research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[[μ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ato-κ5N1:N2:O1:O1,O1′]silver(I)] dihydrate]

CROSSMARK_Color_square_no_text.svg

aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01033, Ukraine, and bInstitut für Anorganische Chemie, Universitat Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
*Correspondence e-mail: senchyk.ganna@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 June 2019; accepted 8 July 2019; online 12 July 2019)

The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ate (tr-ad-COO), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C13H16N3O2)]·2H2O}n, crystallizing in the rare ortho­rhom­bic C2221 space group. Alternation of the double μ2-1,2,4-triazole and μ2-η2:η1-COO (chelating, bridging mode) bridges between AgI cations supports the formation of sinusoidal coordination chains. The AgI centers possess a distorted {N2O3} square-pyramidal arrangement with τ5 = 0.30. The angular organic linkers connect the chains into a tetra­gonal framework with small channels along the c-axis direction occupied by water mol­ecules of crystallization, which are inter­linked via O—H⋯O hydrogen bonds with carboxyl­ate groups, leading to right- and left-handed helical dispositions.

1. Chemical context

Organic ligands, which contain two different functional groups, such as azole and carb­oxy­lic groups, attract attention in the context of the construction of unusual metal–organic frameworks (MOFs) including heterometallic architectures (Guillerm et al. 2014[Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141-6172.]). Each ligand function is intended to introduce its coordination ability towards a metal center forming secondary building units (SBUs) based on its peculiarities. For instance, 1,2,4-triazoles (tr) typically serve as short N,N-bridges between two metal ions resulting in polynuclear units and chains (Wang et al. 2007[Wang, Y., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 2002-2010.], Murdock & Jenkins 2014[Murdock, C. R. & Jenkins, D. M. (2014). J. Am. Chem. Soc. 136, 10983-10988.]). In contrast, carboxyl­ate groups offer a much broader variety of coordination modes: mono-, chelate-, bridging- and their combinations; and the number of connected metal ions may differ from one to four (Sun et al. 2004[Sun, D., Cao, R., Bi, W., Weng, J., Hong, M. & Liang, Y. (2004). Inorg. Chim. Acta, 357, 991-1001.]; Lu et al. 2014[Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle, T. III, Bosch, M. & Zhou, H.-C. (2014). Chem. Soc. Rev. 43, 5561-5593.]). As shown by Lincke et al. (2011[Lincke, J., Lässig, D., Moellmer, J., Reichenbach, C., Puls, A., Moeller, A., Gläser, R., Kalies, G., Staudt, R. & Krautscheid, H. (2011). Microporous Mesoporous Mater. 142, 62-69.], 2012[Lincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). Inorg. Chem. 51, 7579-7586.]), 1,2,4-triazole­carboxyl­ate ligands are good candidates for the construction of microporous MOFs suitable for gas sorption and separation. Considering the heterofunctional tr/COO ligands, there are two possible roles for them to play. First, the `separate' role, where tr is responsible for di-, tri- or tetra­nuclear cluster formation, whereas the COO group only occupies terminal (non-bridging) positions (Handke et al. 2014[Handke, M., Weber, H., Lange, M., Möllmer, J., Lincke, J., Gläser, R., Staudt, R. & Krautscheid, H. (2014). Inorg. Chem. 53, 7599-7607.]) or it can be involved in the separate coordination to metal centers. In this context, Chen et al. (2011[Chen, M., Chen, M.-S., Okamura, T., Lv, M.-F., Sun, W.-Y. & Ueyama, N. (2011). CrystEngComm, 13, 3801-3810.]) used 1,2,4-triazolyl isophthalate as a ligand in the synthesis of a series of AgILnIII heterometallic coordination polymers. Second, in the `cooperative' role, tr/COO serves as a heteroleptic bridge between the metal centers (Vasylevs'kyy et al. 2015[Vasylevs'kyy, S. I., Lysenko, A. B., Krautscheid, H., Karbowiak, M., Rusanov, E. B. & Domasevitch, K. V. (2015). Inorg. Chem. Commun. 62, 51-54.]).

[Scheme 1]

In present paper, we report the crystal structure of a new silver(I) coordination polymer [Ag(tr-ad-COO)]n·2H2O (I) based on the 1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane (C13H16N3O2; tr-ad-COOH) ligand.

2. Structural commentary

The title compound I crystallizes in the ortho­rhom­bic system with the uncommon space group C2221. The asymmetric unit contains one AgI cation, one organic ligand and three distinct water mol­ecules of crystallization, one of which (O5) is disordered over two adjacent sites (Fig. 1[link]). The O3 water mol­ecule is situated on a crystallographic twofold axis passing through the O atom, while the O4 water molecule is statistically disordered over two positions, both possessing an occupancy factor of 0.5. Thus, in the asymmetric unit, the total atom content sums up to two water molecules. The 1,2,4-triazole functional group is coordinated by two AgI centers as a μ2-N,N bridge and the carboxyl­ate group connects two AgI centers in a chelating, bridging mode (μ2-η2:η1), supporting the formation of sinusoidal chains with a periodicity of 13 Å.

[Figure 1]
Figure 1
Fragment of the crystal structure of I. The independent part of the structure is indicated with black bonds and displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z, (ii) [{1\over 2}] + x, −[{1\over 2}] + y, z, (iii) x, −y, 1 − z]

In the case of compound I an unusual situation with alternation of double triazoles and double carboxyl­ate bridges within the chain is observed. Thus, the tr-ad-COO ligands act in a deprotonated form adopting a μ4-coordination modes (Fig. 2[link]) that yields a three-dimensional tetra­gonal pattern with open channels along the c-axis direction (Fig. 3[link]).

[Figure 2]
Figure 2
Projection on the bc plane showing the inter­connection of sinusoidal AgI coordination chains by means of tr-ad-COO organic ligands into a three-dimensional framework.
[Figure 3]
Figure 3
View of the channels along the c axis in the structure of I.

The coordination environment of the AgI cation is a very distorted {N2O3} polyhedron with two Ag—N(triazole) [2.291 (3) Å, 2.442 (3) Å] and three elongated Ag—O(carboxyl­ate) [2.437 (3)–2.703 (4) Å] bonds (Table 1[link]). The geometry of the five-coordinate center can be described by the geometric parameter τ5, which represents the degree of trigonality between two ideal structures – trigonal bipyramid (τ5 = 1) and square pyramid (τ5 = 0) (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In compound I, the Ag1 center has τ5 = 0.30, indicating a significantly distorted square-pyramidal geometry.

Table 1
Selected geometric parameters (Å, °)

Ag1—N2i 2.291 (3) Ag1—O2 2.571 (4)
Ag1—O1 2.437 (3) Ag1—O2iii 2.703 (4)
Ag1—N1ii 2.442 (3)    
       
N2i—Ag1—O1 125.93 (11) N1ii—Ag1—O2 121.93 (12)
N2i—Ag1—N1ii 92.12 (11) N2i—Ag1—O2iii 101.35 (11)
O1—Ag1—N1ii 106.84 (11) O1—Ag1—O2iii 128.04 (11)
N2i—Ag1—O2 145.74 (12) N1ii—Ag1—O2iii 89.79 (11)
O1—Ag1—O2 51.95 (11) O2—Ag1—O2iii 77.22 (13)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x, -y, -z+1.

3. Supra­molecular features

The water guest mol­ecules inside the [001] channels are responsible for the extended hydrogen-bonding network (Table 2[link]). Together with the –COO groups, they are organized into two types of helices along the c axis – smaller right-handed (A in Fig. 4[link]) and bigger left-handed (B in Fig. 4[link]). In addition, weak C—H(triazole)⋯O1(COO) and C—H(triazole)⋯O4(water) contacts are observed. The packig is shown in Fig. 5[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1W⋯O1 0.85 1.97 2.818 (5) 171
O4—H2W⋯O3 0.85 1.92 2.746 (10) 163
O4—H3W⋯O5Aiv 0.85 1.81 2.56 (2) 147
O4—H3W⋯O5Biv 0.85 2.11 2.83 (3) 143
C1—H1⋯O1v 0.94 2.43 3.336 (5) 162
C2—H2⋯O4vi 0.94 2.58 3.516 (12) 171
Symmetry codes: (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Hydrogen-bonding scheme between water mol­ecules and COO groups showing the formation of right-handed (A) and left-handed (B) helices. Adamantyl fragments are omitted for clarity. [Symmetry codes: (iv) [{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (v) − [{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (vi) 1 − x, y, [{1\over 2}] − z; (vii) [{1\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] + z.]
[Figure 5]
Figure 5
The packing of the right- and left-handed helices in the crystal structure of I (top view). Adamantyl fragments are omitted for clarity.

4. Synthesis and crystallization

1-(1,2,4-Triazol-4-yl)-3-carb­oxy­adamantane (tr-ad-COOH) was synthesized by refluxing 3-amino-adamantane-1-carb­oxy­lic acid (Wanka et al., 2007[Wanka, L., Cabrele, C., Vanejews, M. & Schreiner, P. R. (2007) Eur. J. Org. Chem. pp. 1474-1490.]) (3.00 g, 15.4 mmol) and di­methyl­formamide azine (5.46 g, 38.5 mmol) in the presence of toluene­sulfonic acid monohydrate (0.44 g, 2.3 mmol) as catalyst in DMF (30 ml). Yield = 63%.

The synthesis of I was carried out under hydro­thermal conditions as follows. A mixture of AgNO3 (17.0 mg, 0.100 mmol), tr-ad-COOH (12.4 mg, 0.050 mmol) and 5 ml of water was added into a Teflon vessel, which was sealed and heated at 413 K for 24 h and slowly cooled to room temperature over 48 h, yielding colourless needles of I (yield 13.3 mg, 68%).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. O4 lies adjacent to a crystallographic twofold axis and is statistically disordered over two positions (O4⋯O4 = 0.60 Å) and O5 is statistically disordered over adjacent locations (O5A⋯O5B = 0.77 Å). CH hydrogen atoms were positioned geometrically and refined as riding, with C—H = 0.94 Å (triazole); C—H = 0.98 Å (adamantane CH2); C—H = 0.99 Å (adamantane CH) and with Uiso(H) = 1.2Ueq(C). OH hydrogen atoms were located and then refined with O—H = 0.85 Å (H2O) and with Uiso(H) = 1.5Ueq(O). For one of the disordered water mol­ecules, the H atoms were not located.

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C13H16N3O2)]·2H2O
Mr 390.19
Crystal system, space group Orthorhombic, C2221
Temperature (K) 213
a, b, c (Å) 12.9321 (9), 17.9056 (10), 12.9695 (9)
V3) 3003.2 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.36
Crystal size (mm) 0.22 × 0.18 × 0.16
 
Data collection
Diffractometer Stoe Image plate diffraction system
Absorption correction Numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])]
Tmin, Tmax 0.649, 0.689
No. of measured, independent and observed [I > 2σ(I)] reflections 13596, 3617, 3135
Rint 0.028
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 0.97
No. of reflections 3617
No. of parameters 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.94
Absolute structure Flack x determined using 1289 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.060 (9)
Computer programs: IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Poly[[[µ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxylato-κ5N1:N2:O1:O1,O1']silver(I)] dihydrate] top
Crystal data top
[Ag(C13H16N3O2)]·2H2ODx = 1.726 Mg m3
Mr = 390.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 13596 reflections
a = 12.9321 (9) Åθ = 2.8–28.0°
b = 17.9056 (10) ŵ = 1.36 mm1
c = 12.9695 (9) ÅT = 213 K
V = 3003.2 (3) Å3Needle, colourless
Z = 80.22 × 0.18 × 0.16 mm
F(000) = 1584
Data collection top
Stoe Image plate diffraction system
diffractometer
3135 reflections with I > 2σ(I)
φ oscillation scansRint = 0.028
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
θmax = 28.0°, θmin = 2.8°
Tmin = 0.649, Tmax = 0.689h = 1717
13596 measured reflectionsk = 2223
3617 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.89 e Å3
3617 reflectionsΔρmin = 0.94 e Å3
204 parametersAbsolute structure: Flack x determined using 1289 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.060 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.39032 (3)0.01581 (2)0.35981 (2)0.04198 (10)
O10.4141 (3)0.14822 (17)0.3962 (2)0.0474 (8)
O20.3185 (3)0.09152 (19)0.5123 (3)0.0581 (9)
N10.0616 (2)0.45845 (17)0.3648 (3)0.0318 (6)
N20.1451 (2)0.46474 (17)0.2982 (2)0.0316 (7)
N30.1946 (2)0.39903 (16)0.4325 (2)0.0231 (6)
C10.0930 (3)0.4190 (2)0.4435 (3)0.0282 (8)
H10.05140.40600.50010.034*
C20.2230 (3)0.4290 (2)0.3398 (2)0.0276 (7)
H20.28900.42450.31020.033*
C30.3583 (3)0.1495 (2)0.4758 (3)0.0339 (9)
C40.2574 (2)0.3521 (2)0.5055 (3)0.0219 (7)
C50.2762 (3)0.27539 (19)0.4550 (3)0.0234 (7)
H5A0.31390.28190.39000.028*
H5B0.20980.25150.43960.028*
C60.3398 (3)0.2253 (2)0.5293 (3)0.0260 (7)
C70.2807 (3)0.2174 (2)0.6319 (3)0.0333 (8)
H7A0.21400.19290.61960.040*
H7B0.32060.18620.67960.040*
C80.2626 (3)0.2948 (2)0.6802 (3)0.0333 (9)
H80.22470.28870.74600.040*
C90.1977 (3)0.3427 (2)0.6064 (3)0.0278 (8)
H9A0.13110.31840.59310.033*
H9B0.18430.39170.63740.033*
C100.3616 (3)0.3907 (2)0.5253 (3)0.0287 (8)
H10A0.35020.44010.55560.034*
H10B0.39900.39700.46010.034*
C110.4256 (3)0.3416 (2)0.5999 (3)0.0326 (8)
H110.49300.36590.61350.039*
C120.4439 (3)0.2646 (2)0.5505 (3)0.0294 (8)
H12A0.48590.23380.59680.035*
H12B0.48190.27070.48570.035*
C130.3663 (3)0.3327 (2)0.7016 (3)0.0384 (10)
H13A0.40690.30250.74990.046*
H13B0.35470.38180.73280.046*
O30.50000.2468 (3)0.25000.0630 (13)
H1W0.47870.21900.29880.094*
O40.5231 (6)0.3992 (4)0.2479 (18)0.068 (3)0.5
H2W0.51530.35300.23480.102*0.5
H3W0.57240.40380.29090.102*0.5
O5A0.1318 (13)0.0398 (10)0.6097 (11)0.096 (4)0.5
O5B0.1073 (12)0.0560 (11)0.5604 (12)0.100 (5)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04963 (17)0.03609 (16)0.04023 (15)0.01122 (15)0.00959 (15)0.01749 (13)
O10.063 (2)0.0348 (16)0.0446 (17)0.0145 (14)0.0012 (14)0.0141 (12)
O20.064 (2)0.0231 (18)0.087 (3)0.0013 (17)0.005 (2)0.0047 (15)
N10.0325 (15)0.0318 (15)0.0311 (14)0.0098 (12)0.0019 (15)0.0012 (14)
N20.0379 (17)0.0292 (17)0.0275 (14)0.0059 (13)0.0028 (12)0.0018 (12)
N30.0255 (15)0.0201 (15)0.0239 (14)0.0042 (12)0.0023 (11)0.0004 (11)
C10.0258 (19)0.0321 (19)0.0266 (17)0.0057 (15)0.0039 (14)0.0016 (13)
C20.0290 (17)0.0307 (19)0.0231 (17)0.0050 (15)0.0002 (13)0.0037 (13)
C30.037 (2)0.019 (2)0.045 (2)0.0076 (16)0.0134 (16)0.0061 (17)
C40.0260 (15)0.022 (2)0.0176 (13)0.0035 (15)0.0030 (14)0.0009 (11)
C50.0261 (16)0.0211 (17)0.0229 (15)0.0034 (14)0.0023 (13)0.0028 (13)
C60.0317 (18)0.0184 (17)0.0280 (17)0.0040 (15)0.0026 (13)0.0024 (13)
C70.0394 (18)0.0290 (19)0.0315 (18)0.0046 (15)0.0011 (17)0.0080 (16)
C80.042 (2)0.039 (2)0.0196 (15)0.0089 (17)0.0015 (15)0.0045 (14)
C90.0321 (19)0.0278 (19)0.0235 (16)0.0076 (15)0.0039 (13)0.0010 (13)
C100.0305 (19)0.0208 (19)0.0349 (19)0.0023 (14)0.0063 (13)0.0024 (15)
C110.0323 (19)0.0275 (19)0.0380 (19)0.0011 (15)0.0147 (15)0.0050 (15)
C120.0272 (18)0.029 (2)0.0321 (19)0.0056 (16)0.0059 (14)0.0003 (15)
C130.052 (3)0.037 (2)0.0266 (17)0.0087 (18)0.0121 (16)0.0052 (15)
O30.067 (3)0.060 (3)0.062 (3)0.0000.001 (3)0.000
O40.051 (9)0.068 (4)0.085 (5)0.008 (4)0.018 (10)0.000 (6)
O5A0.089 (10)0.109 (9)0.091 (10)0.005 (7)0.009 (7)0.018 (8)
O5B0.060 (7)0.128 (12)0.110 (11)0.003 (8)0.005 (8)0.045 (10)
Geometric parameters (Å, º) top
Ag1—N2i2.291 (3)C6—C121.544 (5)
Ag1—O12.437 (3)C7—C81.538 (5)
Ag1—N1ii2.442 (3)C7—H7A0.9800
Ag1—O22.571 (4)C7—H7B0.9800
Ag1—O2iii2.703 (4)C8—C131.529 (6)
O1—C31.259 (5)C8—C91.536 (5)
O2—C31.251 (5)C8—H80.9900
N1—C11.305 (5)C9—H9A0.9800
N1—N21.387 (4)C9—H9B0.9800
N1—Ag1iv2.442 (3)C10—C111.548 (5)
N2—C21.310 (5)C10—H10A0.9800
N2—Ag1v2.291 (3)C10—H10B0.9800
N3—C21.366 (4)C11—C131.533 (6)
N3—C11.369 (5)C11—C121.538 (5)
N3—C41.505 (4)C11—H110.9900
C1—H10.9400C12—H12A0.9800
C2—H20.9400C12—H12B0.9800
C3—C61.544 (5)C13—H13A0.9800
C4—C91.530 (5)C13—H13B0.9800
C4—C101.535 (5)O3—H1W0.8500
C4—C51.541 (5)O4—O4vi0.601 (16)
C5—C61.552 (5)O4—H2W0.8500
C5—H5A0.9800O4—H3W0.8500
C5—H5B0.9800O5A—O5B0.770 (16)
C6—C71.542 (5)
N2i—Ag1—O1125.93 (11)C3—C6—C5108.1 (3)
N2i—Ag1—N1ii92.12 (11)C8—C7—C6110.1 (3)
O1—Ag1—N1ii106.84 (11)C8—C7—H7A109.6
N2i—Ag1—O2145.74 (12)C6—C7—H7A109.6
O1—Ag1—O251.95 (11)C8—C7—H7B109.6
N1ii—Ag1—O2121.93 (12)C6—C7—H7B109.6
N2i—Ag1—O2iii101.35 (11)H7A—C7—H7B108.2
O1—Ag1—O2iii128.04 (11)C13—C8—C9110.1 (3)
N1ii—Ag1—O2iii89.79 (11)C13—C8—C7110.0 (3)
O2—Ag1—O2iii77.22 (13)C9—C8—C7109.5 (3)
C3—O1—Ag196.0 (3)C13—C8—H8109.1
C3—O2—Ag189.9 (3)C9—C8—H8109.1
C1—N1—N2106.7 (3)C7—C8—H8109.1
C1—N1—Ag1iv122.0 (2)C4—C9—C8108.5 (3)
N2—N1—Ag1iv130.9 (2)C4—C9—H9A110.0
C2—N2—N1107.6 (3)C8—C9—H9A110.0
C2—N2—Ag1v135.8 (2)C4—C9—H9B110.0
N1—N2—Ag1v115.7 (2)C8—C9—H9B110.0
C2—N3—C1104.3 (3)H9A—C9—H9B108.4
C2—N3—C4128.9 (3)C4—C10—C11108.6 (3)
C1—N3—C4126.8 (3)C4—C10—H10A110.0
N1—C1—N3111.0 (3)C11—C10—H10A110.0
N1—C1—H1124.5C4—C10—H10B110.0
N3—C1—H1124.5C11—C10—H10B110.0
N2—C2—N3110.3 (3)H10A—C10—H10B108.4
N2—C2—H2124.8C13—C11—C12110.0 (3)
N3—C2—H2124.8C13—C11—C10109.2 (3)
O2—C3—O1122.1 (4)C12—C11—C10109.3 (3)
O2—C3—C6119.7 (4)C13—C11—H11109.4
O1—C3—C6118.2 (4)C12—C11—H11109.4
N3—C4—C9109.1 (3)C10—C11—H11109.4
N3—C4—C10109.1 (3)C11—C12—C6110.4 (3)
C9—C4—C10110.5 (3)C11—C12—H12A109.6
N3—C4—C5108.4 (3)C6—C12—H12A109.6
C9—C4—C5110.2 (3)C11—C12—H12B109.6
C10—C4—C5109.5 (3)C6—C12—H12B109.6
C4—C5—C6109.5 (3)H12A—C12—H12B108.1
C4—C5—H5A109.8C8—C13—C11109.2 (3)
C6—C5—H5A109.8C8—C13—H13A109.8
C4—C5—H5B109.8C11—C13—H13A109.8
C6—C5—H5B109.8C8—C13—H13B109.8
H5A—C5—H5B108.2C11—C13—H13B109.8
C7—C6—C12108.7 (3)H13A—C13—H13B108.3
C7—C6—C3112.6 (3)O4vi—O4—H2W84.2
C12—C6—C3110.2 (3)O4vi—O4—H3W133.4
C7—C6—C5109.1 (3)H2W—O4—H3W108.4
C12—C6—C5108.1 (3)
C1—N1—N2—C20.1 (4)O2—C3—C6—C5114.4 (4)
Ag1iv—N1—N2—C2173.7 (3)O1—C3—C6—C565.8 (4)
C1—N1—N2—Ag1v171.1 (2)C4—C5—C6—C758.0 (4)
Ag1iv—N1—N2—Ag1v15.1 (4)C4—C5—C6—C1260.0 (4)
N2—N1—C1—N30.4 (4)C4—C5—C6—C3179.3 (3)
Ag1iv—N1—C1—N3174.1 (2)C12—C6—C7—C858.8 (4)
C2—N3—C1—N10.5 (4)C3—C6—C7—C8178.8 (3)
C4—N3—C1—N1178.4 (3)C5—C6—C7—C858.8 (4)
N1—N2—C2—N30.2 (4)C6—C7—C8—C1360.3 (4)
Ag1v—N2—C2—N3168.8 (3)C6—C7—C8—C960.7 (4)
C1—N3—C2—N20.4 (4)N3—C4—C9—C8180.0 (3)
C4—N3—C2—N2178.3 (3)C10—C4—C9—C860.1 (4)
Ag1—O2—C3—O14.0 (4)C5—C4—C9—C861.1 (4)
Ag1—O2—C3—C6176.3 (3)C13—C8—C9—C459.9 (4)
Ag1—O1—C3—O24.2 (4)C7—C8—C9—C461.1 (4)
Ag1—O1—C3—C6176.0 (3)N3—C4—C10—C11179.7 (3)
C2—N3—C4—C9170.9 (3)C9—C4—C10—C1160.4 (4)
C1—N3—C4—C911.7 (5)C5—C4—C10—C1161.2 (4)
C2—N3—C4—C1050.1 (5)C4—C10—C11—C1360.1 (4)
C1—N3—C4—C10132.5 (3)C4—C10—C11—C1260.4 (4)
C2—N3—C4—C569.0 (4)C13—C11—C12—C659.3 (4)
C1—N3—C4—C5108.3 (4)C10—C11—C12—C660.6 (4)
N3—C4—C5—C6179.3 (3)C7—C6—C12—C1158.4 (4)
C9—C4—C5—C660.0 (3)C3—C6—C12—C11177.8 (3)
C10—C4—C5—C661.8 (4)C5—C6—C12—C1159.8 (4)
O2—C3—C6—C76.2 (5)C9—C8—C13—C1160.8 (4)
O1—C3—C6—C7173.6 (3)C7—C8—C13—C1159.9 (4)
O2—C3—C6—C12127.7 (4)C12—C11—C13—C859.4 (4)
O1—C3—C6—C1252.1 (4)C10—C11—C13—C860.5 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y, z+1; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O10.851.972.818 (5)171
O4—H2W···O30.851.922.746 (10)163
O4—H3W···O5Avii0.851.812.56 (2)147
O4—H3W···O5Bvii0.852.112.83 (3)143
C1—H1···O1viii0.942.433.336 (5)162
C2—H2···O4vi0.942.583.516 (12)171
Symmetry codes: (vi) x+1, y, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x1/2, y+1/2, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-05).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, M., Chen, M.-S., Okamura, T., Lv, M.-F., Sun, W.-Y. & Ueyama, N. (2011). CrystEngComm, 13, 3801–3810.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141–6172.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHandke, M., Weber, H., Lange, M., Möllmer, J., Lincke, J., Gläser, R., Staudt, R. & Krautscheid, H. (2014). Inorg. Chem. 53, 7599–7607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). Inorg. Chem. 51, 7579–7586.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLincke, J., Lässig, D., Moellmer, J., Reichenbach, C., Puls, A., Moeller, A., Gläser, R., Kalies, G., Staudt, R. & Krautscheid, H. (2011). Microporous Mesoporous Mater. 142, 62–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle, T. III, Bosch, M. & Zhou, H.-C. (2014). Chem. Soc. Rev. 43, 5561–5593.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMurdock, C. R. & Jenkins, D. M. (2014). J. Am. Chem. Soc. 136, 10983–10988.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSun, D., Cao, R., Bi, W., Weng, J., Hong, M. & Liang, Y. (2004). Inorg. Chim. Acta, 357, 991–1001.  Web of Science CSD CrossRef CAS Google Scholar
First citationVasylevs'kyy, S. I., Lysenko, A. B., Krautscheid, H., Karbowiak, M., Rusanov, E. B. & Domasevitch, K. V. (2015). Inorg. Chem. Commun. 62, 51–54.  CAS Google Scholar
First citationWang, Y., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 2002–2010.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWanka, L., Cabrele, C., Vanejews, M. & Schreiner, P. R. (2007) Eur. J. Org. Chem. pp. 1474–1490.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds