research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of [(N,N-di­methyl­amino)­meth­yl]ferrocene and (Rp,Rp)-bis­­{2-[(di­methyl­amino)­meth­yl]ferrocen­yl}di­methyl­silane

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 July 2020; accepted 27 July 2020; online 11 August 2020)

The title compound [(N,N-di­methyl­amino)­meth­yl]ferrocene, [Fe(C5H5)(C8H12N)], (1), is an inter­esting starting material for the synthesis of planar chiral 1,2-disubstituted ferrocenes, as demonstrated by the preparation of (Rp,Rp)-bis­{2-[(di­methyl­amino)­meth­yl]ferrocen­yl}di­methyl­silane, [Fe2(C5H5)2(C18H18N2Si)], (2), from the li­thia­ted derivative of 1. The configuration of the lithium compound is unchanged after the substitution reaction and the chirality is preserved in space group P212121. In both compounds, the Cp rings adopt eclipsed conformations. Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions, and showed that H⋯H (van der Waals) inter­actions dominate in both structures with contact percentages of 83.9 and 88.4% for 1 and 2, respectively.

1. Chemical context

In 1951, ferrocene was synthesized serendipitously (Kealy & Pauson, 1951[Kealy, T. J. & Pauson, P. L. (1951). Nature, 168, 1039-1040.]) and one year later it was examined by X-ray crystallography (Fischer & Pfab, 1952[Fischer, E. O. & Pfab, W. (1952). Z. Naturforsch. B, 7, 377-379.]). N,N-Di­methyl­amino­methyl­ferrocene (C13H17FeN,1) was first synthesized by Hauser & Lindsay (1956[Hauser, C. R. & Lindsay, J. K. (1956). J. Org. Chem. 21, 382-383.]) by the reaction of ferrocene with paraformaldehyde and N,N,N′,N′-tetra­methyldi­amino­methane. The derivatization of ferrocene to planar chiral ferrocene makes it an important ligand for catalytic asymmetric transformations, both for scientific and industrial applications (Schaarschmidt & Lang, 2013[Schaarschmidt, D. & Lang, H. (2013). Organometallics, 32, 5668-5704.]). In particular, 1 is appropriate for the formation of 1,2-disubstituted ferrocenes because of the free electron pair at the nitro­gen atom: the li­thia­tion of the ortho-position is preferred due to the DoM effect (Directed ortho Metalation) and can be converted by a further step using an electrophile (Marr et al., 1967[Marr, G. (1967). J. Organomet. Chem. 9, 147-151.]). The ortho-li­thia­tion can be carried out both racemically or with a high degree of enanti­omeric control. The best known example for ortho-li­thia­tion with high stereoselectivity is the (R)-N,N-dimethyl-1-ferrocenyl­ethyl­amine, or Ugi's amine with a chiral directing group (Marquarding et al., 1970[Marquarding, D., Klusacek, H., Gokel, G., Hoffmann, P. & Ugi, I. (1970). J. Am. Chem. Soc. 92, 5389-5393.]).

Many applications based on 1 have been established by our research group: it is an inexpensive non-chiral analogue of Ugi's amine, therefore the desymmetrization must be implemented by the chiral auxiliary (R,R)-tetra­methyl-1,2-cyclo­hexa­nedi­amine (TMCDA) with yields in high stereoselectivity (Steffen et al., 2013[Steffen, P., Unkelbach, C., Christmann, M., Hiller, W. & Strohmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836-9840.]). One application of the 1,2-disubstituted ferrocenes based on 1 is the formation of racemic and enanti­omerically pure siloxides of zinc, whereby disiloxanes can be synthesized while avoiding condensation reactions (Golz et al., 2017[Golz, C., Steffen, P. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 8295-8298.]). Another application is the kinetically controlled asymmetric synthesis of silicon-stereogenic meth­oxy silanes using a planar chiral ferrocene backbone based on 1. Here, silicon-stereogenic meth­oxy silanes could be prepared with excellent stereoinduction (d.r. > 99:1) and the mechanistic course of the reaction can be described by quantum-chemical calculations (Barth et al., 2019[Barth, E. R., Krupp, A., Langenohl, F., Brieger, L. & Strohmann, C. (2019). Chem. Commun. 55, 6882-6885.]). Nayyar et al. (2018[Nayyar, B., Alnasr, H., Hiller, W. & Jurkschat, K. (2018). Angew. Chem. Int. Ed. 57, 5544-5547.]) reported 1,2-disubstituted ferrocenes based on 1 and their use as precursors for the diastereoselective synthesis of divalent-element chlorides and an unprecedented organolithium-induced carbon–carbon single-bond cleavage. Furthermore, Gawron et al. (2019[Gawron, M., Nayyar, B., Krabbe, C., Lutter, M. & Jurkschat, K. (2019). Eur. J. Inorg. Chem. pp. 1799-1809.]) were able to synthesize N,N-di­methyl­amino­methyl­ferrocene-backboned unsymmetrical pincer-type proligands, which are inter­esting as ligands for transition-metal complexes as catalysts for a variety of reactions in organic chemistry. The (R,S)-meso-compound of bis­[dimeth­yl(amino­meth­yl)ferrocen­yl]di­methyl­silane was characterized by Roewer and co-workers using X-ray diffraction analysis and formed during the synthesis of di­methyldi­chloro­silane with two equivalents of the racemic li­thia­ted N,N-di­methyl­amino­methyl­ferrocene (Palitzsch et al., 1999[Palitzsch, W., Pietzsch, C., Puttnat, M., Jacob, K., Merzweiler, K., Zanello, P., Cinquantini, A., Fontani, M. & Roewer, G. (1999). J. Organomet. Chem. 587, 9-17.]).

[Scheme 1]

In this paper, we report the crystal structures of 1 and enantiomerically pure (Rp,Rp)-bis­[dimeth­yl(amino­meth­yl)ferro­cen­yl]di­methyl­silane (2) and analyze their inter­molecular inter­actions using Hirshfeld surfaces and two-dimensional fingerprint plots.

2. Structural commentary

Compound 1 crystallizes from n-pentane at 243 K as orange needles with monoclinic (P21/n) symmetry. There are no noticeable irregularities in the bond lengths or bond angles found: the amino­methyl side chain is oriented above its attached cyclo­penta­dienyl ring, and the Cp rings are eclipsed, the dihedral angle between their mean planes being 1.53 (15)°. The mol­ecular structure of 1 is presented in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of 1 showing 50% displacement ellipsoids.

Compound 2 is an orange–red crystalline solid and occurs in enantiomerically pure form in the ortho­rhom­bic space group P212121. The structure is illustrated in Fig. 2[link]. Using Cahn–Ingold–Prelog (CIP) prioritization, compound 2 can be assigned the (Rp,Rp)-configuration; furthermore the cyclo­penta­dienyl rings are also in an eclipsed conformation for both iron atoms [dihedral angles = 4.89 (17) and 1.34 (18)° for the Fe1 and Fe2 rings, respectively]. The Si—C bonds span the range of 1.869 (3) to 1.874 (3) Å, which is consistent with the literature (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The silicon centre of compound 2 adopts a slightly distorted tetra­hedral geometry, as shown by the angles of 105.43 (14)° (C14—Si1—C10) as the smallest and 112.17 (13)° (C14—Si1—C16) as the largest. This flexibility is often observed for Si—C bonds (Otte et al., 2017[Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44-48.]). Compared to compound 1, the amino­methyl side chains are oriented in the direction of the silicon atom, but the N⋯Si contact distances of 3.552 (3) for N2 and 3.584 (3) Å for N1 are too long to be regarded as coordinate bonds to Si from the N lone pairs.

[Figure 2]
Figure 2
The mol­ecular structure of 2 showing 50% displacement ellipsoids.

3. Supra­molecular features

The crystal packing of compound 1 is shown in Fig. 3[link]. To further investigate close contacts and inter­molecular inter­actions, a Hirshfeld surface analysis was carried out: Fig. 4[link] illustrates the Hirshfeld surface mapped over dnorm in the range from −0.072 to 1.201 (arbitrary units) and the related fingerprint plots generated by CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). On the Hirshfeld surface, weak van der Waals H⋯H contacts appear as by far the largest region (83.9%) and show significant red spots on the Hirshfeld surface. C⋯H/H⋯C contacts contribute to 13.2% of the Hirshfeld area and appear as two spikes and also show a slight colouration, which indicates that the cyclo­penta­dienyl ring inter­acts with adjacent mol­ecules. The N⋯H/H⋯N inter­actions occupy the smallest region (2.9%) and display no noticeable inter­actions.

[Figure 3]
Figure 3
A view along the a-axis direction of the crystal packing of 1.
[Figure 4]
Figure 4
(a) Hirshfeld surfaces and two-dimensional fingerprint plots (CrystalExplorer17; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) of 1 showing close contacts in the crystal. (b)–(d) indicate the contributions of atoms within specific inter­acting pairs (blue areas). Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}].

The crystal packing of compound 2 is illustrated in Fig. 5[link]. The Hirshfeld surfaces and contributions of the different types of inter­molecular inter­actions are shown in Fig. 6[link] in the two-dimensional fingerprint plot. The Hirshfeld surface of compound 2 mapped over dnorm in the range from −0.149 to 1.497 a.u. shows significant inter­molecular inter­actions, indicated by the red spots. Both the van der Waals H⋯H contacts (88.4%) and the C⋯H/H⋯C contacts (11.6%) contribute to the packing arrangement of the crystal. Inter­molecular inter­actions of the cyclo­penta­dienyl rings with neighbouring mol­ecules can also be visualized.

[Figure 5]
Figure 5
A view along the b-axis direction of the crystal packing of 2.
[Figure 6]
Figure 6
(a) Hirshfeld surfaces and two-dimensional fingerprint plots (CrystalExplorer17; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) of compound 2 showing close contacts in the crystal. (b) and (c) indicate the contributions of atoms within specific inter­acting pairs (blue areas). Symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z.

4. Database survey

There are a large number of compounds based on 1. Selected examples found in the Cambridge Structural Database (CSD, version 5.41, update of May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) include (R,S)-meso-bis­[dimeth­yl(amino­meth­yl)ferrocen­yl]di­methyl­silane (CSD refcode KENRUQ; Palitzsch et al., 1999[Palitzsch, W., Pietzsch, C., Puttnat, M., Jacob, K., Merzweiler, K., Zanello, P., Cinquantini, A., Fontani, M. & Roewer, G. (1999). J. Organomet. Chem. 587, 9-17.]), (R,S)-meso-bis­[dimeth­yl(amino­meth­yl)ferrocen­yl]di­chloro­silane (KENQUP; Palitzsch et al., 1999[Palitzsch, W., Pietzsch, C., Puttnat, M., Jacob, K., Merzweiler, K., Zanello, P., Cinquantini, A., Fontani, M. & Roewer, G. (1999). J. Organomet. Chem. 587, 9-17.]), the monoetherate of the homochiral dimer (Sp)-[2-(di­methyl­amino­meth­yl)ferrocen­yl]lithium (LISBOG; Steffen et al., 2013[Steffen, P., Unkelbach, C., Christmann, M., Hiller, W. & Strohmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836-9840.]), bis­[μ-{2-[(di­methyl­ammonium­yl)meth­yl]ferrocen­yl}(dimeth­yl)silanolato]tetra­chloro­dizinc(II) (FAWPIF; Golz et al., 2017[Golz, C., Steffen, P. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 8295-8298.]), [dimeth­yl(amino­meth­yl)ferrocen­yl]meth­oxy­methyl­phenyl­silane (SOKDAA; Barth et al., 2019[Barth, E. R., Krupp, A., Langenohl, F., Brieger, L. & Strohmann, C. (2019). Chem. Commun. 55, 6882-6885.]), 2-(di­methyl­amino­meth­yl)-1-{1-[(2,6-di-iso­propyl­phen­yl)amino]-2,2-di­methyl­prop­yl}-3-(tri­methyl­sil­yl)ferrocene (RIGDOD; Nayyar et al., 2018[Nayyar, B., Alnasr, H., Hiller, W. & Jurkschat, K. (2018). Angew. Chem. Int. Ed. 57, 5544-5547.]) and 1-bromo-2-(di­phenyl­phosphino)-5-[(di­methyl­amino)­meth­yl]ferrocene (MIZMOA; Gawron et al., 2019[Gawron, M., Nayyar, B., Krabbe, C., Lutter, M. & Jurkschat, K. (2019). Eur. J. Inorg. Chem. pp. 1799-1809.]).

5. Synthesis and crystallization

N,N-Di­methyl­amino­methyl­ferrocene was purchased from ABCR and used without further purification. A solution of N,N-di­methyl­amino­methyl­ferrocene (1.00 mmol) in n-pentane (1 ml) was made up and stored at 243 K and compound 1 crystallized in the form of orange needles.

The reaction scheme for the synthesis of compound 2 is illustrated in Fig. 7[link]. To a solution of (Sp)-[2-(di­methyl­amino­meth­yl)ferrocen­yl]lithium (4.00 mmol) (Steffen et al., 2013[Steffen, P., Unkelbach, C., Christmann, M., Hiller, W. & Strohmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836-9840.]) in diethyl ether, di­methyldi­chloro­silane (2.00 mmol) was added dropwise at 195 K. The reaction was slowly warmed up to room temperature and stirred overnight. Afterwards the reaction was quenched by the addition of water. The aqueous phase was extracted three times with diethyl ether and the combined organic phases were dried with MgSO4. After the volatile components were removed and purified by column chromatography (n-penta­ne:diethyl ether + tri­ethyl­amine; 100:1 + 5 Vol.-%), the product (46%) could be obtained as yellowish plates.

[Figure 7]
Figure 7
Reaction scheme for the synthesis of 2.

1H NMR (600.3 MHz, C6D6): δ = 0.81 [s, 6H; Si(CH3)2], 2.02 {s, 12H; [N(CH3)2]2}, 2.80, 3.64 [AB-system, 4H, 2JHH = 12.3 Hz; CpCH2N)2], 4.08 [s, 10H; (Cp—CH2)], 4.12 [m, 2H; (Cp—CH2)], 4.19 [m, 2H; (Cp—CH)2], 4.35 [m, 2H; Cp—CH)2] ppm.

{1H}13C NMR (150.9 MHz, C6D6): δ = 0.6 [2C; Si(CH3)2], 45.4 {4C; [CH2N(CH3)2]2}, 60.5 [2C; (CpCH2N)2], 69.7 [10C; (Cp—CH)2], 69.8 [2C; (Cp—CH)2], 72.6 [2C; (Cp—C)2Si)], 74.2 [2C; (Cp—CH)2], 76.6 [2C; (Cp—CH)2], 90.5 [2C; (Cp—CCH2N)2] ppm.

{1H}29Si NMR (119.3 MHz, C6D6): δ = −7.07 [s, 1Si; Si(CH3)2] ppm.

ESI-(+)-MS: m/z (%): 498 (20) [(M–NMe2)+], 409 (100) [(M–NMe2–CH2NMe2–Me2)+], 299 (50) [(M–FcCH2NMe2)+], 199 (50) [(M–SiMe2FcCH2NMe2–NMe2)+].

Rf: (n-penta­ne: Et2O + Et3N; 100: 1 + 5 Vol.-%) = 0.20.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For both compounds, the H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms.

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Fe(C5H5)(C8H12N)] [Fe2(C5H5)2(C18H18N2Si)]
Mr 243.12 542.39
Crystal system, space group Monoclinic, P21/n Orthorhombic, P212121
Temperature (K) 100 100
a, b, c (Å) 5.6777 (3), 23.0873 (15), 8.7206 (6) 12.0132 (7), 14.0683 (8), 15.7169 (11)
α, β, γ (°) 90, 90.590 (2), 90 90, 90, 90
V3) 1143.06 (12) 2656.2 (3)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 1.28 9.32
Crystal size (mm) 0.55 × 0.22 × 0.19 0.47 × 0.23 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.351, 0.435 0.326, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 19466, 3960, 3489 41156, 5733, 5518
Rint 0.040 0.060
(sin θ/λ)max−1) 0.746 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.17 0.028, 0.065, 1.07
No. of reflections 3960 5733
No. of parameters 138 304
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.34, −1.47 0.40, −0.27
Absolute structure Flack x determined using 2287 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (2)
Computer programs: APEX2 (Bruker, 2018[Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2018); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016). Program(s) used to solve structure: SHELXT (Sheldrick, 2015b) for (1); SHELXS (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020).

[(N,N-Dimethylamino)methyl]ferrocene (1) top
Crystal data top
[Fe(C5H5)(C8H12N)]F(000) = 512
Mr = 243.12Dx = 1.413 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6777 (3) ÅCell parameters from 9923 reflections
b = 23.0873 (15) Åθ = 2.5–33.1°
c = 8.7206 (6) ŵ = 1.28 mm1
β = 90.590 (2)°T = 100 K
V = 1143.06 (12) Å3Needle, clear orange
Z = 40.55 × 0.22 × 0.19 mm
Data collection top
Bruker D8 Venture
diffractometer
3960 independent reflections
Radiation source: Advanced Light Source, station 11.3.1, Incoatec Iµs3489 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.040
Detector resolution: 10.42 pixels mm-1θmax = 32.0°, θmin = 2.5°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 3433
Tmin = 0.351, Tmax = 0.435l = 1313
19466 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0175P)2 + 3.606P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
3960 reflectionsΔρmax = 1.34 e Å3
138 parametersΔρmin = 1.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.86749 (6)0.35631 (2)0.15193 (4)0.01111 (9)
N10.4929 (4)0.41321 (9)0.5681 (2)0.0171 (4)
C11.1153 (4)0.29284 (11)0.1819 (3)0.0161 (4)
H11.2425700.2932330.2534510.019*
C20.8841 (5)0.27051 (10)0.2089 (3)0.0184 (5)
H20.8302720.2536860.3015580.022*
C30.7492 (5)0.27812 (11)0.0714 (3)0.0207 (5)
H30.5893840.2671010.0563150.025*
C40.8951 (5)0.30501 (11)0.0390 (3)0.0187 (5)
H40.8498730.3150560.1407830.022*
C51.1209 (4)0.31432 (11)0.0292 (3)0.0160 (4)
H51.2523610.3318090.0189660.019*
C60.9505 (5)0.44290 (10)0.1543 (3)0.0162 (4)
H61.0815000.4605380.1060510.019*
C70.7223 (5)0.43439 (11)0.0875 (3)0.0168 (4)
H70.6743080.4455620.0128770.020*
C80.5801 (4)0.40629 (10)0.1978 (3)0.0151 (4)
H80.4202230.3952840.1830840.018*
C90.7161 (4)0.39721 (10)0.3345 (3)0.0138 (4)
C100.9467 (4)0.42004 (10)0.3076 (3)0.0153 (4)
H101.0747040.4200670.3786630.018*
C110.6260 (5)0.37075 (10)0.4794 (3)0.0156 (4)
H11A0.5233000.3373870.4538990.019*
H11B0.7602670.3563240.5418170.019*
C120.6491 (5)0.45778 (11)0.6315 (3)0.0218 (5)
H12A0.5589860.4835040.6983860.033*
H12B0.7169220.4803540.5476720.033*
H12C0.7758250.4393420.6909550.033*
C130.3659 (5)0.38483 (12)0.6917 (3)0.0221 (5)
H13A0.2581090.3558440.6484370.033*
H13B0.2758090.4137590.7487260.033*
H13C0.4786420.3658060.7611250.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01275 (15)0.00967 (14)0.01093 (14)0.00032 (12)0.00076 (10)0.00089 (11)
N10.0225 (10)0.0131 (9)0.0157 (9)0.0018 (8)0.0041 (8)0.0007 (7)
C10.0169 (10)0.0137 (10)0.0176 (11)0.0032 (8)0.0003 (8)0.0004 (8)
C20.0235 (12)0.0109 (10)0.0209 (11)0.0015 (9)0.0048 (9)0.0013 (8)
C30.0164 (11)0.0162 (11)0.0297 (14)0.0000 (9)0.0004 (10)0.0078 (10)
C40.0235 (12)0.0169 (11)0.0157 (11)0.0040 (9)0.0012 (9)0.0065 (8)
C50.0175 (10)0.0150 (10)0.0154 (10)0.0024 (8)0.0043 (8)0.0017 (8)
C60.0190 (11)0.0124 (10)0.0172 (11)0.0021 (8)0.0022 (8)0.0006 (8)
C70.0210 (11)0.0134 (10)0.0160 (10)0.0026 (8)0.0004 (8)0.0011 (8)
C80.0159 (10)0.0126 (10)0.0167 (10)0.0021 (8)0.0003 (8)0.0033 (8)
C90.0157 (10)0.0123 (9)0.0135 (10)0.0001 (8)0.0009 (8)0.0019 (8)
C100.0162 (10)0.0129 (10)0.0166 (10)0.0027 (8)0.0001 (8)0.0023 (8)
C110.0205 (11)0.0117 (9)0.0147 (10)0.0009 (8)0.0033 (8)0.0010 (8)
C120.0328 (14)0.0144 (11)0.0181 (11)0.0022 (10)0.0022 (10)0.0037 (9)
C130.0260 (13)0.0214 (12)0.0190 (12)0.0025 (10)0.0078 (10)0.0027 (9)
Geometric parameters (Å, º) top
Fe1—C12.046 (2)C4—C51.424 (4)
Fe1—C22.044 (2)C5—H50.9500
Fe1—C32.048 (3)C6—H60.9500
Fe1—C42.051 (2)C6—C71.429 (4)
Fe1—C52.047 (2)C6—C101.437 (3)
Fe1—C62.054 (2)C7—H70.9500
Fe1—C72.058 (2)C7—C81.419 (3)
Fe1—C82.041 (2)C8—H80.9500
Fe1—C92.048 (2)C8—C91.429 (3)
Fe1—C102.049 (2)C9—C101.433 (3)
N1—C111.464 (3)C9—C111.498 (3)
N1—C121.463 (3)C10—H100.9500
N1—C131.459 (3)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C1—C21.432 (4)C12—H12A0.9800
C1—C51.422 (3)C12—H12B0.9800
C2—H20.9500C12—H12C0.9800
C2—C31.427 (4)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C3—C41.419 (4)C13—H13C0.9800
C4—H40.9500
C1—Fe1—C368.61 (11)C4—C3—Fe169.85 (15)
C1—Fe1—C468.41 (10)C4—C3—C2108.2 (2)
C1—Fe1—C540.65 (10)C4—C3—H3125.9
C1—Fe1—C6122.56 (10)Fe1—C4—H4126.5
C1—Fe1—C7159.23 (10)C3—C4—Fe169.63 (15)
C1—Fe1—C9121.64 (10)C3—C4—H4125.9
C1—Fe1—C10106.48 (10)C3—C4—C5108.2 (2)
C2—Fe1—C140.99 (10)C5—C4—Fe169.50 (14)
C2—Fe1—C340.83 (11)C5—C4—H4125.9
C2—Fe1—C468.53 (11)Fe1—C5—H5126.1
C2—Fe1—C568.73 (10)C1—C5—Fe169.66 (14)
C2—Fe1—C6158.54 (11)C1—C5—C4108.0 (2)
C2—Fe1—C7158.83 (11)C1—C5—H5126.0
C2—Fe1—C9106.06 (10)C4—C5—Fe169.81 (14)
C2—Fe1—C10121.71 (10)C4—C5—H5126.0
C3—Fe1—C440.52 (11)Fe1—C6—H6126.4
C3—Fe1—C6159.37 (11)C7—C6—Fe169.81 (14)
C3—Fe1—C7123.33 (11)C7—C6—H6126.1
C3—Fe1—C10158.34 (11)C7—C6—C10107.8 (2)
C4—Fe1—C6123.44 (11)C10—C6—Fe169.30 (13)
C4—Fe1—C7108.54 (10)C10—C6—H6126.1
C5—Fe1—C368.47 (10)Fe1—C7—H7126.8
C5—Fe1—C440.69 (10)C6—C7—Fe169.52 (14)
C5—Fe1—C6107.69 (10)C6—C7—H7126.1
C5—Fe1—C7123.64 (10)C8—C7—Fe169.13 (14)
C5—Fe1—C9158.15 (10)C8—C7—C6107.9 (2)
C5—Fe1—C10122.41 (10)C8—C7—H7126.1
C6—Fe1—C740.67 (10)Fe1—C8—H8125.9
C8—Fe1—C1158.39 (10)C7—C8—Fe170.38 (14)
C8—Fe1—C2122.35 (10)C7—C8—H8125.5
C8—Fe1—C3107.78 (10)C7—C8—C9109.0 (2)
C8—Fe1—C4123.60 (10)C9—C8—Fe169.78 (14)
C8—Fe1—C5159.71 (10)C9—C8—H8125.5
C8—Fe1—C668.39 (10)C8—C9—Fe169.30 (13)
C8—Fe1—C740.50 (10)C8—C9—C10107.2 (2)
C8—Fe1—C940.91 (9)C8—C9—C11125.3 (2)
C8—Fe1—C1068.58 (10)C10—C9—Fe169.57 (13)
C9—Fe1—C3122.30 (10)C10—C9—C11127.5 (2)
C9—Fe1—C4159.03 (10)C11—C9—Fe1128.12 (17)
C9—Fe1—C668.98 (10)Fe1—C10—H10126.4
C9—Fe1—C768.78 (10)C6—C10—Fe169.69 (14)
C9—Fe1—C1040.95 (9)C6—C10—H10126.0
C10—Fe1—C4159.18 (11)C9—C10—Fe169.48 (13)
C10—Fe1—C641.01 (10)C9—C10—C6108.0 (2)
C10—Fe1—C768.67 (10)C9—C10—H10126.0
C12—N1—C11110.9 (2)N1—C11—C9110.8 (2)
C13—N1—C11110.6 (2)N1—C11—H11A109.5
C13—N1—C12109.8 (2)N1—C11—H11B109.5
Fe1—C1—H1126.5C9—C11—H11A109.5
C2—C1—Fe169.42 (14)C9—C11—H11B109.5
C2—C1—H1126.0H11A—C11—H11B108.1
C5—C1—Fe169.69 (14)N1—C12—H12A109.5
C5—C1—H1126.0N1—C12—H12B109.5
C5—C1—C2108.0 (2)N1—C12—H12C109.5
Fe1—C2—H2126.1H12A—C12—H12B109.5
C1—C2—Fe169.59 (14)H12A—C12—H12C109.5
C1—C2—H2126.2H12B—C12—H12C109.5
C3—C2—Fe169.73 (15)N1—C13—H13A109.5
C3—C2—C1107.6 (2)N1—C13—H13B109.5
C3—C2—H2126.2N1—C13—H13C109.5
Fe1—C3—H3126.4H13A—C13—H13B109.5
C2—C3—Fe169.44 (14)H13A—C13—H13C109.5
C2—C3—H3125.9H13B—C13—H13C109.5
Fe1—C1—C2—C359.61 (17)C5—C1—C2—Fe159.20 (17)
Fe1—C1—C5—C459.49 (17)C5—C1—C2—C30.4 (3)
Fe1—C2—C3—C459.32 (18)C6—C7—C8—Fe158.93 (17)
Fe1—C3—C4—C558.99 (17)C6—C7—C8—C90.3 (3)
Fe1—C4—C5—C159.40 (17)C7—C6—C10—Fe159.39 (17)
Fe1—C6—C7—C858.68 (17)C7—C6—C10—C90.3 (3)
Fe1—C6—C10—C959.09 (16)C7—C8—C9—Fe159.63 (17)
Fe1—C7—C8—C959.27 (17)C7—C8—C9—C100.2 (3)
Fe1—C8—C9—C1059.47 (16)C7—C8—C9—C11177.6 (2)
Fe1—C8—C9—C11122.8 (2)C8—C9—C10—Fe159.31 (16)
Fe1—C9—C10—C659.22 (17)C8—C9—C10—C60.1 (3)
Fe1—C9—C11—N1169.70 (17)C8—C9—C11—N179.4 (3)
C1—C2—C3—Fe159.52 (17)C10—C6—C7—Fe159.07 (17)
C1—C2—C3—C40.2 (3)C10—C6—C7—C80.4 (3)
C2—C1—C5—Fe159.04 (17)C10—C9—C11—N197.9 (3)
C2—C1—C5—C40.5 (3)C11—C9—C10—Fe1123.0 (2)
C2—C3—C4—Fe159.06 (18)C11—C9—C10—C6177.8 (2)
C2—C3—C4—C50.1 (3)C12—N1—C11—C969.5 (3)
C3—C4—C5—Fe159.07 (18)C13—N1—C11—C9168.4 (2)
C3—C4—C5—C10.3 (3)
(Rp,Rp)-Bis{2-[(dimethylamino)methyl]ferrocenyl}dimethylsilane (2) top
Crystal data top
[Fe2(C5H5)2(C18H18N2Si)]Dx = 1.356 Mg m3
Mr = 542.39Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9834 reflections
a = 12.0132 (7) Åθ = 4.2–78.6°
b = 14.0683 (8) ŵ = 9.32 mm1
c = 15.7169 (11) ÅT = 100 K
V = 2656.2 (3) Å3Plate, clear orangish yellow
Z = 40.47 × 0.23 × 0.08 mm
F(000) = 1144
Data collection top
Bruker D8 Venture
diffractometer
5733 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs5518 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.060
Detector resolution: 10.4167 pixels mm-1θmax = 79.9°, θmin = 4.2°
ω and φ scansh = 1315
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1717
Tmin = 0.326, Tmax = 0.754l = 2017
41156 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0111P)2 + 2.2762P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.40 e Å3
5733 reflectionsΔρmin = 0.27 e Å3
304 parametersAbsolute structure: Flack x determined using 2287 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.009 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.40210 (4)0.41292 (3)0.52611 (3)0.01371 (10)
Fe20.91114 (4)0.56363 (3)0.70011 (3)0.01381 (10)
Si10.67323 (6)0.46262 (5)0.60692 (5)0.01300 (16)
N10.4872 (2)0.5234 (2)0.77668 (18)0.0250 (6)
N20.7054 (2)0.67859 (19)0.49626 (19)0.0226 (6)
C10.4524 (3)0.2732 (2)0.5230 (2)0.0206 (6)
H10.5224650.2491850.5410090.025*
C20.3558 (3)0.2845 (2)0.5749 (2)0.0230 (7)
H20.3503640.2691610.6336680.028*
C30.2693 (3)0.3224 (2)0.5237 (3)0.0261 (7)
H30.1958950.3368370.5420130.031*
C40.3122 (3)0.3350 (2)0.4401 (2)0.0250 (7)
H40.2723690.3594290.3926710.030*
C50.4250 (3)0.3045 (2)0.4397 (2)0.0221 (7)
H50.4736050.3050100.3920520.027*
C60.4964 (2)0.5297 (2)0.4952 (2)0.0160 (6)
H60.5455710.5353560.4480620.019*
C70.3812 (2)0.5528 (2)0.4941 (2)0.0200 (6)
H70.3404030.5761190.4467780.024*
C80.3381 (3)0.5346 (2)0.5769 (2)0.0209 (7)
H80.2633830.5444230.5946460.025*
C90.4271 (2)0.4989 (2)0.6289 (2)0.0171 (6)
C100.5271 (2)0.4965 (2)0.5782 (2)0.0151 (6)
C110.4148 (3)0.4689 (2)0.7201 (2)0.0218 (6)
H11A0.3364040.4776140.7378800.026*
H11B0.4329440.4004710.7251630.026*
C120.4651 (4)0.6248 (3)0.7704 (3)0.0358 (9)
H12A0.4762580.6457250.7116010.054*
H12B0.5159620.6594480.8080160.054*
H12C0.3880320.6374770.7875330.054*
C130.4753 (3)0.4906 (3)0.8634 (2)0.0353 (9)
H13A0.3987060.5014020.8825320.053*
H13B0.5267850.5256840.9001830.053*
H13C0.4923320.4225610.8662140.053*
C140.7422 (2)0.4315 (2)0.50393 (19)0.0188 (6)
H14A0.6997850.3811230.4755230.028*
H14B0.8181020.4091710.5150080.028*
H14C0.7448080.4877880.4672870.028*
C150.6761 (3)0.3581 (2)0.6803 (2)0.0204 (6)
H15A0.6375610.3743130.7333110.031*
H15B0.7535430.3412440.6929060.031*
H15C0.6388430.3041020.6532030.031*
C160.7459 (2)0.5622 (2)0.66320 (19)0.0140 (5)
C170.7559 (2)0.5680 (2)0.7543 (2)0.0174 (6)
H170.7263540.5234590.7937910.021*
C180.8173 (3)0.6514 (2)0.7758 (2)0.0196 (6)
H180.8359680.6718170.8315770.023*
C190.8455 (2)0.6984 (2)0.6992 (2)0.0202 (6)
H190.8858210.7562440.6947690.024*
C200.8032 (2)0.6442 (2)0.6298 (2)0.0157 (6)
C210.8143 (2)0.6704 (2)0.5375 (2)0.0186 (6)
H21A0.8541770.7317770.5327120.022*
H21B0.8589540.6214470.5078970.022*
C220.6358 (3)0.7504 (2)0.5361 (3)0.0308 (8)
H22A0.6267620.7355000.5966160.046*
H22B0.5627310.7513170.5084570.046*
H22C0.6711150.8128700.5301160.046*
C230.7193 (4)0.6974 (3)0.4060 (2)0.0333 (8)
H23A0.7617640.7562430.3984010.050*
H23B0.6460170.7041290.3793020.050*
H23C0.7594450.6444760.3795350.050*
C240.9906 (3)0.4417 (2)0.7387 (2)0.0257 (7)
H240.9594410.3929240.7730040.031*
C251.0489 (3)0.5225 (2)0.7685 (2)0.0219 (7)
H251.0641810.5371800.8263650.026*
C261.0806 (2)0.5777 (2)0.6972 (2)0.0242 (6)
H261.1203990.6359900.6985490.029*
C271.0418 (3)0.5297 (3)0.6227 (2)0.0297 (8)
H271.0513350.5504300.5656170.036*
C280.9869 (3)0.4461 (3)0.6491 (2)0.0301 (8)
H280.9531790.4005810.6127190.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00972 (19)0.01196 (19)0.0194 (2)0.00185 (16)0.00041 (18)0.00196 (16)
Fe20.00825 (19)0.0162 (2)0.0170 (2)0.00009 (16)0.00075 (18)0.00221 (17)
Si10.0106 (3)0.0123 (3)0.0160 (4)0.0005 (3)0.0005 (3)0.0018 (3)
N10.0189 (13)0.0324 (15)0.0235 (15)0.0047 (11)0.0036 (11)0.0099 (11)
N20.0197 (13)0.0177 (12)0.0303 (16)0.0027 (10)0.0049 (11)0.0044 (11)
C10.0188 (14)0.0123 (13)0.0307 (18)0.0016 (11)0.0040 (13)0.0030 (13)
C20.0243 (16)0.0168 (14)0.0278 (18)0.0088 (12)0.0001 (14)0.0005 (12)
C30.0157 (15)0.0211 (15)0.042 (2)0.0091 (12)0.0012 (14)0.0060 (15)
C40.0232 (16)0.0192 (14)0.0327 (19)0.0065 (12)0.0121 (14)0.0044 (13)
C50.0258 (17)0.0167 (13)0.0239 (16)0.0026 (12)0.0014 (13)0.0050 (12)
C60.0139 (13)0.0126 (12)0.0215 (16)0.0027 (10)0.0016 (11)0.0014 (11)
C70.0167 (14)0.0144 (13)0.0288 (17)0.0009 (11)0.0052 (12)0.0005 (11)
C80.0137 (14)0.0158 (13)0.0332 (18)0.0007 (11)0.0016 (12)0.0071 (13)
C90.0126 (14)0.0138 (12)0.0248 (16)0.0016 (10)0.0015 (12)0.0067 (11)
C100.0131 (13)0.0121 (12)0.0200 (16)0.0022 (10)0.0021 (11)0.0022 (11)
C110.0165 (14)0.0264 (14)0.0226 (16)0.0061 (13)0.0039 (13)0.0058 (12)
C120.039 (2)0.0319 (19)0.037 (2)0.0047 (16)0.0037 (17)0.0168 (16)
C130.031 (2)0.055 (2)0.0202 (18)0.0029 (17)0.0012 (15)0.0054 (16)
C140.0174 (13)0.0187 (14)0.0203 (15)0.0019 (11)0.0025 (11)0.0044 (12)
C150.0212 (15)0.0166 (13)0.0236 (17)0.0005 (12)0.0007 (13)0.0012 (12)
C160.0078 (12)0.0164 (13)0.0178 (14)0.0004 (10)0.0002 (10)0.0018 (11)
C170.0097 (12)0.0233 (14)0.0191 (15)0.0003 (11)0.0026 (11)0.0056 (12)
C180.0132 (14)0.0248 (15)0.0207 (16)0.0006 (12)0.0018 (12)0.0128 (12)
C190.0141 (14)0.0156 (13)0.0308 (18)0.0002 (10)0.0003 (13)0.0069 (13)
C200.0102 (13)0.0140 (13)0.0229 (16)0.0008 (10)0.0011 (11)0.0014 (11)
C210.0142 (14)0.0156 (13)0.0260 (17)0.0019 (11)0.0003 (12)0.0033 (12)
C220.0191 (15)0.0251 (16)0.048 (2)0.0028 (12)0.0058 (16)0.0012 (16)
C230.044 (2)0.0260 (17)0.030 (2)0.0062 (15)0.0121 (17)0.0113 (15)
C240.0162 (14)0.0198 (14)0.041 (2)0.0037 (12)0.0011 (14)0.0032 (14)
C250.0139 (13)0.0281 (16)0.0237 (17)0.0052 (12)0.0046 (12)0.0007 (13)
C260.0083 (12)0.0294 (15)0.0350 (18)0.0011 (12)0.0007 (13)0.0045 (14)
C270.0156 (15)0.052 (2)0.0215 (18)0.0138 (15)0.0042 (13)0.0007 (16)
C280.0178 (15)0.0334 (18)0.039 (2)0.0126 (14)0.0078 (14)0.0182 (16)
Geometric parameters (Å, º) top
Fe1—C12.056 (3)C8—H80.9500
Fe1—C22.041 (3)C8—C91.437 (4)
Fe1—C32.041 (3)C9—C101.442 (4)
Fe1—C42.049 (3)C9—C111.501 (5)
Fe1—C52.060 (3)C11—H11A0.9900
Fe1—C62.054 (3)C11—H11B0.9900
Fe1—C72.046 (3)C12—H12A0.9800
Fe1—C82.039 (3)C12—H12B0.9800
Fe1—C92.040 (3)C12—H12C0.9800
Fe1—C102.076 (3)C13—H13A0.9800
Fe2—C162.068 (3)C13—H13B0.9800
Fe2—C172.051 (3)C13—H13C0.9800
Fe2—C182.051 (3)C14—H14A0.9800
Fe2—C192.053 (3)C14—H14B0.9800
Fe2—C202.046 (3)C14—H14C0.9800
Fe2—C242.055 (3)C15—H15A0.9800
Fe2—C252.057 (3)C15—H15B0.9800
Fe2—C262.046 (3)C15—H15C0.9800
Fe2—C272.043 (3)C16—C171.440 (4)
Fe2—C282.050 (3)C16—C201.442 (4)
Si1—C101.874 (3)C17—H170.9500
Si1—C141.870 (3)C17—C181.427 (4)
Si1—C151.869 (3)C18—H180.9500
Si1—C161.873 (3)C18—C191.414 (5)
N1—C111.462 (4)C19—H190.9500
N1—C121.455 (5)C19—C201.424 (4)
N1—C131.446 (5)C20—C211.502 (5)
N2—C211.464 (4)C21—H21A0.9900
N2—C221.453 (5)C21—H21B0.9900
N2—C231.452 (5)C22—H22A0.9800
C1—H10.9500C22—H22B0.9800
C1—C21.427 (5)C22—H22C0.9800
C1—C51.420 (5)C23—H23A0.9800
C2—H20.9500C23—H23B0.9800
C2—C31.418 (5)C23—H23C0.9800
C3—H30.9500C24—H240.9500
C3—C41.423 (6)C24—C251.415 (5)
C4—H40.9500C24—C281.410 (5)
C4—C51.421 (5)C25—H250.9500
C5—H50.9500C25—C261.416 (5)
C6—H60.9500C26—H260.9500
C6—C71.422 (4)C26—C271.429 (5)
C6—C101.434 (4)C27—H270.9500
C7—H70.9500C27—C281.411 (6)
C7—C81.423 (5)C28—H280.9500
C1—Fe1—C540.36 (14)C7—C6—C10109.5 (3)
C1—Fe1—C10109.75 (12)C10—C6—Fe170.48 (16)
C2—Fe1—C140.77 (14)C10—C6—H6125.2
C2—Fe1—C340.66 (14)Fe1—C7—H7126.0
C2—Fe1—C468.32 (14)C6—C7—Fe170.02 (16)
C2—Fe1—C568.20 (14)C6—C7—H7126.2
C2—Fe1—C6161.37 (13)C6—C7—C8107.7 (3)
C2—Fe1—C7155.59 (13)C8—C7—Fe169.36 (17)
C2—Fe1—C10123.40 (13)C8—C7—H7126.2
C3—Fe1—C168.47 (13)Fe1—C8—H8126.4
C3—Fe1—C440.73 (16)C7—C8—Fe169.87 (17)
C3—Fe1—C568.31 (14)C7—C8—H8125.9
C3—Fe1—C6157.77 (13)C7—C8—C9108.2 (3)
C3—Fe1—C7119.98 (13)C9—C8—Fe169.41 (17)
C3—Fe1—C10157.81 (14)C9—C8—H8125.9
C4—Fe1—C168.15 (13)C8—C9—Fe169.35 (17)
C4—Fe1—C540.45 (14)C8—C9—C10108.3 (3)
C4—Fe1—C6124.23 (13)C8—C9—C11124.6 (3)
C4—Fe1—C10160.90 (14)C10—C9—Fe170.82 (17)
C5—Fe1—C10125.64 (13)C10—C9—C11127.1 (3)
C6—Fe1—C1126.61 (13)C11—C9—Fe1125.1 (2)
C6—Fe1—C5111.23 (13)Si1—C10—Fe1128.94 (15)
C6—Fe1—C1040.65 (12)C6—C10—Fe168.87 (16)
C7—Fe1—C1161.64 (14)C6—C10—Si1122.8 (2)
C7—Fe1—C4106.75 (13)C6—C10—C9106.3 (3)
C7—Fe1—C5124.49 (13)C9—C10—Fe168.18 (16)
C7—Fe1—C640.58 (12)C9—C10—Si1130.8 (2)
C7—Fe1—C1068.95 (11)N1—C11—C9112.0 (3)
C8—Fe1—C1157.25 (14)N1—C11—H11A109.2
C8—Fe1—C2119.58 (14)N1—C11—H11B109.2
C8—Fe1—C3103.68 (13)C9—C11—H11A109.2
C8—Fe1—C4120.60 (14)C9—C11—H11B109.2
C8—Fe1—C5158.37 (14)H11A—C11—H11B107.9
C8—Fe1—C668.25 (12)N1—C12—H12A109.5
C8—Fe1—C740.76 (13)N1—C12—H12B109.5
C8—Fe1—C941.25 (13)N1—C12—H12C109.5
C8—Fe1—C1069.08 (12)H12A—C12—H12B109.5
C9—Fe1—C1122.80 (13)H12A—C12—H12C109.5
C9—Fe1—C2105.50 (13)H12B—C12—H12C109.5
C9—Fe1—C3119.96 (14)N1—C13—H13A109.5
C9—Fe1—C4156.58 (13)N1—C13—H13B109.5
C9—Fe1—C5160.20 (13)N1—C13—H13C109.5
C9—Fe1—C668.43 (12)H13A—C13—H13B109.5
C9—Fe1—C769.06 (12)H13A—C13—H13C109.5
C9—Fe1—C1041.00 (12)H13B—C13—H13C109.5
C17—Fe2—C1640.91 (12)Si1—C14—H14A109.5
C17—Fe2—C1840.70 (12)Si1—C14—H14B109.5
C17—Fe2—C1968.06 (13)Si1—C14—H14C109.5
C17—Fe2—C24108.96 (13)H14A—C14—H14B109.5
C17—Fe2—C25121.53 (13)H14A—C14—H14C109.5
C18—Fe2—C1668.97 (12)H14B—C14—H14C109.5
C18—Fe2—C1940.30 (14)Si1—C15—H15A109.5
C18—Fe2—C24125.95 (15)Si1—C15—H15B109.5
C18—Fe2—C25107.97 (13)Si1—C15—H15C109.5
C19—Fe2—C1668.80 (12)H15A—C15—H15B109.5
C19—Fe2—C24162.07 (14)H15A—C15—H15C109.5
C19—Fe2—C25124.93 (13)H15B—C15—H15C109.5
C20—Fe2—C1641.04 (11)Si1—C16—Fe2125.98 (15)
C20—Fe2—C1768.40 (12)C17—C16—Fe268.94 (16)
C20—Fe2—C1868.38 (13)C17—C16—Si1123.4 (2)
C20—Fe2—C1940.66 (12)C17—C16—C20106.1 (3)
C20—Fe2—C24156.37 (13)C20—C16—Fe268.69 (15)
C20—Fe2—C25161.45 (13)C20—C16—Si1130.4 (2)
C20—Fe2—C28121.11 (14)Fe2—C17—H17126.2
C24—Fe2—C16121.38 (13)C16—C17—Fe270.15 (16)
C24—Fe2—C2540.27 (14)C16—C17—H17125.5
C25—Fe2—C16156.39 (13)C18—C17—Fe269.65 (17)
C26—Fe2—C16161.74 (13)C18—C17—C16108.9 (3)
C26—Fe2—C17155.67 (13)C18—C17—H17125.5
C26—Fe2—C18120.12 (13)Fe2—C18—H18126.0
C26—Fe2—C19107.04 (13)C17—C18—Fe269.65 (16)
C26—Fe2—C20124.39 (13)C17—C18—H18126.0
C26—Fe2—C2467.96 (13)C19—C18—Fe269.90 (17)
C26—Fe2—C2540.37 (13)C19—C18—C17107.9 (3)
C26—Fe2—C2868.10 (14)C19—C18—H18126.0
C27—Fe2—C16124.63 (14)Fe2—C19—H19126.6
C27—Fe2—C17162.38 (14)C18—C19—Fe269.79 (18)
C27—Fe2—C18155.23 (15)C18—C19—H19125.8
C27—Fe2—C19120.43 (15)C18—C19—C20108.4 (3)
C27—Fe2—C20107.13 (14)C20—C19—Fe269.42 (16)
C27—Fe2—C2467.88 (15)C20—C19—H19125.8
C27—Fe2—C2568.11 (14)C16—C20—Fe270.27 (16)
C27—Fe2—C2640.91 (15)C16—C20—C21126.2 (3)
C27—Fe2—C2840.32 (16)C19—C20—Fe269.92 (17)
C28—Fe2—C16107.98 (13)C19—C20—C16108.6 (3)
C28—Fe2—C17126.17 (14)C19—C20—C21125.2 (3)
C28—Fe2—C18162.91 (15)C21—C20—Fe2127.0 (2)
C28—Fe2—C19155.80 (16)N2—C21—C20111.6 (3)
C28—Fe2—C2440.16 (15)N2—C21—H21A109.3
C28—Fe2—C2567.68 (13)N2—C21—H21B109.3
C14—Si1—C10105.43 (14)C20—C21—H21A109.3
C14—Si1—C16112.17 (13)C20—C21—H21B109.3
C15—Si1—C10111.48 (14)H21A—C21—H21B108.0
C15—Si1—C14109.98 (15)N2—C22—H22A109.5
C15—Si1—C16106.74 (14)N2—C22—H22B109.5
C16—Si1—C10111.12 (12)N2—C22—H22C109.5
C12—N1—C11111.4 (3)H22A—C22—H22B109.5
C13—N1—C11110.3 (3)H22A—C22—H22C109.5
C13—N1—C12111.0 (3)H22B—C22—H22C109.5
C22—N2—C21112.2 (3)N2—C23—H23A109.5
C23—N2—C21110.1 (3)N2—C23—H23B109.5
C23—N2—C22111.1 (3)N2—C23—H23C109.5
Fe1—C1—H1126.4H23A—C23—H23B109.5
C2—C1—Fe169.02 (17)H23A—C23—H23C109.5
C2—C1—H1126.1H23B—C23—H23C109.5
C5—C1—Fe169.97 (17)Fe2—C24—H24125.9
C5—C1—H1126.1C25—C24—Fe269.95 (19)
C5—C1—C2107.7 (3)C25—C24—H24125.9
Fe1—C2—H2125.8C28—C24—Fe269.7 (2)
C1—C2—Fe170.21 (17)C28—C24—H24125.9
C1—C2—H2125.9C28—C24—C25108.1 (3)
C3—C2—Fe169.69 (18)Fe2—C25—H25126.4
C3—C2—C1108.2 (3)C24—C25—Fe269.78 (18)
C3—C2—H2125.9C24—C25—H25126.0
Fe1—C3—H3125.9C24—C25—C26108.1 (3)
C2—C3—Fe169.64 (18)C26—C25—Fe269.38 (17)
C2—C3—H3126.1C26—C25—H25126.0
C2—C3—C4107.8 (3)Fe2—C26—H26125.7
C4—C3—Fe169.93 (18)C25—C26—Fe270.24 (17)
C4—C3—H3126.1C25—C26—H26126.2
Fe1—C4—H4126.1C25—C26—C27107.6 (3)
C3—C4—Fe169.35 (18)C27—C26—Fe269.44 (18)
C3—C4—H4125.9C27—C26—H26126.2
C5—C4—Fe170.20 (18)Fe2—C27—H27125.7
C5—C4—C3108.1 (3)C26—C27—Fe269.65 (18)
C5—C4—H4125.9C26—C27—H27126.1
Fe1—C5—H5126.6C28—C27—Fe270.12 (19)
C1—C5—Fe169.67 (17)C28—C27—C26107.7 (3)
C1—C5—C4108.1 (3)C28—C27—H27126.1
C1—C5—H5125.9Fe2—C28—H28126.1
C4—C5—Fe169.34 (18)C24—C28—Fe270.1 (2)
C4—C5—H5125.9C24—C28—C27108.4 (3)
Fe1—C6—H6126.5C24—C28—H28125.8
C7—C6—Fe169.40 (17)C27—C28—Fe269.6 (2)
C7—C6—H6125.2C27—C28—H28125.8
Fe1—C1—C2—C359.5 (2)C8—C9—C11—N1121.0 (3)
Fe1—C1—C5—C458.9 (2)C10—Si1—C16—Fe2175.33 (17)
Fe1—C2—C3—C459.7 (2)C10—Si1—C16—C1797.7 (3)
Fe1—C3—C4—C559.7 (2)C10—Si1—C16—C2083.7 (3)
Fe1—C4—C5—C159.1 (2)C10—C6—C7—Fe159.2 (2)
Fe1—C6—C7—C859.4 (2)C10—C6—C7—C80.2 (3)
Fe1—C6—C10—Si1123.5 (2)C10—C9—C11—N159.6 (4)
Fe1—C6—C10—C958.09 (19)C11—C9—C10—Fe1120.0 (3)
Fe1—C7—C8—C959.0 (2)C11—C9—C10—Si13.3 (4)
Fe1—C8—C9—C1060.4 (2)C11—C9—C10—C6178.5 (3)
Fe1—C8—C9—C11119.1 (3)C12—N1—C11—C957.9 (4)
Fe1—C9—C10—Si1123.3 (2)C13—N1—C11—C9178.4 (3)
Fe1—C9—C10—C658.53 (19)C14—Si1—C10—Fe164.7 (2)
Fe1—C9—C11—N1151.2 (2)C14—Si1—C10—C623.6 (3)
Fe2—C16—C17—C1859.0 (2)C14—Si1—C10—C9158.4 (3)
Fe2—C16—C20—C1959.6 (2)C14—Si1—C16—Fe257.6 (2)
Fe2—C16—C20—C21122.0 (3)C14—Si1—C16—C17144.6 (2)
Fe2—C17—C18—C1959.7 (2)C14—Si1—C16—C2034.1 (3)
Fe2—C18—C19—C2058.8 (2)C15—Si1—C10—Fe154.7 (2)
Fe2—C19—C20—C1659.8 (2)C15—Si1—C10—C6142.9 (2)
Fe2—C19—C20—C21121.7 (3)C15—Si1—C10—C939.1 (3)
Fe2—C20—C21—N2147.6 (2)C15—Si1—C16—Fe262.9 (2)
Fe2—C24—C25—C2659.0 (2)C15—Si1—C16—C1724.0 (3)
Fe2—C24—C28—C2759.2 (2)C15—Si1—C16—C20154.6 (3)
Fe2—C25—C26—C2759.6 (2)C16—Si1—C10—Fe1173.59 (18)
Fe2—C26—C27—C2860.0 (2)C16—Si1—C10—C698.1 (3)
Fe2—C27—C28—C2459.5 (2)C16—Si1—C10—C979.8 (3)
Si1—C16—C17—Fe2120.0 (2)C16—C17—C18—Fe259.3 (2)
Si1—C16—C17—C18179.1 (2)C16—C17—C18—C190.3 (3)
Si1—C16—C20—Fe2119.7 (2)C16—C20—C21—N256.0 (4)
Si1—C16—C20—C19179.4 (2)C17—C16—C20—Fe259.05 (19)
Si1—C16—C20—C212.2 (4)C17—C16—C20—C190.6 (3)
C1—C2—C3—Fe159.9 (2)C17—C16—C20—C21179.0 (3)
C1—C2—C3—C40.1 (3)C17—C18—C19—Fe259.5 (2)
C2—C1—C5—Fe158.9 (2)C17—C18—C19—C200.7 (3)
C2—C1—C5—C40.0 (3)C18—C19—C20—Fe259.1 (2)
C2—C3—C4—Fe159.6 (2)C18—C19—C20—C160.8 (3)
C2—C3—C4—C50.2 (3)C18—C19—C20—C21179.2 (3)
C3—C4—C5—Fe159.2 (2)C19—C20—C21—N2122.1 (3)
C3—C4—C5—C10.1 (3)C20—C16—C17—Fe258.89 (19)
C5—C1—C2—Fe159.5 (2)C20—C16—C17—C180.2 (3)
C5—C1—C2—C30.1 (3)C22—N2—C21—C2059.7 (3)
C6—C7—C8—Fe159.8 (2)C23—N2—C21—C20176.0 (3)
C6—C7—C8—C90.8 (3)C24—C25—C26—Fe259.3 (2)
C7—C6—C10—Fe158.5 (2)C24—C25—C26—C270.4 (3)
C7—C6—C10—Si1177.9 (2)C25—C24—C28—Fe259.6 (2)
C7—C6—C10—C90.5 (3)C25—C24—C28—C270.5 (4)
C7—C8—C9—Fe159.3 (2)C25—C26—C27—Fe260.1 (2)
C7—C8—C9—C101.1 (3)C25—C26—C27—C280.1 (4)
C7—C8—C9—C11178.4 (3)C26—C27—C28—Fe259.7 (2)
C8—C9—C10—Fe159.5 (2)C26—C27—C28—C240.2 (4)
C8—C9—C10—Si1177.3 (2)C28—C24—C25—Fe259.5 (2)
C8—C9—C10—C60.9 (3)C28—C24—C25—C260.5 (4)
 

Funding information

Funding for this research was provided by: Mercator Research Center Ruhr. JK thanks the Fonds der Chemischen Industrie for a doctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBarth, E. R., Krupp, A., Langenohl, F., Brieger, L. & Strohmann, C. (2019). Chem. Commun. 55, 6882–6885.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, E. O. & Pfab, W. (1952). Z. Naturforsch. B, 7, 377–379.  CrossRef Google Scholar
First citationGawron, M., Nayyar, B., Krabbe, C., Lutter, M. & Jurkschat, K. (2019). Eur. J. Inorg. Chem. pp. 1799–1809.  Web of Science CSD CrossRef Google Scholar
First citationGolz, C., Steffen, P. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 8295–8298.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHauser, C. R. & Lindsay, J. K. (1956). J. Org. Chem. 21, 382–383.  CrossRef CAS Web of Science Google Scholar
First citationKealy, T. J. & Pauson, P. L. (1951). Nature, 168, 1039–1040.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarquarding, D., Klusacek, H., Gokel, G., Hoffmann, P. & Ugi, I. (1970). J. Am. Chem. Soc. 92, 5389–5393.  CrossRef CAS Web of Science Google Scholar
First citationMarr, G. (1967). J. Organomet. Chem. 9, 147–151.  CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNayyar, B., Alnasr, H., Hiller, W. & Jurkschat, K. (2018). Angew. Chem. Int. Ed. 57, 5544–5547.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalitzsch, W., Pietzsch, C., Puttnat, M., Jacob, K., Merzweiler, K., Zanello, P., Cinquantini, A., Fontani, M. & Roewer, G. (1999). J. Organomet. Chem. 587, 9–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchaarschmidt, D. & Lang, H. (2013). Organometallics, 32, 5668–5704.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteffen, P., Unkelbach, C., Christmann, M., Hiller, W. & Strohmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836–9840.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds