research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of a diorganotelluroxonium(IV) cation, {[2,6-(CH2NMe2)2C6H3Te(μ-O)]2}2+, with the tri­chlorido­(di­methyl sulfoxide)­platinum(II) anion

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 August 2020; accepted 21 August 2020; online 28 August 2020)

In the title salt, di-μ-oxido-bis­{2,6-bis­[(di­methyl­amino)­meth­yl]phenyl-κC1}tellurium(­IV) bis[tri­chlorido­(dimethyl sulfoxide-κS)platinate(II)], (C24H38N4O2Te2)[PdCl3(C2H6OS)]2, which crystallizes in the triclinic space group P[\overline{1}], each Te atom is in a distorted five-coordinated TeO2N2C square-pyramidal geometry (τ values of 0.026 and 0.001) with the C atoms of the phenyl rings occupying the apical positions. The phenyl rings in the [C24H38N4O2Te2]2+ cation are in a cis arrangement to enable this species to participate in Te⋯Cl cation–anion inter­actions. There are also C—H⋯O inter­actions involving the dimethyl sulfoxide ligands and numerous cation–anion and anion–anion C—H⋯Cl inter­actions, which link the ions into a complex three-dimensional array.

1. Chemical context

After the initial discovery (Moulton & Shaw, 1976[Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020-1024.]) and seminal contributions from various research groups, the coordination chemistry of pincer ligands has become an important field in coordination chemistry (Peris & Crabtree, 2018[Peris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959-1968.]). One pincer ligand scaffold that has recently attracted considerable attention with respect to its inter­esting structural features and reactivity, is the NCN pincer ligand, [2,6-(Me2NCH2)2C6H3] (HL).

[Scheme 2]

Of particular inter­est are the group 16 derivatives of these ligands where, due to the presence of intra­molecular N→M inter­actions from the two coordinating auxiliary arms, their compounds show inter­esting reactivity and have been used in the formation of selenium cations (Fujihara et al., 1995[Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153-10154.]; Poleschner & Seppelt, 2004[Poleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565-6574.], 2013[Poleschner, H. & Seppelt, K. (2013). Angew. Chem. Int. Ed. 52, 12838-12842.]; Gupta et al., 2017[Gupta, A., Singh, H. B. & Butcher, R. J. (2017). IUCrData, 2, x171634.]; Pop et al., 2014[Pop, A., Silvestru, A., Juárez-Pérez, E. J., Arca, M., Lippolis, V. & Silvestru, C. (2014). Dalton Trans. 43, 2221-2233.]; Varga et al., 2010[Varga, R. A., Kulcsar, M. & Silvestru, A. (2010). Acta Cryst. E66, o771.]; Rani et al., 2018[Rani, V., Boda, M., Raju, S., Naresh Patwari, G., Singh, H. B. & Butcher, R. J. (2018). Dalton Trans. 47, 9114-9127.]). It is worth noting that, compared to the selenenium cation of ligand L, studies on their higher congener i.e., tellurenium cations, are relatively scarce in the literature and this was the initial impetus for this work. Furukawa and co-workers reported the synthesis of a tellurenium cation by the reaction of heteroleptic diorganotelluride LTeR (where R = n-but­yl) with Br2/K[PF6] (Fujihara et al., 1995[Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153-10154.]). However, the structural elucidation of the tellurenium cation of the ligand L remained elusive until Silvestru and co-workers reported the first structural characterization of a tellurenium cation (Beleaga et al., 2011[Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830-8838.]).

It is inter­esting to note that the related tin(II) cations of ligand L, containing one lone pair of electrons, have been used as ligands to isolate heterobimetallic complexes 4a,b (Martincová et al., 2011[Martincová, J., Dostál, L., Herres-Pawlis, S., Růžička, A. & Jambor, R. (2011). Chem. Eur. J. 17, 7423-7427.], 2012[Martincová, J., Dostál, L., Růžička, A., Herres-Pawlis, S. & Jambor, R. (2012). Z. Anorg. Allg. Chem. 638, 1672-1675.]). However, no such coordination chemistry has been explored for the selenenium(II) and tellurenium(II) cations of ligand L, which have two such pairs of electrons. A notable work is that by Lin & Gabbaï (2013[Lin, T.-P. & Gabbaï, F. P. (2013). Angew. Chem. Int. Ed. 52, 3864-3868.]) where they used TeIV cations having one lone pair of electrons as ligands for isolating complex 5 where the TeIV center acted as a σ-acceptor (Z-type) ligand.

[Scheme 3]

Recently, we investigated the reactivity of the homoleptic diorganotelluride [2,6 (Me2NCH2)2C6H3]2Te, 1 with SO2Cl2:K2PdCl4 (Gupta et al., 2019[Gupta, A. K., Deka, R., Singh, H. B. & Butcher, R. J. (2019). New J. Chem. 43, 13225-13233.]). We observed that the diorganotelluride underwent intra­molecular chalcogen bonding (IChB) mediated Te-de­aryl­ation to afford the first example of a PdII complex [2,6(Me2NCH2)2C6H3]TePdCl3, with any organotellurenium(II) cation as a ligand. This might be due to the formation of the highly stable tellurenium(II) cation where the Te is T-shaped and involved in a three-centered, four-electron bond. While checking the reproduc­ibility of the reaction, in one instance, because of the adventitious uptake of oxygen, the reaction unexpectedly resulted in the isolation of the title compound, which contains the ditelluroxonium(IV) cation 2, [2,6-(CH2NMe2)2C6H3Te(μ-O)]2 with the PdCl3(DMSO) anion. It is worth noting that Furukawa and coworkers have reported a similar diorganotelluroxonium(IV) cation namely, [2,6-(CH2NMe2)2C6H3Te(μ-O)]2·PF6, by the reaction of the diorganotelluride [2,6 (Me2NCH2)2C6H3]2Te with the oxidizing agent NOPF6 (Kobayashi et al., 2000[Kobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Z. Kristallogr. 215, 21-24.]).

[Scheme 1]

2. Structural commentary

The title structure represents a rare example of a structurally characterized diorganotelluroxonium(IV) cation and key geometrical data are listed in Table 1[link]. The salt [C24H38N4O2Te2]2+ ·[PdCl3(DMSO)]2, 3, crystallizes in the triclinic space group P[\overline{1}]. In the structure of the cation 2 there is a cis arrangement of the aryl rings of the attached 2,6-[(di­methyl­amino)­meth­yl)]phenyl substituents (Fig. 1[link]). This is in contrast to that observed in the structure of [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+·PF6, wherein the cation lies on a center of inversion and thus the aryl groups are in a trans configuration (Kobayashi et al., 2000[Kobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Z. Kristallogr. 215, 21-24.]). Each Te atom is in a five-coordinate geometry with the phenyl rings occupying the apical position. An analysis of this geometry using the continuous shape measurement (CSM) method (Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, P. A. & Alvarez, J. (2013). Shape. University of Barcelona.]) and using the four appropriate reference shapes [vacant octa­hedron, C4v; trigonal bipyramid, D3h; square pyramid, C4v; and Johnson trigonal bipyramid, D3h] showed that the closest fit was the vacant octa­hedron. The Te—N bond distances, lying in the range from 2.450 (2)–2.495 (2) Å for 2, are in good agreement with the values observed in [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+·PF6 [2.475 (5)–2.486 (5) Å] (Kobayashi et al., 2000[Kobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Z. Kristallogr. 215, 21-24.]). In 2, the dihedral angle between the two aryl groups is 6.2 (2)° and those between the Te2O2 plane and the aryl rings are 88.77 (8) and 85.00 (8)°, indicating that the two aryl groups are not coplanar, and are too far apart to form ππ stacking inter­actions (the closest contact is between C1 and C1A at 3.672 Å). Thus, the driving force for the adoption of this sterically unfavorable cis conformation appears to be the formation of Te⋯Cl cation–anion inter­actions, which would not be possible if the trans conformation were adopted. In this case, there is a short Te2⋯Cl3 contact of 3.386 (1) Å and longer contacts of 3.833 (1) Å (Te2⋯Cl2) and 3.991 (1) Å (Te1⋯Cl5) (see Fig. 2[link]). In contrast, in the case of [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+·PF6, no such cation–anion inter­actions are present and hence the more sterically favorable trans conformation is adopted. In the other two related structures containing the Te2O22+ core dication, the same cis configuration is adopted to allow the formation of inter­ionic Te⋯O inter­actions (Hupf et al., 2017[Hupf, E., Do, T. G., Nordheider, A., Wehrhahn, M., Sanz Camacho, P., Ashbrook, S. E., Lork, E., Slawin, A. M. Z., Mebs, S., Woollins, J. D. & Beckmann, J. (2017). Organometallics, 36, 1566-1579.]; Deka et al., 2020[Deka, R., Sarkar, A., Butcher, R. J., Junk, P. C., Turner, D. R., Deacon, G. B. & Singh, H. B. (2020). Organometallics, 39, 334-343.]).

Table 1
Selected geometric parameters (Å, °)

Te1—O1 1.9836 (19) Te2—O1 2.0071 (19)
Te1—O2 1.9871 (19) Te2—O2 1.9844 (18)
Te1—C1 2.089 (3) Te2—N1A 2.477 (2)
Te1—N2 2.450 (2) Te2—N2A 2.459 (2)
Te1—N1 2.495 (2) Te2—C1A 2.107 (3)
       
O1—Te1—O2 76.92 (8) O2—Te2—O1 76.44 (8)
O1—Te1—C1 96.99 (10) O2—Te2—C1A 95.66 (10)
O2—Te1—C1 93.43 (10) O1—Te2—C1A 94.79 (10)
O1—Te1—N2 150.20 (8) O2—Te2—N2A 76.19 (8)
O2—Te1—N2 75.53 (8) O1—Te2—N2A 148.65 (8)
C1—Te1—N2 73.66 (10) C1A—Te2—N2A 73.06 (10)
O1—Te1—N1 77.12 (8) O2—Te2—N1A 148.72 (7)
O2—Te1—N1 148.63 (8) O1—Te2—N1A 75.46 (8)
C1—Te1—N1 72.64 (10) C1A—Te2—N1A 73.37 (10)
N2—Te1—N1 124.18 (8) N2A—Te2—N1A 125.35 (9)
[Figure 1]
Figure 1
The mol­ecular structure of the [C24H38N4O2Te2]2+ cation, showing the cis arrangement of the phenyl rings with respect to the Te2O2 core. Atomic displacement parameters are drawn at the 30% probability level.
[Figure 2]
Figure 2
Diagram of the [C24H38N4O2Te2]2+ anion and the [PdCl3(DMSO)] anions linked by Te⋯Cl inter­actions (shown as dashed lines).

3. Supra­molecular features

In addition to the Te⋯Cl cation–anion inter­actions mentioned above, there are also C—H⋯O inter­actions involving the DMSO ligands and numerous cation–anion and anion–anion C—H⋯Cl inter­actions (Table 2[link]), which link the ions into a complex three-dimensional array, as seen in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Cl1 0.99 2.99 3.768 (3) 136
C7A—H7AB⋯Cl1 0.99 2.90 3.663 (3) 135
C9A—H9AB⋯Cl1i 0.98 2.85 3.697 (4) 145
C9A—H9AC⋯O1 0.98 2.49 3.000 (3) 112
C9—H9B⋯O4ii 0.98 2.64 3.355 (4) 130
C9—H9B⋯Cl5ii 0.98 2.87 3.741 (4) 149
C10A—H10C⋯Cl2iii 0.98 2.80 3.706 (3) 154
C10—H10E⋯O1 0.98 2.57 3.078 (4) 112
C10—H10F⋯Cl5ii 0.98 2.82 3.711 (4) 151
C11A—H11E⋯O2 0.98 2.56 3.048 (4) 110
C11A—H11F⋯Cl3iii 0.98 2.91 3.639 (4) 132
C12A—H12A⋯O3iv 0.98 2.42 3.316 (4) 151
C12A—H12A⋯Cl2iv 0.98 2.97 3.595 (3) 123
C12A—H12B⋯Cl2iii 0.98 2.80 3.678 (4) 150
C12—H12D⋯Cl6v 0.98 2.92 3.825 (3) 155
C12—H12F⋯O2 0.98 2.43 2.980 (4) 115
C21—H21A⋯Cl5iv 0.98 2.77 3.628 (3) 147
C21—H21C⋯Cl3vi 0.98 2.59 3.506 (3) 157
C22—H22B⋯Cl5iv 0.98 2.84 3.681 (4) 144
C22—H22C⋯Cl1vi 0.98 2.86 3.670 (4) 141
C22—H22D⋯Cl2 0.98 2.77 3.308 (4) 115
C31—H31B⋯O4vii 0.98 2.53 3.389 (4) 147
C31—H31C⋯Cl6v 0.98 2.94 3.796 (4) 146
C32—H32B⋯O4vii 0.98 2.46 3.336 (4) 149
C32—H32C⋯Cl5 0.98 2.73 3.275 (4) 115
C32—H32D⋯Cl4v 0.98 2.58 3.541 (4) 167
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y-1, z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z+1; (vi) -x+2, -y, -z; (vii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Packing diagram showing how the Te⋯Cl cation–anion inter­actions, C—H⋯O inter­actions involving the DMSO ligands, and numerous cation–anion and anion–anion C—H⋯Cl inter­actions linking these moieties into a complex three-dimensional array (all inter­actions shown as dashed lines).

4. Database survey

There are only three reports available containing a cation with the Te2O22+ core. The first report on the mol­ecular structure of a diorganotelluroxonium(IV) cation was made by Furukawa and co-workers (Kobayashi et al., 2000[Kobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Z. Kristallogr. 215, 21-24.]; Cambridge Structural Database refcode XAGGER), which contains a cation [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+ charge-balanced as the PF6 salt. Beckmann and coworkers reported the mol­ecular structure of [(6-Ph2P(O)-Ace-5-) Te(μ-O)]2·2OTf [Ace = acenaphthyl; Hupf et al., 2017[Hupf, E., Do, T. G., Nordheider, A., Wehrhahn, M., Sanz Camacho, P., Ashbrook, S. E., Lork, E., Slawin, A. M. Z., Mebs, S., Woollins, J. D. & Beckmann, J. (2017). Organometallics, 36, 1566-1579.]; refcode CAZCEO). Recently, we have reported the third example of a structurally characterized ditelluroxonium cation, namely [ppyTe(μ-O)]2·2ClO4 (ppy = phenyl­pyridine), stabilized by extensive IChB inter­actions (Deka et al., 2020[Deka, R., Sarkar, A., Butcher, R. J., Junk, P. C., Turner, D. R., Deacon, G. B. & Singh, H. B. (2020). Organometallics, 39, 334-343.]; refcode PUBWAN).

5. Synthesis and crystallization

To a solution of 1 (0.10 g, 0.20 mmol) in CCl4 (3 ml), a solution of SO2Cl2 (0.03 g, 17.76 µL, 0.22 mmol) in CCl4 (2 ml) was added dropwise at 273 K under an N2 atmosphere. After stirring the reaction mixture for 1 h, hexane (10 ml) was added, resulting in the formation of a white precipitate. The precipitate was washed with hexane (2 × 5 ml) and dissolved in THF (20 ml). To it, K2PdCl4 (0.06 g, 0.20 mmol) and KOH (0.01 g, 0.17 mmol) were added at ambient temperature. After stirring for 12 h, the solvent was removed under vacuum, resulting in the precipitation of a dark-purple solid. The solid was washed with CH2Cl2 (3 × 5 ml) and Et2O (2 × 10 ml), and dried under vacuum to afford the analytically pure solid of 2. Dark-purple prisms of 2 suitable for single-crystal diffraction analysis were acquired by slow diffusion of Et2O into a DMSO solution at room temperature.

[Scheme 4]

Yield: 59%; m.p. 444–446 K; 1H NMR: δ (ppm) 7.35–7.31 (m, 1H, Ar-H), 7.24–7.20 (m, 2H, Ar-H), 4.25 (d, 2H, ArCH2), 3.55 (d, 2H, ArCH2), 2.52 (s, 6H, NMe2), 2.41 (s, 6H, NMe2); 13C NMR: δ (ppm) 130.55, 125.22, 122.89, 120.44, 67.14, 45.70; 125Te NMR: δ (ppm) 1500; ESI–MS (positive mode): m/z calculated for [C12H19N2OTe]+: 336.0545, found: 336.0541.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. A riding model was used for the H atoms with atomic displacement parameters = 1.2Ueq(C) [1.5Ueq(CH3)] and C—H distances ranging from 0.95 to 0.99 Å.

Table 3
Experimental details

Crystal data
Chemical formula (C24H38N4O2Te2)[PdCl3(C2H6OS)]2
Mr 1251.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6333 (19), 12.770 (3), 17.956 (4)
α, β, γ (°) 73.82 (3), 83.55 (3), 88.86 (3)
V3) 2107.8 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.73
Crystal size (mm) 0.39 × 0.20 × 0.14
 
Data collection
Diffractometer Rigaku Saturn 724 Dual Source CCD
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.417, 0.703
No. of measured, independent and observed [I > 2σ(I)] reflections 16345, 7532, 6351
Rint 0.028
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 0.99
No. of reflections 7532
No. of parameters 445
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.95
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Di-µ-oxido-bis{2,6-bis[(dimethylamino)methyl]phenyl-κC1}tellurium(IV) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)] top
Crystal data top
(C24H38N4O2Te2)[PdCl3(C2H6OS)]2Z = 2
Mr = 1251.54F(000) = 1216
Triclinic, P1Dx = 1.972 Mg m3
a = 9.6333 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.770 (3) ÅCell parameters from 4389 reflections
c = 17.956 (4) Åθ = 3.0–25.3°
α = 73.82 (3)°µ = 2.73 mm1
β = 83.55 (3)°T = 100 K
γ = 88.86 (3)°Prism, dark purple
V = 2107.8 (8) Å30.39 × 0.20 × 0.14 mm
Data collection top
Rigaku Saturn 724 Dual Source CCD
diffractometer
6351 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.028
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1011
Tmin = 0.417, Tmax = 0.703k = 1515
16345 measured reflectionsl = 1821
7532 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0225P)2]
where P = (Fo2 + 2Fc2)/3
7532 reflections(Δ/σ)max = 0.001
445 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.95 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.33401 (2)0.04241 (2)0.28514 (2)0.01035 (6)
Pd10.94231 (2)0.16499 (2)0.01042 (2)0.01127 (6)
Cl10.81302 (7)0.00483 (6)0.05078 (4)0.01552 (17)
S10.89105 (8)0.19555 (6)0.11264 (4)0.01283 (17)
N1A0.4790 (2)0.2407 (2)0.02780 (13)0.0115 (6)
C1A0.4649 (3)0.3347 (2)0.14904 (16)0.0127 (7)
O10.40044 (19)0.09584 (16)0.17231 (10)0.0107 (5)
N10.5460 (2)0.0692 (2)0.27189 (14)0.0133 (6)
C10.4960 (3)0.1100 (2)0.32559 (16)0.0112 (6)
Te20.29877 (2)0.23691 (2)0.13837 (2)0.00938 (5)
Pd20.10998 (2)0.68021 (2)0.44760 (2)0.01459 (6)
S20.29029 (8)0.56851 (7)0.47852 (4)0.01472 (17)
N20.2358 (2)0.0782 (2)0.40747 (13)0.0144 (6)
O20.23723 (19)0.18393 (17)0.25186 (10)0.0114 (5)
N2A0.1943 (2)0.3983 (2)0.17064 (14)0.0129 (6)
C2A0.4399 (3)0.4105 (2)0.19095 (16)0.0115 (7)
C20.4621 (3)0.1733 (3)0.37634 (16)0.0147 (7)
Cl30.96704 (8)0.15286 (7)0.14002 (4)0.01622 (17)
O30.7830 (2)0.27971 (18)0.13078 (11)0.0175 (5)
C3A0.5517 (3)0.4697 (3)0.20169 (17)0.0158 (7)
H3AA0.5371940.5197540.2322220.019*
C30.5686 (3)0.2270 (3)0.39672 (17)0.0176 (7)
H3A0.5482000.2699400.4320120.021*
Cl21.07137 (8)0.32486 (6)0.02994 (4)0.01833 (17)
Cl40.00771 (8)0.63088 (7)0.57463 (4)0.02292 (19)
O40.4201 (2)0.62606 (18)0.48098 (12)0.0172 (5)
C4A0.6855 (3)0.4554 (3)0.16736 (17)0.0173 (7)
H4AA0.7624850.4944140.1757760.021*
C40.7059 (3)0.2181 (3)0.36546 (17)0.0187 (7)
H4A0.7777790.2593230.3767300.022*
Cl50.21996 (8)0.73154 (8)0.32293 (4)0.0282 (2)
C50.7392 (3)0.1501 (3)0.31822 (17)0.0160 (7)
H5A0.8338700.1421020.2994310.019*
C5A0.7069 (3)0.3844 (3)0.12092 (17)0.0149 (7)
H5AA0.7976670.3778380.0959070.018*
Cl60.06703 (9)0.80252 (8)0.40930 (5)0.0279 (2)
C6A0.5978 (3)0.3236 (3)0.11093 (16)0.0125 (7)
C60.6342 (3)0.0934 (3)0.29826 (16)0.0132 (7)
C70.6628 (3)0.0113 (3)0.25245 (17)0.0147 (7)
H7A0.6725550.0489600.1958710.018*
H7B0.7513580.0265800.2652780.018*
C7A0.6129 (3)0.2492 (3)0.05866 (16)0.0125 (7)
H7AA0.6863960.2781060.0148500.015*
H7AB0.6413170.1759200.0884840.015*
C8A0.2900 (3)0.4297 (3)0.21981 (16)0.0132 (7)
H8AA0.2680990.3860070.2747430.016*
H8AB0.2775680.5076810.2175190.016*
C80.3110 (3)0.1770 (3)0.40978 (17)0.0156 (7)
H8A0.3067640.1808060.4643210.019*
H8B0.2661950.2429290.3790130.019*
C9A0.4723 (3)0.1439 (3)0.00092 (17)0.0166 (7)
H9AA0.5427690.1506990.0458630.025*
H9AB0.3792070.1380390.0166490.025*
H9AC0.4903380.0785220.0406330.025*
C90.5562 (3)0.1486 (3)0.34914 (17)0.0191 (8)
H9A0.6391460.1935930.3460830.029*
H9B0.4725560.1954820.3640700.029*
H9C0.5636650.1092630.3882360.029*
C10A0.4566 (3)0.3395 (3)0.03633 (16)0.0160 (7)
H10A0.5279250.3437010.0805280.024*
H10B0.4632400.4044390.0179660.024*
H10C0.3637150.3355660.0528660.024*
C100.5437 (3)0.1274 (3)0.21195 (17)0.0168 (7)
H10D0.6290190.1701470.2101980.025*
H10E0.5385310.0745390.1609770.025*
H10F0.4620380.1762800.2247400.025*
C110.2664 (3)0.0165 (3)0.47220 (17)0.0203 (8)
H11A0.2290570.0039780.5220140.030*
H11B0.3677140.0263020.4709670.030*
H11C0.2227390.0821750.4665930.030*
C11A0.0504 (3)0.3825 (3)0.21053 (18)0.0187 (8)
H11D0.0165160.4513470.2194200.028*
H11E0.0498830.3267270.2607010.028*
H11F0.0105230.3589490.1779250.028*
C12A0.1962 (3)0.4811 (3)0.09374 (17)0.0172 (7)
H12A0.1670290.5515980.1016020.026*
H12B0.1318650.4584180.0624390.026*
H12C0.2909920.4880540.0664350.026*
C120.0820 (3)0.0938 (3)0.40960 (17)0.0185 (8)
H12D0.0462640.1119910.4577220.028*
H12E0.0368830.0264920.4080380.028*
H12F0.0615730.1533700.3644340.028*
C210.8346 (3)0.0792 (3)0.13645 (18)0.0201 (7)
H21A0.8148680.0997760.1909800.030*
H21B0.7496580.0490980.1024010.030*
H21C0.9080350.0242030.1291710.030*
C221.0399 (3)0.2339 (3)0.18270 (17)0.0236 (8)
H22B1.0123240.2439640.2351320.035*
H22C1.1100330.1765080.1724270.035*
H22D1.0793430.3022500.1791960.035*
C310.2581 (3)0.4638 (3)0.56735 (19)0.0268 (9)
H31B0.3406280.4176160.5755230.040*
H31C0.1777740.4194280.5649300.040*
H31D0.2381660.4964470.6106810.040*
C320.3259 (3)0.4885 (3)0.4126 (2)0.0272 (9)
H32B0.4018090.4381410.4292110.041*
H32C0.3537520.5362340.3601590.041*
H32D0.2419330.4468340.4119900.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01126 (11)0.00795 (11)0.01136 (10)0.00191 (8)0.00056 (8)0.00204 (8)
Pd10.01032 (13)0.00973 (13)0.01451 (12)0.00091 (10)0.00135 (9)0.00456 (9)
Cl10.0150 (4)0.0123 (4)0.0193 (4)0.0034 (3)0.0003 (3)0.0048 (3)
S10.0130 (4)0.0111 (4)0.0155 (4)0.0003 (3)0.0023 (3)0.0051 (3)
N1A0.0113 (13)0.0091 (14)0.0141 (13)0.0003 (11)0.0016 (10)0.0029 (10)
C1A0.0155 (16)0.0078 (16)0.0141 (15)0.0024 (13)0.0049 (12)0.0005 (12)
O10.0134 (11)0.0092 (11)0.0084 (10)0.0014 (9)0.0012 (8)0.0010 (8)
N10.0150 (14)0.0093 (14)0.0148 (13)0.0005 (11)0.0013 (10)0.0022 (11)
C10.0120 (16)0.0085 (16)0.0118 (15)0.0052 (13)0.0027 (12)0.0001 (12)
Te20.00944 (11)0.00794 (11)0.01094 (10)0.00101 (8)0.00156 (7)0.00269 (8)
Pd20.01263 (13)0.01427 (14)0.01753 (13)0.00153 (10)0.00298 (10)0.00488 (10)
S20.0148 (4)0.0131 (4)0.0168 (4)0.0020 (3)0.0023 (3)0.0045 (3)
N20.0128 (13)0.0132 (15)0.0145 (13)0.0004 (12)0.0020 (10)0.0006 (11)
O20.0143 (11)0.0096 (12)0.0093 (10)0.0006 (9)0.0004 (8)0.0015 (8)
N2A0.0111 (13)0.0137 (15)0.0150 (13)0.0021 (11)0.0043 (10)0.0048 (11)
C2A0.0118 (16)0.0097 (16)0.0114 (15)0.0010 (13)0.0060 (12)0.0014 (12)
C20.0173 (17)0.0128 (17)0.0117 (15)0.0006 (14)0.0030 (12)0.0007 (13)
Cl30.0163 (4)0.0178 (4)0.0163 (4)0.0028 (3)0.0007 (3)0.0077 (3)
O30.0186 (12)0.0151 (13)0.0205 (11)0.0072 (10)0.0058 (9)0.0070 (9)
C3A0.0197 (17)0.0130 (18)0.0162 (16)0.0029 (14)0.0094 (13)0.0033 (13)
C30.0284 (19)0.0117 (17)0.0137 (16)0.0002 (15)0.0073 (14)0.0035 (13)
Cl20.0188 (4)0.0124 (4)0.0234 (4)0.0047 (3)0.0064 (3)0.0025 (3)
Cl40.0210 (4)0.0270 (5)0.0217 (4)0.0029 (4)0.0031 (3)0.0102 (4)
O40.0134 (11)0.0158 (13)0.0242 (12)0.0039 (10)0.0038 (9)0.0077 (10)
C4A0.0141 (17)0.0125 (18)0.0245 (17)0.0067 (14)0.0114 (13)0.0000 (14)
C40.0202 (18)0.0156 (19)0.0197 (17)0.0065 (14)0.0090 (14)0.0007 (14)
Cl50.0225 (5)0.0388 (6)0.0175 (4)0.0002 (4)0.0016 (3)0.0015 (4)
C50.0111 (16)0.0161 (18)0.0188 (16)0.0045 (14)0.0037 (13)0.0002 (13)
C5A0.0105 (16)0.0129 (18)0.0195 (16)0.0009 (13)0.0055 (13)0.0001 (13)
Cl60.0236 (5)0.0292 (5)0.0349 (5)0.0099 (4)0.0122 (4)0.0126 (4)
C6A0.0148 (16)0.0090 (16)0.0117 (15)0.0000 (13)0.0053 (12)0.0020 (12)
C60.0151 (17)0.0118 (17)0.0104 (15)0.0000 (13)0.0021 (12)0.0009 (12)
C70.0118 (16)0.0155 (18)0.0151 (16)0.0018 (14)0.0000 (12)0.0019 (13)
C7A0.0113 (16)0.0111 (17)0.0127 (15)0.0020 (13)0.0004 (12)0.0006 (12)
C8A0.0152 (16)0.0101 (17)0.0167 (16)0.0003 (13)0.0041 (13)0.0065 (13)
C80.0219 (18)0.0112 (17)0.0131 (15)0.0023 (14)0.0007 (13)0.0035 (13)
C9A0.0168 (17)0.0155 (18)0.0188 (16)0.0036 (14)0.0013 (13)0.0080 (14)
C90.0214 (18)0.0132 (18)0.0189 (17)0.0041 (15)0.0033 (13)0.0020 (13)
C10A0.0162 (17)0.0148 (18)0.0147 (16)0.0010 (14)0.0005 (13)0.0004 (13)
C100.0157 (17)0.0166 (18)0.0188 (16)0.0011 (14)0.0026 (13)0.0075 (14)
C110.0222 (18)0.0190 (19)0.0149 (16)0.0012 (15)0.0013 (13)0.0021 (14)
C11A0.0130 (17)0.021 (2)0.0243 (17)0.0042 (15)0.0003 (13)0.0117 (15)
C12A0.0222 (18)0.0097 (17)0.0197 (17)0.0032 (14)0.0062 (13)0.0029 (13)
C120.0132 (16)0.0193 (19)0.0200 (17)0.0016 (14)0.0029 (13)0.0025 (14)
C210.0275 (19)0.0146 (18)0.0232 (18)0.0016 (15)0.0103 (14)0.0106 (14)
C220.0209 (18)0.031 (2)0.0174 (17)0.0031 (16)0.0018 (14)0.0058 (15)
C310.0218 (19)0.019 (2)0.0300 (19)0.0012 (16)0.0004 (15)0.0081 (15)
C320.024 (2)0.028 (2)0.042 (2)0.0050 (17)0.0120 (16)0.0271 (18)
Geometric parameters (Å, º) top
Te1—O11.9836 (19)C4—H4A0.9500
Te1—O21.9871 (19)C5—C61.389 (4)
Te1—C12.089 (3)C5—H5A0.9500
Te1—N22.450 (2)C5A—C6A1.375 (4)
Te1—N12.495 (2)C5A—H5AA0.9500
Te1—Te23.1222 (12)C6A—C7A1.506 (4)
Pd1—S12.2440 (9)C6—C71.507 (4)
Pd1—Cl22.3049 (12)C7—H7A0.9900
Pd1—Cl12.3091 (11)C7—H7B0.9900
Pd1—Cl32.3278 (9)C7A—H7AA0.9900
S1—O31.477 (2)C7A—H7AB0.9900
S1—C211.768 (3)C8A—H8AA0.9900
S1—C221.777 (3)C8A—H8AB0.9900
N1A—C9A1.471 (4)C8—H8A0.9900
N1A—C7A1.477 (4)C8—H8B0.9900
N1A—C10A1.483 (4)C9A—H9AA0.9800
C1A—C2A1.384 (4)C9A—H9AB0.9800
C1A—C6A1.407 (4)C9A—H9AC0.9800
Te2—O12.0071 (19)C9—H9A0.9800
Te2—O21.9844 (18)C9—H9B0.9800
Te2—N1A2.477 (2)C9—H9C0.9800
Te2—N2A2.459 (2)C10A—H10A0.9800
Te2—C1A2.107 (3)C10A—H10B0.9800
N1—C101.471 (4)C10A—H10C0.9800
N1—C71.484 (4)C10—H10D0.9800
N1—C91.485 (4)C10—H10E0.9800
C1—C21.387 (4)C10—H10F0.9800
C1—C61.400 (4)C11—H11A0.9800
Pd2—S22.2444 (10)C11—H11B0.9800
Pd2—Cl52.2891 (11)C11—H11C0.9800
Pd2—Cl42.2997 (11)C11A—H11D0.9800
Pd2—Cl62.3194 (11)C11A—H11E0.9800
S2—O41.474 (2)C11A—H11F0.9800
S2—C321.769 (3)C12A—H12A0.9800
S2—C311.773 (3)C12A—H12B0.9800
N2—C111.476 (4)C12A—H12C0.9800
N2—C81.481 (4)C12—H12D0.9800
N2—C121.489 (4)C12—H12E0.9800
N2A—C11A1.477 (4)C12—H12F0.9800
N2A—C8A1.479 (4)C21—H21A0.9800
N2A—C12A1.486 (4)C21—H21B0.9800
C2A—C3A1.389 (4)C21—H21C0.9800
C2A—C8A1.518 (4)C22—H22B0.9800
C2—C31.382 (5)C22—H22C0.9800
C2—C81.516 (4)C22—H22D0.9800
C3A—C4A1.397 (4)C31—H31B0.9800
C3A—H3AA0.9500C31—H31C0.9800
C3—C41.393 (4)C31—H31D0.9800
C3—H3A0.9500C32—H32B0.9800
C4A—C5A1.391 (4)C32—H32C0.9800
C4A—H4AA0.9500C32—H32D0.9800
C4—C51.384 (4)
O1—Te1—O276.92 (8)C6—C5—H5A120.0
O1—Te1—C196.99 (10)C6A—C5A—C4A120.5 (3)
O2—Te1—C193.43 (10)C6A—C5A—H5AA119.7
O1—Te1—N2150.20 (8)C4A—C5A—H5AA119.7
O2—Te1—N275.53 (8)C5A—C6A—C1A118.4 (3)
C1—Te1—N273.66 (10)C5A—C6A—C7A123.1 (3)
O1—Te1—N177.12 (8)C1A—C6A—C7A118.5 (3)
O2—Te1—N1148.63 (8)C5—C6—C1117.9 (3)
C1—Te1—N172.64 (10)C5—C6—C7123.2 (3)
N2—Te1—N1124.18 (8)C1—C6—C7118.8 (3)
O1—Te1—Te238.79 (5)N1—C7—C6109.5 (2)
O2—Te1—Te238.14 (5)N1—C7—H7A109.8
C1—Te1—Te297.50 (8)C6—C7—H7A109.8
N2—Te1—Te2113.10 (6)N1—C7—H7B109.8
N1—Te1—Te2114.34 (6)C6—C7—H7B109.8
S1—Pd1—Cl288.13 (4)H7A—C7—H7B108.2
S1—Pd1—Cl191.84 (4)N1A—C7A—C6A110.0 (2)
Cl2—Pd1—Cl1179.97 (3)N1A—C7A—H7AA109.7
S1—Pd1—Cl3170.82 (3)C6A—C7A—H7AA109.7
Cl2—Pd1—Cl390.42 (4)N1A—C7A—H7AB109.7
Cl1—Pd1—Cl389.61 (4)C6A—C7A—H7AB109.7
O3—S1—C21107.75 (14)H7AA—C7A—H7AB108.2
O3—S1—C22109.19 (14)N2A—C8A—C2A109.6 (2)
C21—S1—C22100.00 (17)N2A—C8A—H8AA109.7
O3—S1—Pd1111.49 (9)C2A—C8A—H8AA109.7
C21—S1—Pd1114.91 (11)N2A—C8A—H8AB109.7
C22—S1—Pd1112.80 (12)C2A—C8A—H8AB109.7
C9A—N1A—C7A112.2 (2)H8AA—C8A—H8AB108.2
C9A—N1A—C10A109.0 (2)N2—C8—C2109.5 (2)
C7A—N1A—C10A110.5 (2)N2—C8—H8A109.8
C9A—N1A—Te2112.60 (18)C2—C8—H8A109.8
C7A—N1A—Te2104.52 (16)N2—C8—H8B109.8
C10A—N1A—Te2107.85 (16)C2—C8—H8B109.8
C2A—C1A—C6A121.7 (3)H8A—C8—H8B108.2
C2A—C1A—Te2119.5 (2)N1A—C9A—H9AA109.5
C6A—C1A—Te2118.8 (2)N1A—C9A—H9AB109.5
Te1—O1—Te2102.96 (8)H9AA—C9A—H9AB109.5
C10—N1—C7111.5 (2)N1A—C9A—H9AC109.5
C10—N1—C9109.8 (2)H9AA—C9A—H9AC109.5
C7—N1—C9110.4 (2)H9AB—C9A—H9AC109.5
C10—N1—Te1113.63 (17)N1—C9—H9A109.5
C7—N1—Te1103.85 (17)N1—C9—H9B109.5
C9—N1—Te1107.35 (16)H9A—C9—H9B109.5
C2—C1—C6122.4 (3)N1—C9—H9C109.5
C2—C1—Te1118.6 (2)H9A—C9—H9C109.5
C6—C1—Te1119.0 (2)H9B—C9—H9C109.5
O2—Te2—O176.44 (8)N1A—C10A—H10A109.5
O2—Te2—C1A95.66 (10)N1A—C10A—H10B109.5
O1—Te2—C1A94.79 (10)H10A—C10A—H10B109.5
O2—Te2—N2A76.19 (8)N1A—C10A—H10C109.5
O1—Te2—N2A148.65 (8)H10A—C10A—H10C109.5
C1A—Te2—N2A73.06 (10)H10B—C10A—H10C109.5
O2—Te2—N1A148.72 (7)N1—C10—H10D109.5
O1—Te2—N1A75.46 (8)N1—C10—H10E109.5
C1A—Te2—N1A73.37 (10)H10D—C10—H10E109.5
N2A—Te2—N1A125.35 (9)N1—C10—H10F109.5
O2—Te2—Te138.20 (6)H10D—C10—H10F109.5
O1—Te2—Te138.25 (5)H10E—C10—H10F109.5
C1A—Te2—Te197.51 (8)N2—C11—H11A109.5
N2A—Te2—Te1113.27 (6)N2—C11—H11B109.5
N1A—Te2—Te1112.83 (6)H11A—C11—H11B109.5
S2—Pd2—Cl586.92 (4)N2—C11—H11C109.5
S2—Pd2—Cl491.79 (4)H11A—C11—H11C109.5
Cl5—Pd2—Cl4177.60 (3)H11B—C11—H11C109.5
S2—Pd2—Cl6176.40 (3)N2A—C11A—H11D109.5
Cl5—Pd2—Cl689.84 (4)N2A—C11A—H11E109.5
Cl4—Pd2—Cl691.39 (4)H11D—C11A—H11E109.5
O4—S2—C32108.18 (15)N2A—C11A—H11F109.5
O4—S2—C31107.93 (15)H11D—C11A—H11F109.5
C32—S2—C3199.92 (18)H11E—C11A—H11F109.5
O4—S2—Pd2113.54 (9)N2A—C12A—H12A109.5
C32—S2—Pd2111.49 (11)N2A—C12A—H12B109.5
C31—S2—Pd2114.78 (11)H12A—C12A—H12B109.5
C11—N2—C8111.0 (2)N2A—C12A—H12C109.5
C11—N2—C12109.6 (2)H12A—C12A—H12C109.5
C8—N2—C12112.5 (2)H12B—C12A—H12C109.5
C11—N2—Te1107.77 (17)N2—C12—H12D109.5
C8—N2—Te1104.65 (16)N2—C12—H12E109.5
C12—N2—Te1111.16 (18)H12D—C12—H12E109.5
Te2—O2—Te1103.65 (8)N2—C12—H12F109.5
C11A—N2A—C8A110.7 (2)H12D—C12—H12F109.5
C11A—N2A—C12A110.0 (2)H12E—C12—H12F109.5
C8A—N2A—C12A111.2 (3)S1—C21—H21A109.5
C11A—N2A—Te2115.2 (2)S1—C21—H21B109.5
C8A—N2A—Te2105.52 (15)H21A—C21—H21B109.5
C12A—N2A—Te2103.88 (17)S1—C21—H21C109.5
C1A—C2A—C3A119.0 (3)H21A—C21—H21C109.5
C1A—C2A—C8A118.5 (3)H21B—C21—H21C109.5
C3A—C2A—C8A122.5 (3)S1—C22—H22B109.5
C3—C2—C1118.5 (3)S1—C22—H22C109.5
C3—C2—C8122.6 (3)H22B—C22—H22C109.5
C1—C2—C8118.8 (3)S1—C22—H22D109.5
C2A—C3A—C4A119.6 (3)H22B—C22—H22D109.5
C2A—C3A—H3AA120.2H22C—C22—H22D109.5
C4A—C3A—H3AA120.2S2—C31—H31B109.5
C2—C3—C4119.9 (3)S2—C31—H31C109.5
C2—C3—H3A120.0H31B—C31—H31C109.5
C4—C3—H3A120.0S2—C31—H31D109.5
C5A—C4A—C3A120.5 (3)H31B—C31—H31D109.5
C5A—C4A—H4AA119.8H31C—C31—H31D109.5
C3A—C4A—H4AA119.8S2—C32—H32B109.5
C5—C4—C3120.9 (3)S2—C32—H32C109.5
C5—C4—H4A119.5H32B—C32—H32C109.5
C3—C4—H4A119.5S2—C32—H32D109.5
C4—C5—C6120.0 (3)H32B—C32—H32D109.5
C4—C5—H5A120.0H32C—C32—H32D109.5
C6A—C1A—C2A—C3A6.1 (4)C2—C1—C6—C55.3 (4)
Te2—C1A—C2A—C3A176.0 (2)Te1—C1—C6—C5172.1 (2)
C6A—C1A—C2A—C8A170.7 (3)C2—C1—C6—C7171.6 (3)
Te2—C1A—C2A—C8A7.1 (3)Te1—C1—C6—C711.0 (4)
C6—C1—C2—C34.0 (4)C10—N1—C7—C6161.0 (2)
Te1—C1—C2—C3173.4 (2)C9—N1—C7—C676.6 (3)
C6—C1—C2—C8173.5 (3)Te1—N1—C7—C638.2 (2)
Te1—C1—C2—C89.1 (4)C5—C6—C7—N1153.4 (3)
C1A—C2A—C3A—C4A2.8 (4)C1—C6—C7—N123.3 (4)
C8A—C2A—C3A—C4A173.9 (3)C9A—N1A—C7A—C6A160.8 (2)
C1—C2—C3—C41.0 (4)C10A—N1A—C7A—C6A77.3 (3)
C8—C2—C3—C4178.4 (3)Te2—N1A—C7A—C6A38.5 (3)
C2A—C3A—C4A—C5A1.7 (4)C5A—C6A—C7A—N1A150.9 (3)
C2—C3—C4—C54.5 (4)C1A—C6A—C7A—N1A26.6 (4)
C3—C4—C5—C63.1 (4)C11A—N2A—C8A—C2A162.0 (2)
C3A—C4A—C5A—C6A2.9 (5)C12A—N2A—C8A—C2A75.3 (3)
C4A—C5A—C6A—C1A0.3 (4)Te2—N2A—C8A—C2A36.7 (3)
C4A—C5A—C6A—C7A177.2 (3)C1A—C2A—C8A—N2A23.8 (4)
C2A—C1A—C6A—C5A4.9 (4)C3A—C2A—C8A—N2A153.0 (3)
Te2—C1A—C6A—C5A177.2 (2)C11—N2—C8—C278.9 (3)
C2A—C1A—C6A—C7A172.8 (3)C12—N2—C8—C2157.9 (2)
Te2—C1A—C6A—C7A5.1 (3)Te1—N2—C8—C237.1 (2)
C4—C5—C6—C11.7 (4)C3—C2—C8—N2154.2 (3)
C4—C5—C6—C7175.0 (3)C1—C2—C8—N223.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl10.992.993.768 (3)136
C7A—H7AB···Cl10.992.903.663 (3)135
C9A—H9AB···Cl1i0.982.853.697 (4)145
C9A—H9AC···O10.982.493.000 (3)112
C9—H9B···O4ii0.982.643.355 (4)130
C9—H9B···Cl5ii0.982.873.741 (4)149
C10A—H10C···Cl2iii0.982.803.706 (3)154
C10—H10E···O10.982.573.078 (4)112
C10—H10F···Cl5ii0.982.823.711 (4)151
C11A—H11E···O20.982.563.048 (4)110
C11A—H11F···Cl3iii0.982.913.639 (4)132
C12A—H12A···O3iv0.982.423.316 (4)151
C12A—H12A···Cl2iv0.982.973.595 (3)123
C12A—H12B···Cl2iii0.982.803.678 (4)150
C12—H12D···Cl6v0.982.923.825 (3)155
C12—H12F···O20.982.432.980 (4)115
C21—H21A···Cl5iv0.982.773.628 (3)147
C21—H21C···Cl3vi0.982.593.506 (3)157
C22—H22B···Cl5iv0.982.843.681 (4)144
C22—H22C···Cl1vi0.982.863.670 (4)141
C22—H22D···Cl20.982.773.308 (4)115
C31—H31B···O4vii0.982.533.389 (4)147
C31—H31C···Cl6v0.982.943.796 (4)146
C32—H32B···O4vii0.982.463.336 (4)149
C32—H32C···Cl50.982.733.275 (4)115
C32—H32D···Cl4v0.982.583.541 (4)167
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z+1; (vi) x+2, y, z; (vii) x+1, y+1, z+1.
 

Funding information

HBS wishes to acknowledge the DST for the award of a J. C. Bose fellowship. RJB thanks the United States–India Educational Foundation for the award of a Distinguished Chair Fulbright Fellowship to India from January–May 2019.

References

First citationBeleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830–8838.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.  Web of Science CrossRef CAS Google Scholar
First citationDeka, R., Sarkar, A., Butcher, R. J., Junk, P. C., Turner, D. R., Deacon, G. B. & Singh, H. B. (2020). Organometallics, 39, 334–343.  CSD CrossRef CAS Google Scholar
First citationFujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154.  CSD CrossRef CAS Web of Science Google Scholar
First citationGupta, A., Singh, H. B. & Butcher, R. J. (2017). IUCrData, 2, x171634.  Google Scholar
First citationGupta, A. K., Deka, R., Singh, H. B. & Butcher, R. J. (2019). New J. Chem. 43, 13225–13233.  CSD CrossRef CAS Google Scholar
First citationHupf, E., Do, T. G., Nordheider, A., Wehrhahn, M., Sanz Camacho, P., Ashbrook, S. E., Lork, E., Slawin, A. M. Z., Mebs, S., Woollins, J. D. & Beckmann, J. (2017). Organometallics, 36, 1566–1579.  CSD CrossRef CAS Google Scholar
First citationKobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Z. Kristallogr. 215, 21–24.  CAS Google Scholar
First citationLin, T.-P. & Gabbaï, F. P. (2013). Angew. Chem. Int. Ed. 52, 3864–3868.  CSD CrossRef CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, P. A. & Alvarez, J. (2013). Shape. University of Barcelona.  Google Scholar
First citationMartincová, J., Dostál, L., Herres-Pawlis, S., Růžička, A. & Jambor, R. (2011). Chem. Eur. J. 17, 7423–7427.  PubMed Google Scholar
First citationMartincová, J., Dostál, L., Růžička, A., Herres-Pawlis, S. & Jambor, R. (2012). Z. Anorg. Allg. Chem. 638, 1672–1675.  Google Scholar
First citationMoulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.  CrossRef Web of Science Google Scholar
First citationPeris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959–1968.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPoleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565–6574.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPoleschner, H. & Seppelt, K. (2013). Angew. Chem. Int. Ed. 52, 12838–12842.  Web of Science CSD CrossRef CAS Google Scholar
First citationPop, A., Silvestru, A., Juárez-Pérez, E. J., Arca, M., Lippolis, V. & Silvestru, C. (2014). Dalton Trans. 43, 2221–2233.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRani, V., Boda, M., Raju, S., Naresh Patwari, G., Singh, H. B. & Butcher, R. J. (2018). Dalton Trans. 47, 9114–9127.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVarga, R. A., Kulcsar, M. & Silvestru, A. (2010). Acta Cryst. E66, o771.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds