8120.56 (14)C23—C22—H22119.9
N1—C9—C8121.30 (13)C24—C23—C22119.25 (19)
N2—C10—C11110.45 (12)C24—C23—H23120.4
N2—C10—H10A109.6C22—C23—H23120.4
C11—C10—H10A109.6C25—C24—C23120.72 (19)
N2—C10—H10B109.6C25—C24—H24119.6
C11—C10—H10B109.6C23—C24—H24119.6
H10A—C10—H10B108.1C24—C25—C20120.67 (19)
C10—C11—N3111.72 (13)C24—C25—H25119.7
C10—C11—H11A109.3C20—C25—H25119.7
N3—C11—H11A109.3
C9—N1—C1—O1176.62 (13)C14—N3—C12—C13172.97 (12)
C9—N1—C1—C22.4 (2)C11—N3—C12—C1351.46 (16)
O1—C1—C2—C3143.54 (15)C8—N2—C13—C12165.68 (11)
N1—C1—C2—C337.46 (18)C10—N2—C13—C1262.04 (14)
C1—C2—C3—C456.18 (18)N3—C12—C13—N257.34 (15)
C2—C3—C4—C5141.79 (17)C12—N3—C14—C1569.10 (16)
C2—C3—C4—C938.3 (2)C11—N3—C14—C15168.56 (12)
C9—C4—C5—C60.5 (3)N3—C14—C15—C1695.52 (17)
C3—C4—C5—C6179.36 (17)N3—C14—C15—C1990.00 (17)
C4—C5—C6—C70.7 (3)C19—C15—C16—C171.5 (2)
C5—C6—C7—C80.8 (3)C14—C15—C16—C17173.04 (14)
C6—C7—C8—N2174.79 (15)C15—C16—C17—C180.1 (2)
C6—C7—C8—C90.5 (2)C15—C16—C17—C20179.93 (14)
C10—N2—C8—C712.7 (2)C19—N4—C18—C171.9 (3)
C13—N2—C8—C7116.78 (16)C16—C17—C18—N41.7 (2)
C10—N2—C8—C9162.54 (13)C20—C17—C18—N4178.24 (15)
C13—N2—C8—C968.01 (17)C18—N4—C19—C150.4 (3)
C5—C4—C9—N1179.77 (15)C16—C15—C19—N41.3 (3)
C3—C4—C9—N10.1 (2)C14—C15—C19—N4173.47 (16)
C5—C4—C9—C80.3 (2)C18—C17—C20—C2539.3 (2)
C3—C4—C9—C8179.60 (15)C16—C17—C20—C25140.79 (17)
C1—N1—C9—C423.1 (2)C18—C17—C20—C21139.46 (17)
C1—N1—C9—C8157.43 (14)C16—C17—C20—C2140.5 (2)
C7—C8—C9—C40.3 (2)C25—C20—C21—C221.1 (2)
N2—C8—C9—C4175.13 (14)C17—C20—C21—C22179.88 (15)
C7—C8—C9—N1179.77 (14)C20—C21—C22—C231.1 (3)
N2—C8—C9—N14.4 (2)C21—C22—C23—C240.4 (3)
C8—N2—C10—C11162.59 (12)C22—C23—C24—C250.3 (3)
C13—N2—C10—C1163.20 (15)C23—C24—C25—C200.2 (3)
N2—C10—C11—N358.73 (16)C21—C20—C25—C240.5 (3)
C14—N3—C11—C10175.64 (11)C17—C20—C25—C24179.25 (15)
C12—N3—C11—C1051.76 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.01 (2)2.844 (2)168 (2)
N3—H3N···Cl1ii0.97 (2)2.12 (2)3.065 (1)167 (2)
C10—H10B···O1iii0.992.403.151 (2)132
C11—H11A···Cl1iii0.992.803.668 (2)147
C12—H12A···Cl10.992.813.520 (2)129
C12—H12B···O1i0.992.263.123 (2)144
C13—H13A···N10.992.533.138 (2)120
C14—H14A···Cl1iii0.992.713.585 (2)147
C21—H21···Cl10.952.833.757 (2)165
C18—H18···Cgii0.952.833.487 (2)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y, z.
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I·HCl and II·HCl. top
ContactI·HCl % contributionII·HCl % contribution
H···H51.542.1
C···H/H···C20.220.5
Cl···H/H···Cl10.112.8
O···H/H···O7.48.7
N···H/H···N6.55.3
F···H/H···F7.5
C···F/F···C1.4
C···C2.90.8
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: King Fahd University of Petroleum and Minerals, Dahran, Saudia Arabia; University of Neuchâtel.

References

First citationFeenstra, R. W., de Moes, J., Hofma, J. J., Kling, H., Kuipers, W., Long, S. K., Tulp, M. T. M., van der Heyden, J. A. M. & Kruse, C. G. (2001). Bioorg. Med. Chem. Lett. 11, 2345–2349.  CrossRef PubMed CAS Google Scholar
First citationFeenstra, R. W., van den Hoogenband, A., Stroomer, C. N. J., van Stuivenberg, H. H., Tulp, M. T. M., Long, S. K., van der Heyden, J. A. M. & Kruse, C. G. (2006). Chem. Pharm. Bull. 54, 1326–1330.  CrossRef CAS Google Scholar
First citationGhani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258–8362.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationUllah, N. (2012). Z. Naturforsch. Teil B, 67, 75–84.  CrossRef CAS Google Scholar
First citationUllah, N. (2014a). Med. Chem. 10, 484–496.  CrossRef CAS PubMed Google Scholar
First citationUllah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281–291.  CrossRef CAS PubMed Google Scholar
First citationUllah, N. & Al-Shaheri, A. A. Q. (2012). J. Chem. Sci. 67, 253–262.  CAS Google Scholar
First citationUllah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057–1062.  CSD CrossRef CAS Google Scholar
First citationUllah, N., Altaf, M. & Mansha, M. (2017). Z. Naturforsch. Teil B, 58, 1697–1702.  CAS Google Scholar
First citationUllah, N., Altaf, M., Mansha, M. & Ba-Salem, A. O. (2015). J. Struct. Chem. 56, 1441–1445.  CSD CrossRef CAS Google Scholar
First citationUllah, N. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, o103–o104.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds