research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[(R,R)-1,2-(bi­naph­thyl­phospho­nito)ethane]­di­chlorido­iron(II) di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: alan.lough@utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 August 2020; accepted 14 August 2020; online 28 August 2020)

In the title compound (systematic name: bis­{1,2-bis[12,14-dioxa-13-phospha­penta­cyclo­[13.8.0.02,11.03,8.018,23]tricosa-1(15),2(11),3(8),4,6,9,16,18(23),19,21-deca­en-13-yl]ethane}­dichlorido­iron(II) di­chloro­methane disolvate), [FeCl2(C42H28O4P2)2]·2CH2Cl2, the FeII ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two (R,R)-1,2-bis­(bi­naphthyl­phospho­n­ito)ethane (BPE) ligands and two Cl ligands in a distorted cis-FeCl2P4 octa­hedral coordination geometry. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules into layers lying parallel to (001). A weak intra­molecular C—H⋯O hydrogen bond is also observed. The asymmetric unit contains one CH2Cl2 solvent mol­ecule, which is disordered over two sets of site with refined occupancies in the ratio 0.700 (6):0.300 (6).

1. Chemical context

The ligand (R,R)- or (S,S)-1,2-bis­(bi­naphthyl­phospho­nito)ethane (C42H28O4P2; BPE) prepared from either (R)- or (S)-1,1′-bi(2-naphthol) (C20H14O2; BINOL) has been used extensively in asymmetric catalysis, as has the related ligand (R) or (S)-2,2′-bis­(di­phenyl­phosphino)-1,1′-binaphthyl (C44H32P2; BINAP). For example, the BINAP ligand has been coordinated to ruthenium and used for the asymmetric hydrogenation of ketones (Doucet et al., 1998[Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703-1707.]), among many other examples. The BINAP ligand has also been coordinated to iron (Vogler, 2016[Vogler, A. (2016). Inorg. Chem. Commun. 67, 32-34.]) to make the complex [FeCl2(BINAP)2]. The BPE ligand and similar bidentate and monodentate phospho­nite ligands have been coordinated to rhodium and iridium and used for asymmetric alkene and quinoline hydrogenation reactions, respectively (Claver et al., 2000[Claver, C., Fernandez, E., Gillon, A., Heslop, K., Hyett, D. J., Martorell, A., Orpen, A. G. & Pringle, P. G. (2000). Chem. Commun. pp. 961-962.]; Norman et al., 2008[Norman, D. W., Carraz, C. A., Hyett, D. J., Pringle, P. G., Sweeney, J. B., Orpen, A. G., Phetmung, H. & Wingad, R. L. (2008). J. Am. Chem. Soc. 130, 6840-6847.]; Reetz & Li, 2006[Reetz, M. T. & Li, X. (2006). Chem. Commun. pp. 2159-2160.]), and to ruthenium for asymmetric transfer hydrogenation (Guo et al., 2005a[Guo, R., Chen, X., Elpelt, C., Song, D. & Morris, R. H. (2005a). Org. Lett. 7, 1757-1759.],b[Guo, R., Elpelt, C., Chen, X., Song, D. & Morris, R. H. (2005b). Chem. Commun. pp. 3050-3052.]).

[Scheme 1]

As an extension of these studies, we now describe the synthesis and crystal structure of the iron(II) complex FeCl2(BPE)2, which crystallized as a di­chloro­methane solvate.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The FeII ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two BPE ligands and two Cl ligands in a distorted cis-FeCl2P4 octa­hedral coordination geometry. The largest distortion from ideal coordination geometry is the P2—Fe—P2i angle of 108.49 (7)° (see Table 1[link] for symmetry codes). The distortion is based on steric grounds involving the bulky bi­naphthyl­phospho­nito ligands. The Fe—P distances are the same within experimental error. The P atoms are bonded to two O atoms, one C atom and coordinated to the FeII ion in distorted tetra­hedral geometries. The dihedral angles between the naphthalene rings in the BPE ligands (C1–C10/C11–20 and C21–C30/C31–C40) are the same, with values of 54.5 (2)°. A weak intra­molecular C—H⋯O hydrogen bond is observed (Table 2[link]). The asymmetric unit contains one CH2Cl2 solvent mol­ecule, which is disordered over two sets of sites with refined occupancies in the ratio 0.700 (6):0.300 (6).

Table 1
Selected geometric parameters (Å, °)

Fe1—P2 2.1594 (11) Fe1—P1 2.1952 (10)
Fe1—P2i 2.1595 (11) Fe1—Cl1i 2.3422 (11)
Fe1—P1i 2.1952 (10) Fe1—Cl1 2.3423 (11)
       
P2—Fe1—P2i 108.49 (7) P1—Fe1—Cl1i 88.52 (4)
P2—Fe1—P1i 93.40 (4) P2—Fe1—Cl1 170.02 (5)
P2—Fe1—P1 85.30 (4) P1—Fe1—Cl1 93.07 (4)
P1i—Fe1—P1 177.78 (7) Cl1i—Fe1—Cl1 88.69 (6)
P2—Fe1—Cl1i 81.43 (4)    
Symmetry code: (i) y, x, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C24–C29 and C31–C40 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32A⋯O4i 0.95 2.42 3.280 (5) 150
C35—H35A⋯O1ii 0.95 2.38 3.293 (5) 162
C7—H7ACg2iii 0.95 2.57 3.516 (6) 178
C17—H17ACg3iii 0.95 2.59 3.396 (6) 143
Symmetry codes: (i) y, x, -z+1; (ii) x-1, y, z; (iii) y+1, x, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with 30% probability ellipsoids. Unlabeled atoms are related by the symmetry operator (y, x, −z + 1) and for the sake of clarity the disordered solvent mol­ecule is not shown.

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into sheets parallel to (001) (Table 2[link] and Fig. 2[link]). Within these layers weak C—H⋯π inter­actions also occur, and the centroid–centroid distance Cg2⋯Cg2(y, −1 + x, 1 − z) of 4.171 (5) Å (where Cg2 is the centroid of the C4–C9 benzene ring) may be a very weak π-stacking inter­action.

[Figure 2]
Figure 2
Part of the crystal structure of the title compound showing the formation of [100] chains linked by weak C—H⋯O hydrogen bonds shown as blue lines. The disordered di­chloro­methane solvent mol­ecules are not shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed surprisingly that the title complex is the first iron(II) dichloride crystal structure with bidentate phospho­rus donors with P—O-bonded substituents. There are 36 structures of related iron diphosphine complexes FeCl2(P2)2 (P2 = a diphosphine) with P—C bonds reported. The majority, 33 complexes, crystallize with the chloride ions trans to each other, while there are three examples where the chloride ions are cis, as in the title complex. The complex trans-FeCl2(1,2-bis­(di­phenyl­phosphino)ethyl­ene)2, for example, crystallizes with the chloride ions trans (Cecconi et al., 1981[Cecconi, F., Di Vaira, M., Midollini, S., Orlandini, A. & Sacconi, L. (1981). Inorg. Chem. 20, 3423-3430.]). An example with cis chloride ions is the complex cis-FeCl2(1,2-di­phospho­lano­ethane)2 (Field et al., 1998[Field, L. D., Thomas, I. P., Hambley, T. W. & Turner, P. (1998). Inorg. Chem. 37, 612-618.]). In the trans complexes, the Fe—Cl distances range from 2.21 to 2.38 Å with 22 structures having a distance of 2.34–2.37 Å. This compares with the distances of 2.3422 (11) and 2.3423 (11) Å in the title complex.

5. Synthesis and crystallization

The ligand was synthesized according to a literature procedure using (R)-BINOL (Steinmetz et al., 1999[Steinmetz, B., Hagel, M. & Schenk, W. A. (1999). Z. Naturforsch. Teil B, 54, 1265-1271.]). The iron complex was synthesized as follows: in a nitro­gen-filled glovebox, FeCl2·1.5THF (6.0 mg, 0.030 mmol, 1 equivalent) was combined with (R,R)-BPE (50 mg, 0.08 mmol, 3 equivalents) in 10 ml THF and stirred in a 20 ml dram vial for 24 h. The THF was vacuumed off to yield a brown powder: 31P{1H} NMR (202 MHz, C6D6): 257.72 ppm, singlet.

To purify, the powder was dissolved in a minimum of DCM, precipitated out with addition of diethyl ether, and filtered over a glass frit. The precipitate collected on the frit was re-dissolved in DCM, and re-purified by the same procedure twice more. To obtain crystals, a concentrated DCM solution of the purified complex was left in a closed 20 ml dram vial in a nitro­gen-filled glovebox for approximately one week at least, depending on the exact concentration. The crystals were orange coloured. Attempts to convert this complex into a hydride complex were unsuccessful.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included in calculated positions with C—H = 0.95 and 0.99 Å for aromatic and methyl­ene C atoms, respectively, and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [FeCl2(C42H28O4P2)2]·2CH2Cl2
Mr 1613.77
Crystal system, space group Tetragonal, P43212
Temperature (K) 150
a, c (Å) 11.9850 (3), 52.4508 (14)
V3) 7534.0 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.84
Crystal size (mm) 0.09 × 0.04 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.649, 0.740
No. of measured, independent and observed [I > 2σ(I)] reflections 97444, 6829, 6096
Rint 0.109
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.04
No. of reflections 6829
No. of parameters 502
No. of restraints 51
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.65
Absolute structure Flack x determined using 2237 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (4)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The major component of the disordered CH2Cl2 solvent mol­ecule was refined without restraints while the minor component was restrained to have similar geometry and anisotropic displacement parameters to the major component using the SAME and SADI instructions in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis{1,2-bis[12,14-dioxa-13-phosphapentacyclo[13.8.0.02,11.03,8.018,23]tricosa-1(15),2(11),3(8),4,6,9,16,18(23),19,21-decaen-13-yl]ethane}dichloridoiron(II) dichloromethane disolvate top
Crystal data top
[FeCl2(C42H28O4P2)2]·2CH2Cl2Dx = 1.423 Mg m3
Mr = 1613.77Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P43212Cell parameters from 6128 reflections
a = 11.9850 (3) Åθ = 3.4–67.3°
c = 52.4508 (14) ŵ = 4.84 mm1
V = 7534.0 (4) Å3T = 150 K
Z = 4Shard, orange
F(000) = 33120.09 × 0.04 × 0.02 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
6096 reflections with I > 2σ(I)
Radiation source: Bruker ImuS with multi-layer opticsRint = 0.109
φ and ω scansθmax = 67.8°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.649, Tmax = 0.740k = 1414
97444 measured reflectionsl = 6260
6829 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0538P)2 + 2.6304P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.39 e Å3
6829 reflectionsΔρmin = 0.65 e Å3
502 parametersAbsolute structure: Flack x determined using 2237 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
51 restraintsAbsolute structure parameter: 0.004 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.48561 (5)0.48561 (5)0.5000000.0307 (2)
Cl10.56836 (9)0.60053 (9)0.53078 (2)0.0399 (2)
P10.61181 (9)0.35440 (9)0.50461 (2)0.0337 (2)
P20.43146 (9)0.39087 (9)0.46724 (2)0.0323 (2)
O10.7416 (2)0.3808 (3)0.49888 (5)0.0372 (6)
O20.6217 (2)0.2921 (2)0.53178 (5)0.0353 (6)
O30.4019 (2)0.4596 (2)0.44174 (5)0.0339 (6)
O40.3269 (2)0.3037 (2)0.46814 (5)0.0344 (6)
C10.7004 (4)0.2060 (4)0.53373 (7)0.0361 (9)
C20.6581 (4)0.0978 (4)0.53413 (8)0.0418 (10)
H2A0.5799050.0853800.5331960.050*
C30.7300 (4)0.0097 (4)0.53589 (10)0.0496 (11)
H3A0.7019990.0644160.5364420.060*
C40.8463 (4)0.0293 (4)0.53688 (11)0.0537 (12)
C50.9218 (6)0.0627 (6)0.53717 (18)0.089 (2)
H5A0.8936580.1367690.5368340.107*
C61.0334 (6)0.0449 (6)0.5379 (2)0.113 (3)
H6A1.0831860.1065470.5383660.136*
C71.0754 (5)0.0636 (6)0.53811 (19)0.092 (3)
H7A1.1537760.0749290.5390140.111*
C81.0064 (4)0.1537 (5)0.53701 (12)0.0591 (14)
H8A1.0371880.2266170.5362350.071*
C90.8892 (4)0.1397 (4)0.53701 (9)0.0456 (11)
C100.8124 (4)0.2319 (4)0.53615 (8)0.0373 (9)
C110.8094 (3)0.4228 (4)0.51800 (8)0.0379 (9)
C120.8427 (4)0.5346 (4)0.51600 (9)0.0465 (11)
H12A0.8134300.5805380.5028530.056*
C130.9167 (4)0.5764 (4)0.53291 (10)0.0492 (11)
H13A0.9428370.6507450.5309780.059*
C140.9554 (4)0.5108 (4)0.55342 (9)0.0474 (11)
C151.0300 (4)0.5549 (5)0.57174 (10)0.0575 (14)
H15A1.0552610.6297200.5701010.069*
C161.0661 (4)0.4915 (6)0.59175 (10)0.0643 (16)
H16A1.1175850.5216500.6036790.077*
C171.0269 (4)0.3816 (6)0.59468 (9)0.0601 (15)
H17A1.0502300.3386380.6089460.072*
C180.9563 (4)0.3363 (5)0.57739 (9)0.0508 (12)
H18A0.9304670.2621060.5797890.061*
C190.9200 (4)0.3976 (4)0.55571 (8)0.0426 (10)
C200.8477 (4)0.3513 (4)0.53680 (8)0.0371 (9)
C210.3784 (3)0.3994 (3)0.41950 (7)0.0335 (8)
C220.4624 (4)0.3994 (4)0.40081 (7)0.0362 (9)
H22A0.5311060.4368190.4037440.043*
C230.4439 (4)0.3446 (4)0.37837 (7)0.0389 (10)
H23A0.4990500.3461530.3653620.047*
C240.3424 (4)0.2853 (4)0.37431 (7)0.0363 (9)
C250.3247 (4)0.2241 (4)0.35164 (8)0.0417 (10)
H25A0.3800360.2247330.3386700.050*
C260.2295 (5)0.1645 (4)0.34819 (8)0.0500 (12)
H26A0.2178850.1251790.3326860.060*
C270.1484 (4)0.1608 (4)0.36740 (9)0.0481 (11)
H27A0.0831460.1169870.3650200.058*
C280.1619 (4)0.2196 (4)0.38956 (8)0.0427 (10)
H28A0.1060330.2162760.4023720.051*
C290.2589 (4)0.2855 (4)0.39357 (7)0.0355 (9)
C300.2764 (4)0.3487 (4)0.41655 (7)0.0333 (9)
C310.2185 (4)0.3375 (4)0.46197 (7)0.0339 (9)
C320.1400 (4)0.3397 (4)0.48183 (7)0.0373 (9)
H32A0.1627330.3246100.4988370.045*
C330.0315 (4)0.3634 (4)0.47672 (8)0.0393 (9)
H33A0.0222390.3602960.4900230.047*
C340.0025 (4)0.3928 (4)0.45168 (8)0.0388 (9)
C350.1140 (4)0.4256 (4)0.44645 (9)0.0450 (11)
H35A0.1679640.4227740.4597120.054*
C360.1453 (4)0.4611 (5)0.42290 (9)0.0551 (13)
H36A0.2201920.4829030.4196370.066*
C370.0645 (4)0.4647 (5)0.40342 (9)0.0516 (12)
H37A0.0856100.4898890.3869400.062*
C380.0438 (4)0.4330 (4)0.40761 (8)0.0427 (10)
H38A0.0965250.4375620.3941220.051*
C390.0780 (4)0.3936 (4)0.43172 (8)0.0361 (9)
C400.1903 (3)0.3591 (3)0.43689 (7)0.0323 (8)
C410.5918 (4)0.2427 (4)0.48152 (8)0.0401 (10)
H41A0.6642470.2074050.4773820.048*
H41B0.5416520.1848540.4886340.048*
C420.5401 (4)0.2936 (4)0.45746 (7)0.0373 (9)
H42A0.5078430.2341140.4466390.045*
H42B0.5979900.3331870.4474840.045*
Cl20.2595 (4)0.2896 (5)0.33679 (12)0.169 (2)0.700 (6)
Cl30.1596 (4)0.1350 (3)0.36972 (10)0.1311 (17)0.700 (6)
C1S0.1387 (12)0.2258 (12)0.3414 (3)0.097 (4)0.700 (6)
H1SA0.0786900.2808180.3445950.116*0.700 (6)
H1SB0.1182990.1805670.3262950.116*0.700 (6)
Cl40.1512 (15)0.0882 (16)0.4023 (3)0.218 (7)0.300 (6)
Cl50.1366 (19)0.188 (2)0.3518 (3)0.222 (7)0.300 (6)
C2S0.182 (3)0.200 (2)0.3855 (4)0.125 (7)0.300 (6)
H2SB0.1448380.2655830.3932640.150*0.300 (6)
H2SA0.2631970.2125350.3860180.150*0.300 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0364 (3)0.0364 (3)0.0193 (4)0.0046 (3)0.0013 (2)0.0013 (2)
Cl10.0458 (5)0.0441 (5)0.0298 (5)0.0011 (4)0.0063 (4)0.0011 (4)
P10.0381 (5)0.0413 (5)0.0218 (5)0.0066 (4)0.0013 (4)0.0015 (4)
P20.0380 (5)0.0394 (5)0.0197 (4)0.0048 (4)0.0016 (4)0.0007 (4)
O10.0394 (15)0.0482 (16)0.0240 (12)0.0076 (12)0.0029 (12)0.0035 (13)
O20.0358 (15)0.0446 (16)0.0255 (13)0.0077 (13)0.0001 (11)0.0056 (12)
O30.0424 (15)0.0400 (15)0.0192 (12)0.0026 (12)0.0036 (11)0.0007 (10)
O40.0382 (15)0.0406 (15)0.0244 (12)0.0027 (12)0.0025 (11)0.0038 (11)
C10.037 (2)0.046 (2)0.0252 (18)0.0081 (19)0.0008 (16)0.0047 (17)
C20.042 (2)0.049 (3)0.034 (2)0.000 (2)0.0020 (19)0.0056 (19)
C30.052 (3)0.042 (3)0.054 (3)0.003 (2)0.002 (2)0.013 (2)
C40.048 (3)0.047 (3)0.066 (3)0.014 (2)0.010 (2)0.015 (2)
C50.064 (4)0.050 (3)0.153 (7)0.020 (3)0.022 (4)0.029 (4)
C60.053 (4)0.065 (4)0.221 (10)0.025 (3)0.039 (5)0.048 (5)
C70.042 (3)0.066 (4)0.169 (8)0.016 (3)0.021 (4)0.039 (4)
C80.039 (3)0.057 (3)0.081 (4)0.005 (2)0.010 (2)0.020 (3)
C90.038 (2)0.052 (3)0.047 (2)0.006 (2)0.0070 (19)0.015 (2)
C100.038 (2)0.045 (2)0.0290 (19)0.0054 (18)0.0019 (16)0.0065 (17)
C110.033 (2)0.049 (3)0.031 (2)0.0058 (19)0.0021 (17)0.0019 (18)
C120.046 (2)0.046 (3)0.047 (3)0.007 (2)0.004 (2)0.008 (2)
C130.045 (3)0.045 (3)0.058 (3)0.003 (2)0.001 (2)0.006 (2)
C140.040 (2)0.055 (3)0.047 (3)0.005 (2)0.004 (2)0.006 (2)
C150.043 (3)0.073 (4)0.057 (3)0.000 (3)0.001 (2)0.022 (3)
C160.040 (2)0.109 (5)0.044 (3)0.003 (3)0.005 (2)0.018 (3)
C170.039 (3)0.104 (5)0.037 (2)0.012 (3)0.002 (2)0.001 (3)
C180.040 (2)0.078 (4)0.034 (2)0.005 (2)0.0028 (19)0.005 (2)
C190.033 (2)0.060 (3)0.036 (2)0.003 (2)0.0031 (17)0.001 (2)
C200.033 (2)0.048 (2)0.030 (2)0.0043 (19)0.0025 (16)0.0026 (18)
C210.042 (2)0.038 (2)0.0201 (17)0.0032 (17)0.0021 (15)0.0026 (15)
C220.039 (2)0.044 (2)0.0254 (18)0.0003 (18)0.0006 (16)0.0036 (16)
C230.046 (2)0.050 (2)0.0207 (18)0.006 (2)0.0026 (16)0.0035 (17)
C240.046 (2)0.041 (2)0.0213 (18)0.0038 (19)0.0014 (16)0.0027 (16)
C250.057 (3)0.045 (2)0.0236 (19)0.002 (2)0.0025 (18)0.0011 (17)
C260.073 (3)0.051 (3)0.026 (2)0.001 (2)0.007 (2)0.0067 (19)
C270.056 (3)0.051 (3)0.037 (2)0.010 (2)0.009 (2)0.003 (2)
C280.046 (2)0.053 (3)0.029 (2)0.003 (2)0.0014 (18)0.0013 (18)
C290.043 (2)0.040 (2)0.0235 (18)0.0018 (18)0.0021 (16)0.0001 (16)
C300.041 (2)0.037 (2)0.0221 (17)0.0039 (18)0.0010 (16)0.0013 (16)
C310.038 (2)0.037 (2)0.0266 (19)0.0005 (17)0.0017 (16)0.0000 (16)
C320.042 (2)0.046 (2)0.0237 (18)0.0016 (19)0.0004 (16)0.0028 (17)
C330.043 (2)0.046 (2)0.029 (2)0.002 (2)0.0062 (17)0.0038 (17)
C340.041 (2)0.043 (2)0.033 (2)0.0012 (19)0.0018 (18)0.0005 (17)
C350.037 (2)0.058 (3)0.040 (2)0.004 (2)0.0042 (19)0.004 (2)
C360.041 (2)0.080 (4)0.044 (3)0.012 (3)0.000 (2)0.013 (3)
C370.045 (2)0.076 (4)0.033 (2)0.008 (3)0.0032 (19)0.014 (2)
C380.043 (2)0.058 (3)0.028 (2)0.003 (2)0.0006 (17)0.0039 (19)
C390.041 (2)0.041 (2)0.0261 (19)0.0013 (19)0.0011 (16)0.0008 (17)
C400.036 (2)0.035 (2)0.0253 (18)0.0004 (17)0.0027 (16)0.0011 (15)
C410.049 (3)0.042 (2)0.029 (2)0.009 (2)0.0003 (18)0.0005 (17)
C420.043 (2)0.045 (2)0.0238 (18)0.0063 (19)0.0004 (16)0.0047 (17)
Cl20.100 (3)0.182 (5)0.225 (5)0.005 (3)0.006 (3)0.093 (4)
Cl30.100 (2)0.102 (3)0.191 (5)0.0034 (19)0.034 (3)0.026 (3)
C1S0.098 (7)0.088 (7)0.105 (8)0.010 (6)0.023 (6)0.051 (6)
Cl40.190 (11)0.248 (14)0.216 (13)0.008 (12)0.029 (11)0.023 (11)
Cl50.201 (12)0.225 (14)0.241 (15)0.000 (12)0.008 (13)0.052 (12)
C2S0.135 (14)0.110 (14)0.130 (14)0.003 (13)0.025 (13)0.071 (12)
Geometric parameters (Å, º) top
Fe1—P22.1594 (11)C19—C201.429 (6)
Fe1—P2i2.1595 (11)C21—C301.375 (6)
Fe1—P1i2.1952 (10)C21—C221.405 (6)
Fe1—P12.1952 (10)C22—C231.366 (6)
Fe1—Cl1i2.3422 (11)C22—H22A0.9500
Fe1—Cl12.3423 (11)C23—C241.426 (7)
P1—O21.613 (3)C23—H23A0.9500
P1—O11.616 (3)C24—C251.413 (6)
P1—C411.821 (4)C24—C291.422 (6)
P2—O31.611 (3)C25—C261.359 (7)
P2—O41.632 (3)C25—H25A0.9500
P2—C421.821 (4)C26—C271.401 (8)
O1—C111.386 (5)C26—H26A0.9500
O2—C11.401 (5)C27—C281.369 (6)
O3—C211.400 (5)C27—H27A0.9500
O4—C311.398 (5)C28—C291.420 (6)
C1—C101.384 (6)C28—H28A0.9500
C1—C21.393 (7)C29—C301.439 (6)
C2—C31.366 (7)C30—C401.489 (6)
C2—H2A0.9500C31—C401.383 (6)
C3—C41.415 (7)C31—C321.404 (6)
C3—H3A0.9500C32—C331.358 (7)
C4—C91.419 (8)C32—H32A0.9500
C4—C51.426 (8)C33—C341.419 (6)
C5—C61.355 (10)C33—H33A0.9500
C5—H5A0.9500C34—C351.420 (7)
C6—C71.395 (11)C34—C391.423 (6)
C6—H6A0.9500C35—C361.359 (7)
C7—C81.361 (8)C35—H35A0.9500
C7—H7A0.9500C36—C371.409 (7)
C8—C91.415 (7)C36—H36A0.9500
C8—H8A0.9500C37—C381.370 (7)
C9—C101.439 (6)C37—H37A0.9500
C10—C201.493 (7)C38—C391.411 (6)
C11—C201.385 (6)C38—H38A0.9500
C11—C121.401 (7)C39—C401.434 (6)
C12—C131.350 (7)C41—C421.532 (6)
C12—H12A0.9500C41—H41A0.9900
C13—C141.411 (7)C41—H41B0.9900
C13—H13A0.9500C42—H42A0.9900
C14—C151.415 (7)C42—H42B0.9900
C14—C191.426 (8)Cl2—C1S1.656 (15)
C15—C161.366 (9)Cl3—C1S1.859 (11)
C15—H15A0.9500C1S—H1SA0.9900
C16—C171.408 (10)C1S—H1SB0.9900
C16—H16A0.9500Cl4—C2S1.644 (18)
C17—C181.354 (8)Cl5—C2S1.852 (15)
C17—H17A0.9500C2S—H2SB0.9900
C18—C191.422 (7)C2S—H2SA0.9900
C18—H18A0.9500
P2—Fe1—P2i108.49 (7)C11—C20—C19117.0 (4)
P2—Fe1—P1i93.40 (4)C11—C20—C10118.9 (4)
P2i—Fe1—P1i85.30 (4)C19—C20—C10124.0 (4)
P2—Fe1—P185.30 (4)C30—C21—O3120.0 (3)
P2i—Fe1—P193.40 (4)C30—C21—C22124.0 (4)
P1i—Fe1—P1177.78 (7)O3—C21—C22115.9 (4)
P2—Fe1—Cl1i81.43 (4)C23—C22—C21119.0 (4)
P2i—Fe1—Cl1i170.01 (5)C23—C22—H22A120.5
P1i—Fe1—Cl1i93.07 (4)C21—C22—H22A120.5
P1—Fe1—Cl1i88.52 (4)C22—C23—C24120.5 (4)
P2—Fe1—Cl1170.02 (5)C22—C23—H23A119.8
P2i—Fe1—Cl181.43 (4)C24—C23—H23A119.8
P1i—Fe1—Cl188.51 (4)C25—C24—C29119.6 (4)
P1—Fe1—Cl193.07 (4)C25—C24—C23120.8 (4)
Cl1i—Fe1—Cl188.69 (6)C29—C24—C23119.6 (4)
O2—P1—O1100.60 (15)C26—C25—C24120.7 (4)
O2—P1—C41104.87 (18)C26—C25—H25A119.6
O1—P1—C4198.46 (19)C24—C25—H25A119.6
O2—P1—Fe1118.67 (11)C25—C26—C27120.2 (4)
O1—P1—Fe1120.18 (12)C25—C26—H26A119.9
C41—P1—Fe1111.26 (15)C27—C26—H26A119.9
O3—P2—O4100.52 (14)C28—C27—C26120.8 (4)
O3—P2—C42104.53 (17)C28—C27—H27A119.6
O4—P2—C4298.48 (18)C26—C27—H27A119.6
O3—P2—Fe1117.25 (11)C27—C28—C29120.6 (4)
O4—P2—Fe1122.98 (11)C27—C28—H28A119.7
C42—P2—Fe1110.23 (14)C29—C28—H28A119.7
C11—O1—P1120.1 (2)C28—C29—C24118.0 (4)
C1—O2—P1117.1 (2)C28—C29—C30122.4 (4)
C21—O3—P2118.2 (2)C24—C29—C30119.6 (4)
C31—O4—P2121.4 (3)C21—C30—C29117.2 (4)
C10—C1—C2124.1 (4)C21—C30—C40119.9 (4)
C10—C1—O2119.6 (4)C29—C30—C40122.9 (4)
C2—C1—O2116.2 (4)C40—C31—O4120.1 (4)
C3—C2—C1119.4 (4)C40—C31—C32122.6 (4)
C3—C2—H2A120.3O4—C31—C32117.2 (3)
C1—C2—H2A120.3C33—C32—C31120.0 (4)
C2—C3—C4119.7 (5)C33—C32—H32A120.0
C2—C3—H3A120.1C31—C32—H32A120.0
C4—C3—H3A120.1C32—C33—C34120.6 (4)
C3—C4—C9120.8 (4)C32—C33—H33A119.7
C3—C4—C5119.8 (5)C34—C33—H33A119.7
C9—C4—C5119.4 (5)C33—C34—C35121.1 (4)
C6—C5—C4120.3 (7)C33—C34—C39119.2 (4)
C6—C5—H5A119.8C35—C34—C39119.6 (4)
C4—C5—H5A119.8C36—C35—C34121.5 (4)
C5—C6—C7120.2 (6)C36—C35—H35A119.3
C5—C6—H6A119.9C34—C35—H35A119.3
C7—C6—H6A119.9C35—C36—C37118.6 (5)
C8—C7—C6121.3 (6)C35—C36—H36A120.7
C8—C7—H7A119.3C37—C36—H36A120.7
C6—C7—H7A119.3C38—C37—C36121.8 (4)
C7—C8—C9120.6 (5)C38—C37—H37A119.1
C7—C8—H8A119.7C36—C37—H37A119.1
C9—C8—H8A119.7C37—C38—C39120.8 (4)
C8—C9—C4118.0 (4)C37—C38—H38A119.6
C8—C9—C10122.9 (5)C39—C38—H38A119.6
C4—C9—C10119.0 (4)C38—C39—C34117.7 (4)
C1—C10—C9116.8 (4)C38—C39—C40122.6 (4)
C1—C10—C20119.4 (4)C34—C39—C40119.7 (4)
C9—C10—C20123.7 (4)C31—C40—C39117.6 (4)
C20—C11—O1119.0 (4)C31—C40—C30119.8 (4)
C20—C11—C12123.4 (4)C39—C40—C30122.6 (3)
O1—C11—C12117.4 (4)C42—C41—P1107.9 (3)
C13—C12—C11119.5 (5)C42—C41—H41A110.1
C13—C12—H12A120.2P1—C41—H41A110.1
C11—C12—H12A120.2C42—C41—H41B110.1
C12—C13—C14120.6 (5)P1—C41—H41B110.1
C12—C13—H13A119.7H41A—C41—H41B108.4
C14—C13—H13A119.7C41—C42—P2108.2 (3)
C13—C14—C15121.1 (5)C41—C42—H42A110.1
C13—C14—C19119.7 (4)P2—C42—H42A110.1
C15—C14—C19119.1 (5)C41—C42—H42B110.1
C16—C15—C14120.9 (6)P2—C42—H42B110.1
C16—C15—H15A119.5H42A—C42—H42B108.4
C14—C15—H15A119.5Cl2—C1S—Cl3105.6 (8)
C15—C16—C17119.9 (5)Cl2—C1S—H1SA110.6
C15—C16—H16A120.0Cl3—C1S—H1SA110.6
C17—C16—H16A120.0Cl2—C1S—H1SB110.6
C18—C17—C16120.7 (5)Cl3—C1S—H1SB110.6
C18—C17—H17A119.7H1SA—C1S—H1SB108.7
C16—C17—H17A119.7Cl4—C2S—Cl5112.5 (14)
C17—C18—C19121.3 (6)Cl4—C2S—H2SB109.1
C17—C18—H18A119.3Cl5—C2S—H2SB109.1
C19—C18—H18A119.3Cl4—C2S—H2SA109.1
C18—C19—C14117.9 (5)Cl5—C2S—H2SA109.1
C18—C19—C20122.7 (5)H2SB—C2S—H2SA107.8
C14—C19—C20119.4 (4)
O2—P1—O1—C1144.5 (3)C1—C10—C20—C19130.0 (4)
C41—P1—O1—C11151.5 (3)C9—C10—C20—C1952.3 (6)
Fe1—P1—O1—C1187.8 (3)P2—O3—C21—C3076.9 (4)
O1—P1—O2—C149.0 (3)P2—O3—C21—C22105.7 (4)
C41—P1—O2—C152.8 (3)C30—C21—C22—C231.0 (7)
Fe1—P1—O2—C1177.7 (3)O3—C21—C22—C23178.3 (4)
O4—P2—O3—C2150.9 (3)C21—C22—C23—C242.1 (6)
C42—P2—O3—C2150.8 (3)C22—C23—C24—C25177.0 (4)
Fe1—P2—O3—C21173.2 (2)C22—C23—C24—C291.5 (6)
O3—P2—O4—C3140.3 (3)C29—C24—C25—C260.8 (7)
C42—P2—O4—C31146.9 (3)C23—C24—C25—C26177.7 (4)
Fe1—P2—O4—C3192.2 (3)C24—C25—C26—C271.5 (8)
P1—O2—C1—C1076.8 (4)C25—C26—C27—C282.0 (8)
P1—O2—C1—C2105.8 (4)C26—C27—C28—C290.1 (8)
C10—C1—C2—C33.0 (7)C27—C28—C29—C242.1 (7)
O2—C1—C2—C3179.7 (4)C27—C28—C29—C30179.9 (4)
C1—C2—C3—C41.0 (7)C25—C24—C29—C282.6 (6)
C2—C3—C4—C92.3 (8)C23—C24—C29—C28176.0 (4)
C2—C3—C4—C5176.3 (6)C25—C24—C29—C30179.3 (4)
C3—C4—C5—C6179.5 (8)C23—C24—C29—C302.1 (6)
C9—C4—C5—C60.9 (12)O3—C21—C30—C29178.2 (4)
C4—C5—C6—C70.8 (16)C22—C21—C30—C294.6 (6)
C5—C6—C7—C81.3 (16)O3—C21—C30—C400.7 (6)
C6—C7—C8—C93.4 (13)C22—C21—C30—C40176.4 (4)
C7—C8—C9—C43.2 (9)C28—C29—C30—C21173.0 (4)
C7—C8—C9—C10179.3 (6)C24—C29—C30—C215.0 (6)
C3—C4—C9—C8177.6 (5)C28—C29—C30—C405.9 (7)
C5—C4—C9—C81.0 (8)C24—C29—C30—C40176.1 (4)
C3—C4—C9—C100.0 (7)P2—O4—C31—C4072.6 (5)
C5—C4—C9—C10178.7 (6)P2—O4—C31—C32112.1 (4)
C2—C1—C10—C95.3 (6)C40—C31—C32—C330.2 (7)
O2—C1—C10—C9177.5 (4)O4—C31—C32—C33174.9 (4)
C2—C1—C10—C20176.8 (4)C31—C32—C33—C343.9 (7)
O2—C1—C10—C200.4 (6)C32—C33—C34—C35175.4 (5)
C8—C9—C10—C1173.8 (5)C32—C33—C34—C392.1 (7)
C4—C9—C10—C13.6 (6)C33—C34—C35—C36175.5 (5)
C8—C9—C10—C204.0 (7)C39—C34—C35—C361.9 (8)
C4—C9—C10—C20178.5 (4)C34—C35—C36—C370.1 (9)
P1—O1—C11—C2076.4 (4)C35—C36—C37—C380.4 (9)
P1—O1—C11—C12108.5 (4)C36—C37—C38—C391.0 (9)
C20—C11—C12—C130.7 (7)C37—C38—C39—C342.8 (7)
O1—C11—C12—C13174.1 (4)C37—C38—C39—C40179.8 (5)
C11—C12—C13—C143.9 (7)C33—C34—C39—C38174.3 (4)
C12—C13—C14—C15177.8 (5)C35—C34—C39—C383.2 (7)
C12—C13—C14—C192.7 (7)C33—C34—C39—C403.3 (7)
C13—C14—C15—C16179.1 (5)C35—C34—C39—C40179.2 (4)
C19—C14—C15—C161.4 (7)O4—C31—C40—C39179.9 (4)
C14—C15—C16—C171.6 (8)C32—C31—C40—C395.1 (6)
C15—C16—C17—C182.1 (8)O4—C31—C40—C301.4 (6)
C16—C17—C18—C190.4 (8)C32—C31—C40—C30176.4 (4)
C17—C18—C19—C143.3 (7)C38—C39—C40—C31170.8 (4)
C17—C18—C19—C20178.4 (5)C34—C39—C40—C316.7 (6)
C13—C14—C19—C18176.7 (4)C38—C39—C40—C307.8 (7)
C15—C14—C19—C183.8 (6)C34—C39—C40—C30174.8 (4)
C13—C14—C19—C201.6 (7)C21—C30—C40—C3149.4 (6)
C15—C14—C19—C20177.9 (4)C29—C30—C40—C31129.5 (4)
O1—C11—C20—C19178.3 (4)C21—C30—C40—C39129.1 (4)
C12—C11—C20—C193.5 (6)C29—C30—C40—C3951.9 (6)
O1—C11—C20—C101.3 (6)O2—P1—C41—C42159.7 (3)
C12—C11—C20—C10176.1 (4)O1—P1—C41—C4296.9 (3)
C18—C19—C20—C11173.7 (4)Fe1—P1—C41—C4230.2 (3)
C14—C19—C20—C114.5 (6)P1—C41—C42—P243.1 (4)
C18—C19—C20—C106.7 (7)O3—P2—C42—C41167.6 (3)
C14—C19—C20—C10175.1 (4)O4—P2—C42—C4189.1 (3)
C1—C10—C20—C1150.5 (6)Fe1—P2—C42—C4140.8 (3)
C9—C10—C20—C11127.3 (4)
Symmetry code: (i) y, x, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C24–C29 and C31–C40 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C32—H32A···O4i0.952.423.280 (5)150
C35—H35A···O1ii0.952.383.293 (5)162
C7—H7A···Cg2iii0.952.573.516 (6)178
C17—H17A···Cg3iii0.952.593.396 (6)143
Symmetry codes: (i) y, x, z+1; (ii) x1, y, z; (iii) y+1, x, z+1.
 

Funding information

RHM thanks NSERC Canada for a Discovery Grant.

References

First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCecconi, F., Di Vaira, M., Midollini, S., Orlandini, A. & Sacconi, L. (1981). Inorg. Chem. 20, 3423–3430.  CSD CrossRef CAS Google Scholar
First citationClaver, C., Fernandez, E., Gillon, A., Heslop, K., Hyett, D. J., Martorell, A., Orpen, A. G. & Pringle, P. G. (2000). Chem. Commun. pp. 961–962.  Google Scholar
First citationDoucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703–1707.  Web of Science CrossRef CAS Google Scholar
First citationField, L. D., Thomas, I. P., Hambley, T. W. & Turner, P. (1998). Inorg. Chem. 37, 612–618.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, R., Chen, X., Elpelt, C., Song, D. & Morris, R. H. (2005a). Org. Lett. 7, 1757–1759.  CSD CrossRef PubMed CAS Google Scholar
First citationGuo, R., Elpelt, C., Chen, X., Song, D. & Morris, R. H. (2005b). Chem. Commun. pp. 3050–3052.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNorman, D. W., Carraz, C. A., Hyett, D. J., Pringle, P. G., Sweeney, J. B., Orpen, A. G., Phetmung, H. & Wingad, R. L. (2008). J. Am. Chem. Soc. 130, 6840–6847.  CSD CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReetz, M. T. & Li, X. (2006). Chem. Commun. pp. 2159–2160.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteinmetz, B., Hagel, M. & Schenk, W. A. (1999). Z. Naturforsch. Teil B, 54, 1265–1271.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVogler, A. (2016). Inorg. Chem. Commun. 67, 32–34.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds