research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure at 100 K of bis­­[1,2-bis­­(di­phenyl­phosphan­yl)ethane]­nickel(II) bis­­(tri­fluoro­methane­sulfonate): a possible negative thermal expansion mol­ecular material

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá Kr 30 No 45-03, Colombia, and bDepartment of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University El Paso, Texas 79968, USA
*Correspondence e-mail: aduarter@unal.edu.co

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 September 2018; accepted 19 October 2018; online 31 October 2018)

In the title salt, [Ni(C26H24P2)2](CF3SO3)2 or [Ni(dppe)2]2+·(OTf)2 [dppe = 1,2-bis­(di­phenyl­phosphan­yl)ethane and OTf = tri­fluoro­methane­sulfonate], the Ni atom (site symmetry [\overline{1}]) has a square-planar geometry with the bidentate ligands chelating the metal. As a result of the steric hindrance of the phenyl rings, the counter-ions are blocked from the metal coordination sphere. The dynamic disorder of the anion existing at 296 K is reduced at 100 K and based on these two temperatures, negative thermal expansion behaviour is observed.

1. Chemical context

The cation presented here has been synthesized with different counter-ions [Ni(C26H24P2)2X2 for different reasons: as by-product in a halogenation process (X = Cl, Br, I) (Zarkesh et al., 2014[Zarkesh, R. A., Hopkins, M. D. & Jordan, R. F. (2014). Eur. J. Inorg. Chem. pp. 5491-5494.]); to research its anti­cancer properties (X = Br, I, NO3) (Jarrett & Sadler, 1991[Jarrett, P. S. & Sadler, P. J. (1991). Inorg. Chem. 30, 2098-2104.]); as result of protonation studies (X = ClO4) (Cariati et al., 1966[Cariati, F., Ugo, R. & Bonati, F. (1966). Inorg. Chem. 5, 1128-1132.]); and as byproducts while trying to increase the coordination number of [Ni(dppe)X2] (X = Cl, Br, I; Hudson et al., 1968[Hudson, M. J., Nyholm, R. S. & Stiddard, M. H. B. (1968). J. Chem. Soc. A, pp. 40-43.]). Moreover, to date there are just two reports of its crystal structure with NO3 (VASCIB; Williams, 1989[Williams, A. F. (1989). Acta Cryst. C45, 1002-1005.]) and Br counter-ions (XUQYOZ; Higgs et al., 2010[Higgs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446-5449.]).

[Scheme 1]

Triflates (trifluro­methane­sulfonates, CF3SO4) are known as precursors of a wide range of compounds due to their lability (Lawrence, 1986[Lawrence, G. A. (1986). Chem. Rev. 86, 17-33.]). Therefore, we compare the title structure, 1, to the structures reported with the other two counter-ions to evaluate the effect of introducing the triflate. As we describe below, the crystal structure at room temperature (see supplementary material) shows disorder of the anion that is reduced, but not completely eliminated at 100 K. In addition, the structure shows negative thermal expansion (NTE) (Liu et al., 2018[Liu, Z., Gao, Q., Chen, J., Deng, J., Lin, K. & Xing, X. (2018). Chem. Commun. 54, 5164-5176.]) based on the unit-cell volume at the two measured temperatures.

2. Structural commentary

The geometry of the cation formed by Ni (site symmetry [\overline{1}]) with the two dppe ligands is square planar (Fig. 1[link]). We might expect the Ni—P distances to be the same (the ligand is symmetric); however, they are different. The corresponding distances are listed in Table 1[link] for the structure collected at 296 and 100 K and compared to the ones from VASCIB (Williams, 1989[Williams, A. F. (1989). Acta Cryst. C45, 1002-1005.]) and XUQYOZ (Higgs et al., 2010[Higgs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446-5449.]). As this structure is formed by chelation of a simple bidentate ligand, the counter-ion has a limited effect on it, and as in the two previous structures reported, the triflate ions remain outside of the coordination sphere, being blocked from the metal center by the phenyl rings. However, there is an effect on the P—C—C—P torsion angle of the chelate ring, which is probably dependent on the size of the counter-ion (Table 1[link]).

Table 1
Comparison of selected geometric parameters (Å, °) for 1 at 296 and 100 K, VASCIB and XUQYOZ

Parameter 1 at 296 K 1 at 100 K VASCIB XUQYOZ
Ni—P 2.219 (2) 2.243 (1) 2.256 (3) 2.237 (1)
  2.238 (2) 2.265 (1) 2.261 (3) 2.245 (1)
P1—Ni—P2 84.7 (1) 84.9 (1) 83.2 (1) 83.6 (1)
P1—C—C—P2 43.9 (4) 42.8 (2) 30.8 (1) 39.9 (3)
[Figure 1]
Figure 1
ORTEP rendering of 1 at 100 K with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms and the disordered parts of the anion were omitted for clarity. Atoms with the suffix A are generated by the symmetry operation (1 − x, 1 − y, 1 − z).

The bulky cation formed and the lack of strong inter­actions with the counter-ions lead to presumed dynamic disorder of the triflate ion at room temperature (296 K), which was also observed in the case of VASCIB (Williams, 1989[Williams, A. F. (1989). Acta Cryst. C45, 1002-1005.]). XUQYOZ on the other hand was acquired at a lower temperature (85 K) and no reference to any disorder was reported (Higgs et al., 2010[Higgs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446-5449.]).

For 1 at 296 K, the triflate anion is disordered over two sets of sites with 65% occupancy for the major component, which is the one with the shortest distance to the Ni atom (Fig. 2[link]). The distance between the disordered structures is as follows, for the carbon atoms 0.744 (15) and for the S atoms 0.34 (4) Å (Fig. 2[link]). For 1 at 100 K, the disorder is reduced although not eliminated completely (Fig. 2[link]): the two disorder components share the S atom, while the distance between the carbon atoms is 0.354 (19) Å; the major component occupancy is similar, 67%. At 296 K there is a differentiation between the distances Ni—O from each of the parts [4.272 (8) and 4.365 (14) Å], but at 100 K the two distances are not statistically different [4.267 (8) and 4.320 (14) Å]. This could be analysed in two ways: the disorder is also static or the temperature is not low enough to eliminate completely the dynamic disorder.

[Figure 2]
Figure 2
Ball and stick rendering of the tri­fluoro­methane­sulfonate ion for 1 at 100 K (left) and at 296 K (right) showing both disorder components. Open bonds indicate the minor disorder component.

Surprisingly, a negative thermal expansion was observed (Liu et al., 2018[Liu, Z., Gao, Q., Chen, J., Deng, J., Lin, K. & Xing, X. (2018). Chem. Commun. 54, 5164-5176.]). The Ni—P bond distances for 1 at 100 K (Table 1[link]) are elongated by 1.08 and 1.20% in comparison to the values for 1 at 296 K, very close values to the volumetric expansion of the unit cell of 1.25 (12)%. With respect to the unit cell, the a and b axes are affected most in comparison with c, with coefficients of linear expansion (αl) of −29 (4) × 10−6, −30 (4) × 10−6, and −6(4) × 10 −6 K−1 respectively. Based on two temperatures, the volumetric thermal expansion coefficient for the title compound is −63 (6) × 10 −6 K−1.

Another feature of the anion–cation inter­action is that the Ni⋯O long-distance inter­action is not perpendicular to the mean plane formed by Ni and the four P atoms but tilted at an angle of 74° (Fig. 3[link]). This tilted orientation is also present in the crystal structures of VASCIB (Williams, 1989[Williams, A. F. (1989). Acta Cryst. C45, 1002-1005.]) and XUQYOZ (Higgs et al., 2010[Higgs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446-5449.]) with angles of 73 and 71°, respectively.

[Figure 3]
Figure 3
View parallel to the coordination plane of the Ni and P atoms, showing the counter-ions blocked by the phenyl rings. A space-filling rendering was used for the phenyl groups, the Ni atom and the oxygen atom pointed towards Ni. The disordered part of the anion is omitted for clarity.

A packing diagram of 1 at 100 K viewed down [100] is shown in Fig. 4[link]; there are C—H⋯X (X = O, F) interactions, but because of the disorder of the triflate ion they are not described in detail.

[Figure 4]
Figure 4
Packing view of 1 at 100 K along the a axis.

3. Database survey

Dppe is a very common ligand: more than 2800 structures are reported in the Cambridge Structural Database (CSD version 5.38, updated ofMay2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 240 of them are with nickel, and only one (LUCLOK; Uehara et al., 2002[Uehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529-3538.]) has triflate as counter-ion. In this example, as in other reports of nickel with different ligands (e.g. Lyubartseva et al., 2013[Lyubartseva, G., Parkin, S. & Mallik, U. P. (2013). Acta Cryst. E69, m532-m533.]), the triflate anions are outside the coordination sphere as is the case with the title compound and with the two reports with different counter-ions: NO3 (VASCIB; Williams, 1989[Williams, A. F. (1989). Acta Cryst. C45, 1002-1005.]) and Cl (XUQYOZ; Higgs et al., 2010[Higgs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446-5449.]).

For comparison, compounds with similar structures to the title compound and the same metallic group (group 10: PII, PtII) with bis­[1,2–bis­(di­phenyl­phosphan­yl)ethane], show almost an ideal square-planar geometry and also counter-ions outside the coordination sphere (see, for example, Engelhardt et al., 1984[Engelhardt, L. M., Patrick, J. M., Raston, C. L., Twiss, P. & White, A. H. (1984). Aust. J. Chem. 37, 2193-2200.]).

With respect to the Ni—P distances, we found in the CSD that both equivalent and non-equivalent Ni—P distances occur for Ni(+2)-bis­(diphosphines), although it is hard to discern a pattern: for example, the Ni complexes formed with the 1-para-X-phenyl-3,6-triphenyl-1-aza-3,6-diphospha­cyclo­heptane ligand, X = Cl (IFOFOA) or Br (IFOFEQ), are isostructural compounds that crystallize in space group P[\overline{1}] (Stewart et al., 2013[Stewart, M. P., Ho, M.-H., Wiese, S., Lindstrom, M. L., Thogerson, C. E., Raugei, S., Bullock, R. M. & Helm, M. L. (2013). J. Am. Chem. Soc. 135, 6033-6046.]), but one has equivalent Ni—P bonds while the other does not.

4. Synthesis and crystallization

The title compound was prepared in two steps. First, 1,2–bis­(di­phenyl­phosphan­yl)ethane and nickel(II) chloride hexa­hydrate (molar ratio 1:2) were reacted in hot ethanol. The product obtained, di­chloro-bis­[1,2–bis­(di­phenyl­phosphan­yl)ethane]nickel(II), was then reacted with silver(I) tri­fluoro­methane­sulfonate in di­chloro­methane (molar ratio 1:2). The product of this second reaction was filtered off and purified using a Soxhlet system with di­chloro­methane in which the by product, silver(I) chloride, was insoluble (Cano, 2012[Cano, C. A. (2012). Undergraduate thesis, Universidad Nacional de Colombia, Bogotá D. C., Colombia.]).

The crystallization process was carried out by dissolution of the purified compound in the minimum volume of methanol at 323 K (≃ 2.5 mg mL−1). When the solution reached room temperature, it was transferred to a chamber saturated with diethyl ether. Diffusion of diethyl ether into the solution over a three-week period led to the formation of translucent intensely yellow block-like crystals at the bottom and on the walls of the vessel.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C25H24P2)2](CF3O3S)2
Mr 1153.63
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.0462 (4), 16.1813 (6), 14.3914 (5)
β (°) 98.143 (1)
V3) 2546.41 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.21 × 0.19 × 0.09
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.])
Tmin, Tmax 0.828, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 30965, 7253, 5928
Rint 0.039
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.04
No. of reflections 7253
No. of parameters 395
No. of restraints 144
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and OLEX2 (Dolomanov et al., 2009).

Bis[1,2-bis(diphenylphosphanyl)ethane]nickel(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Ni(C26H24P2)2](CF3O3S)2F(000) = 1188
Mr = 1153.63Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.0462 (4) ÅCell parameters from 8190 reflections
b = 16.1813 (6) Åθ = 2.3–29.9°
c = 14.3914 (5) ŵ = 0.66 mm1
β = 98.143 (1)°T = 100 K
V = 2546.41 (16) Å3Cube, yellow
Z = 20.21 × 0.19 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5928 reflections with I > 2σ(I)
Radiation source: fine-focus X-ray tube, Bruker SMART APEX CCDRint = 0.039
ω and φ scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1515
Tmin = 0.828, Tmax = 0.974k = 2220
30965 measured reflectionsl = 1916
7253 independent reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0417P)2 + 1.7778P]
where P = (Fo2 + 2Fc2)/3
7253 reflections(Δ/σ)max = 0.001
395 parametersΔρmax = 0.64 e Å3
144 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.01104 (8)
P10.53302 (4)0.38286 (3)0.42411 (3)0.01285 (10)
P20.69870 (4)0.48827 (3)0.56393 (3)0.01274 (10)
S10.26698 (4)0.39668 (3)0.80990 (3)0.02173 (11)
F10.2529 (7)0.5524 (4)0.8625 (7)0.0447 (13)0.65 (2)
F20.4016 (7)0.4830 (5)0.9367 (4)0.0379 (13)0.65 (2)
F30.2175 (10)0.4617 (6)0.9650 (5)0.0491 (18)0.65 (2)
O10.3362 (11)0.4294 (11)0.7393 (10)0.0208 (17)0.65 (2)
O20.1365 (6)0.3986 (9)0.7762 (11)0.039 (2)0.65 (2)
O30.3121 (10)0.3245 (4)0.8587 (7)0.0390 (14)0.65 (2)
C270.2842 (7)0.4783 (5)0.8967 (5)0.0258 (12)0.65 (2)
F1A0.2385 (18)0.5530 (8)0.8295 (13)0.054 (3)0.35 (2)
F2A0.3693 (16)0.5037 (11)0.9377 (10)0.052 (3)0.35 (2)
F3A0.1751 (13)0.4830 (6)0.9399 (10)0.038 (2)0.35 (2)
O1A0.353 (2)0.419 (2)0.7470 (19)0.018 (3)0.35 (2)
O2A0.1429 (12)0.3789 (17)0.778 (2)0.040 (4)0.35 (2)
O3A0.323 (2)0.3366 (11)0.8793 (14)0.052 (4)0.35 (2)
C27A0.2607 (15)0.4870 (11)0.8830 (11)0.039 (3)0.35 (2)
C10.69589 (16)0.38126 (12)0.41112 (13)0.0163 (3)
H1A0.71910.32590.39020.020*
H1B0.71270.42240.36360.020*
C20.76932 (16)0.40193 (11)0.50616 (13)0.0163 (3)
H2A0.85370.41730.49740.020*
H2B0.77390.35250.54700.020*
C30.79945 (15)0.57547 (11)0.55049 (12)0.0146 (3)
C40.82936 (17)0.59377 (12)0.46148 (13)0.0189 (4)
H40.79790.56030.40940.023*
C50.90443 (17)0.66028 (13)0.44857 (14)0.0216 (4)
H50.92410.67240.38790.026*
C60.95088 (17)0.70922 (12)0.52492 (14)0.0218 (4)
H61.00150.75520.51620.026*
C70.92328 (18)0.69083 (12)0.61367 (14)0.0217 (4)
H70.95620.72380.66580.026*
C80.84752 (17)0.62430 (12)0.62676 (13)0.0177 (4)
H80.82860.61220.68770.021*
C90.72551 (16)0.45953 (11)0.68697 (12)0.0144 (3)
C100.84583 (16)0.45136 (12)0.73350 (13)0.0170 (4)
H100.91330.46470.70200.020*
C110.86528 (17)0.42372 (12)0.82559 (13)0.0194 (4)
H110.94640.41890.85750.023*
C120.76717 (18)0.40297 (12)0.87152 (13)0.0206 (4)
H120.78150.38420.93470.025*
C130.64807 (18)0.40952 (12)0.82552 (14)0.0202 (4)
H130.58100.39480.85680.024*
C140.62791 (16)0.43798 (12)0.73299 (13)0.0173 (4)
H140.54670.44260.70130.021*
C150.51023 (15)0.29773 (11)0.50214 (12)0.0145 (3)
C160.55540 (17)0.21858 (12)0.48785 (13)0.0183 (4)
H160.59760.20810.43590.022*
C170.53812 (18)0.15561 (12)0.55013 (14)0.0207 (4)
H170.56940.10200.54110.025*
C180.47550 (18)0.17043 (13)0.62542 (14)0.0215 (4)
H180.46450.12700.66780.026*
C190.42870 (18)0.24842 (13)0.63928 (14)0.0216 (4)
H190.38480.25830.69040.026*
C200.44672 (16)0.31192 (12)0.57772 (13)0.0175 (4)
H200.41550.36550.58720.021*
C210.45902 (16)0.35263 (11)0.30856 (12)0.0145 (3)
C220.49303 (17)0.39130 (12)0.22954 (13)0.0184 (4)
H220.55380.43330.23670.022*
C230.43798 (18)0.36837 (12)0.14041 (13)0.0212 (4)
H230.46210.39410.08660.025*
C240.34774 (17)0.30791 (12)0.12975 (13)0.0188 (4)
H240.30920.29320.06880.023*
C250.31386 (17)0.26894 (12)0.20790 (13)0.0195 (4)
H250.25240.22740.20040.023*
C260.37007 (16)0.29075 (11)0.29752 (13)0.0158 (3)
H260.34780.26350.35110.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01002 (14)0.01164 (16)0.01101 (15)0.00041 (11)0.00007 (11)0.00175 (11)
P10.01274 (19)0.0129 (2)0.0127 (2)0.00012 (15)0.00118 (16)0.00210 (16)
P20.01096 (19)0.0140 (2)0.0127 (2)0.00037 (15)0.00016 (16)0.00071 (16)
S10.0190 (2)0.0257 (3)0.0215 (2)0.00271 (18)0.00664 (18)0.00384 (19)
F10.059 (2)0.0265 (18)0.054 (3)0.0053 (13)0.028 (3)0.008 (2)
F20.040 (2)0.051 (3)0.0218 (16)0.0196 (18)0.0022 (15)0.0033 (15)
F30.063 (3)0.058 (3)0.035 (2)0.027 (3)0.033 (2)0.019 (2)
O10.014 (3)0.029 (4)0.019 (2)0.001 (3)0.002 (2)0.0005 (18)
O20.0135 (16)0.068 (6)0.036 (2)0.0056 (18)0.0026 (14)0.015 (4)
O30.052 (3)0.0208 (18)0.047 (3)0.0021 (16)0.015 (2)0.0070 (19)
C270.031 (2)0.028 (2)0.020 (2)0.0097 (18)0.0108 (17)0.0060 (16)
F1A0.077 (6)0.037 (3)0.059 (6)0.015 (3)0.048 (5)0.005 (4)
F2A0.049 (5)0.065 (7)0.045 (4)0.027 (4)0.019 (3)0.026 (4)
F3A0.049 (4)0.038 (3)0.036 (4)0.007 (3)0.032 (3)0.009 (3)
O1A0.011 (4)0.027 (6)0.017 (5)0.006 (3)0.003 (4)0.002 (3)
O2A0.032 (4)0.057 (9)0.033 (4)0.014 (4)0.014 (3)0.016 (5)
O3A0.057 (6)0.045 (6)0.053 (7)0.022 (5)0.011 (5)0.017 (5)
C27A0.044 (5)0.042 (5)0.036 (5)0.012 (4)0.024 (4)0.006 (3)
C10.0148 (7)0.0181 (9)0.0163 (8)0.0003 (6)0.0036 (7)0.0036 (7)
C20.0140 (7)0.0174 (9)0.0169 (8)0.0037 (6)0.0008 (6)0.0007 (7)
C30.0111 (7)0.0153 (9)0.0171 (8)0.0011 (6)0.0008 (6)0.0005 (7)
C40.0170 (8)0.0227 (10)0.0167 (9)0.0017 (7)0.0011 (7)0.0014 (7)
C50.0195 (8)0.0256 (10)0.0202 (9)0.0013 (7)0.0046 (7)0.0028 (8)
C60.0194 (8)0.0186 (10)0.0275 (10)0.0031 (7)0.0036 (8)0.0003 (8)
C70.0230 (9)0.0195 (10)0.0219 (9)0.0034 (7)0.0005 (8)0.0029 (7)
C80.0194 (8)0.0168 (9)0.0168 (8)0.0011 (7)0.0017 (7)0.0011 (7)
C90.0158 (7)0.0136 (8)0.0131 (8)0.0016 (6)0.0002 (6)0.0011 (6)
C100.0150 (8)0.0180 (9)0.0172 (8)0.0009 (6)0.0003 (7)0.0007 (7)
C110.0201 (8)0.0186 (9)0.0177 (9)0.0035 (7)0.0033 (7)0.0006 (7)
C120.0275 (9)0.0194 (9)0.0145 (8)0.0057 (7)0.0018 (7)0.0006 (7)
C130.0217 (9)0.0204 (10)0.0199 (9)0.0030 (7)0.0074 (7)0.0012 (7)
C140.0162 (8)0.0184 (9)0.0173 (8)0.0023 (7)0.0017 (7)0.0004 (7)
C150.0141 (7)0.0147 (8)0.0140 (8)0.0003 (6)0.0010 (6)0.0011 (6)
C160.0188 (8)0.0182 (9)0.0178 (8)0.0022 (7)0.0027 (7)0.0032 (7)
C170.0247 (9)0.0152 (9)0.0211 (9)0.0034 (7)0.0001 (8)0.0003 (7)
C180.0222 (9)0.0212 (10)0.0204 (9)0.0007 (7)0.0006 (7)0.0052 (7)
C190.0215 (9)0.0268 (11)0.0174 (9)0.0013 (8)0.0053 (7)0.0026 (7)
C200.0177 (8)0.0179 (9)0.0170 (8)0.0024 (7)0.0025 (7)0.0002 (7)
C210.0156 (7)0.0129 (8)0.0148 (8)0.0018 (6)0.0011 (6)0.0026 (6)
C220.0223 (8)0.0162 (9)0.0168 (9)0.0044 (7)0.0024 (7)0.0013 (7)
C230.0264 (9)0.0218 (10)0.0155 (9)0.0016 (8)0.0029 (7)0.0003 (7)
C240.0199 (8)0.0200 (9)0.0153 (8)0.0009 (7)0.0012 (7)0.0035 (7)
C250.0192 (8)0.0176 (9)0.0205 (9)0.0026 (7)0.0013 (7)0.0036 (7)
C260.0180 (8)0.0143 (9)0.0152 (8)0.0014 (6)0.0026 (7)0.0015 (6)
Geometric parameters (Å, º) top
Ni1—P12.2431 (5)C3—C81.395 (2)
Ni1—P1i2.2431 (5)C3—C41.399 (3)
Ni1—P22.2646 (4)C4—C51.387 (3)
Ni1—P2i2.2646 (4)C5—C61.392 (3)
P1—C211.8132 (18)C6—C71.387 (3)
P1—C151.8172 (19)C7—C81.393 (3)
P1—C11.8350 (18)C9—C141.387 (3)
P2—C91.8141 (18)C9—C101.407 (2)
P2—C31.8243 (19)C10—C111.386 (3)
P2—C21.8533 (18)C11—C121.388 (3)
S1—O2A1.413 (12)C12—C131.390 (3)
S1—O31.416 (6)C13—C141.397 (3)
S1—O1A1.442 (12)C15—C201.394 (3)
S1—O21.454 (6)C15—C161.400 (3)
S1—O11.455 (7)C16—C171.388 (3)
S1—O3A1.467 (11)C17—C181.386 (3)
S1—C27A1.807 (17)C18—C191.389 (3)
S1—C271.809 (7)C19—C201.389 (3)
F1—C271.323 (6)C21—C221.395 (3)
F2—C271.345 (6)C21—C261.396 (2)
F3—C271.337 (6)C22—C231.390 (3)
F1A—C27A1.319 (11)C23—C241.390 (3)
F2A—C27A1.366 (11)C24—C251.386 (3)
F3A—C27A1.337 (11)C25—C261.395 (2)
C1—C21.525 (2)
P1—Ni1—P1i179.999 (19)F3A—C27A—F2A107.2 (11)
P1—Ni1—P284.943 (16)F1A—C27A—S1109.5 (10)
P1i—Ni1—P295.056 (16)F3A—C27A—S1114.0 (11)
P1—Ni1—P2i95.057 (16)F2A—C27A—S1113.2 (10)
P1i—Ni1—P2i84.945 (16)C2—C1—P1108.06 (12)
P2—Ni1—P2i180.0C1—C2—P2111.31 (12)
C21—P1—C15106.16 (8)C8—C3—C4119.18 (17)
C21—P1—C1102.94 (8)C8—C3—P2121.64 (14)
C15—P1—C1106.01 (8)C4—C3—P2119.18 (14)
C21—P1—Ni1126.24 (6)C5—C4—C3120.67 (18)
C15—P1—Ni1107.06 (6)C4—C5—C6119.74 (19)
C1—P1—Ni1106.91 (6)C7—C6—C5120.03 (18)
C9—P2—C3106.51 (8)C6—C7—C8120.34 (18)
C9—P2—C2102.93 (8)C7—C8—C3120.03 (18)
C3—P2—C2103.51 (8)C14—C9—C10119.65 (16)
C9—P2—Ni1115.65 (6)C14—C9—P2120.00 (13)
C3—P2—Ni1117.57 (6)C10—C9—P2120.08 (14)
C2—P2—Ni1109.04 (6)C11—C10—C9119.56 (17)
O2A—S1—O1A122.4 (18)C10—C11—C12120.49 (17)
O3—S1—O2116.5 (7)C11—C12—C13120.31 (17)
O3—S1—O1117.6 (7)C12—C13—C14119.43 (18)
O2—S1—O1110.7 (9)C9—C14—C13120.55 (16)
O2A—S1—O3A112.6 (15)C20—C15—C16119.63 (17)
O1A—S1—O3A109.8 (13)C20—C15—P1119.09 (14)
O2A—S1—C27A103.9 (12)C16—C15—P1121.28 (14)
O1A—S1—C27A104.4 (16)C17—C16—C15119.48 (18)
O3A—S1—C27A100.8 (8)C18—C17—C16120.48 (18)
O3—S1—C27105.3 (4)C17—C18—C19120.43 (18)
O2—S1—C27102.5 (6)C18—C19—C20119.38 (18)
O1—S1—C27101.7 (9)C19—C20—C15120.59 (18)
F1—C27—F3108.3 (6)C22—C21—C26119.69 (16)
F1—C27—F2107.0 (6)C22—C21—P1119.21 (14)
F3—C27—F2107.1 (5)C26—C21—P1121.10 (14)
F1—C27—S1114.1 (5)C23—C22—C21119.96 (17)
F3—C27—S1110.3 (5)C24—C23—C22120.20 (18)
F2—C27—S1109.7 (5)C25—C24—C23120.17 (17)
F1A—C27A—F3A107.9 (11)C24—C25—C26119.94 (17)
F1A—C27A—F2A104.5 (13)C25—C26—C21120.03 (17)
O3—S1—C27—F1176.3 (7)Ni1—P2—C9—C146.68 (17)
O2—S1—C27—F161.4 (9)C3—P2—C9—C1046.75 (17)
O1—S1—C27—F153.1 (7)C2—P2—C9—C1061.80 (16)
O3—S1—C27—F361.6 (7)Ni1—P2—C9—C10179.41 (13)
O2—S1—C27—F360.7 (9)C14—C9—C10—C111.5 (3)
O1—S1—C27—F3175.2 (6)P2—C9—C10—C11175.45 (15)
O3—S1—C27—F256.2 (7)C9—C10—C11—C120.9 (3)
O2—S1—C27—F2178.5 (8)C10—C11—C12—C130.1 (3)
O1—S1—C27—F267.0 (7)C11—C12—C13—C140.7 (3)
O2A—S1—C27A—F1A77.5 (16)C10—C9—C14—C131.0 (3)
O1A—S1—C27A—F1A51.8 (14)P2—C9—C14—C13174.95 (15)
O3A—S1—C27A—F1A165.7 (13)C12—C13—C14—C90.1 (3)
O2A—S1—C27A—F3A43.5 (16)C21—P1—C15—C20119.49 (14)
O1A—S1—C27A—F3A172.8 (13)C1—P1—C15—C20131.50 (14)
O3A—S1—C27A—F3A73.3 (13)Ni1—P1—C15—C2017.63 (15)
O2A—S1—C27A—F2A166.3 (15)C21—P1—C15—C1660.66 (16)
O1A—S1—C27A—F2A64.4 (14)C1—P1—C15—C1648.34 (16)
O3A—S1—C27A—F2A49.5 (14)Ni1—P1—C15—C16162.22 (13)
C21—P1—C1—C2177.35 (12)C20—C15—C16—C171.1 (3)
C15—P1—C1—C266.06 (14)P1—C15—C16—C17178.74 (14)
Ni1—P1—C1—C247.91 (13)C15—C16—C17—C180.7 (3)
P1—C1—C2—P242.78 (16)C16—C17—C18—C190.3 (3)
C9—P2—C2—C1143.54 (13)C17—C18—C19—C200.9 (3)
C3—P2—C2—C1105.67 (14)C18—C19—C20—C150.5 (3)
Ni1—P2—C2—C120.24 (14)C16—C15—C20—C190.5 (3)
C9—P2—C3—C820.77 (17)P1—C15—C20—C19179.36 (14)
C2—P2—C3—C8128.91 (15)C15—P1—C21—C22159.38 (15)
Ni1—P2—C3—C8110.83 (14)C1—P1—C21—C2248.20 (17)
C9—P2—C3—C4159.16 (14)Ni1—P1—C21—C2274.38 (16)
C2—P2—C3—C451.03 (16)C15—P1—C21—C2619.77 (17)
Ni1—P2—C3—C469.23 (15)C1—P1—C21—C26130.94 (15)
C8—C3—C4—C50.9 (3)Ni1—P1—C21—C26106.47 (14)
P2—C3—C4—C5179.16 (15)C26—C21—C22—C230.3 (3)
C3—C4—C5—C60.2 (3)P1—C21—C22—C23179.44 (15)
C4—C5—C6—C70.8 (3)C21—C22—C23—C241.0 (3)
C5—C6—C7—C81.1 (3)C22—C23—C24—C251.3 (3)
C6—C7—C8—C30.3 (3)C23—C24—C25—C260.3 (3)
C4—C3—C8—C70.6 (3)C24—C25—C26—C211.0 (3)
P2—C3—C8—C7179.43 (14)C22—C21—C26—C251.3 (3)
C3—P2—C9—C14139.35 (15)P1—C21—C26—C25179.59 (14)
C2—P2—C9—C14112.11 (16)
Symmetry code: (i) x+1, y+1, z+1.
Comparison of selected geometric parameters (Å, °) for 1 at 296 and 100 K, VASCIB and XUQYOZ top
Parameter1 at 296 K1 at 100 KVASCIBXUQYOZ
Ni—P2.219 (2)2.243 (1)2.256 (3)2.237 (1)
2.238 (2)2.265 (1)2.261 (3)2.245 (1)
P1—Ni—P284.7 (1)84.9 (1)83.2 (1)83.6 (1)
P1—C—C—P243.9 (4)42.8 (2)30.8 (1)39.9 (3)
 

Acknowledgements

AD-R would like to acknowledge the unconditional support given by Dr Echegoyen from the Department of Chemistry at UTEP, and the kind collaboration of the College of Science at UTEP.

Funding information

Funding for this research was provided by: Universidad Nacional de Colombia, Dirección de Investigación, Universidad Nacional de Colombia (grant No. 35544 to Á. Duarte-Ruiz); Departamento Administrativo de Ciencia, Tecnología e Innovación-COLCIENCIAS (grant No. 110171249591 to Á. Duarte-Ruiz).

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCano, C. A. (2012). Undergraduate thesis, Universidad Nacional de Colombia, Bogotá D. C., Colombia.  Google Scholar
First citationCariati, F., Ugo, R. & Bonati, F. (1966). Inorg. Chem. 5, 1128–1132.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEngelhardt, L. M., Patrick, J. M., Raston, C. L., Twiss, P. & White, A. H. (1984). Aust. J. Chem. 37, 2193–2200.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHiggs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446–5449.  CrossRef Google Scholar
First citationHudson, M. J., Nyholm, R. S. & Stiddard, M. H. B. (1968). J. Chem. Soc. A, pp. 40–43.  CrossRef Web of Science Google Scholar
First citationJarrett, P. S. & Sadler, P. J. (1991). Inorg. Chem. 30, 2098–2104.  CrossRef CAS Web of Science Google Scholar
First citationLawrence, G. A. (1986). Chem. Rev. 86, 17–33.  Google Scholar
First citationLiu, Z., Gao, Q., Chen, J., Deng, J., Lin, K. & Xing, X. (2018). Chem. Commun. 54, 5164–5176.  CrossRef Google Scholar
First citationLyubartseva, G., Parkin, S. & Mallik, U. P. (2013). Acta Cryst. E69, m532–m533.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStewart, M. P., Ho, M.-H., Wiese, S., Lindstrom, M. L., Thogerson, C. E., Raugei, S., Bullock, R. M. & Helm, M. L. (2013). J. Am. Chem. Soc. 135, 6033–6046.  CrossRef PubMed Google Scholar
First citationUehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529–3538.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, A. F. (1989). Acta Cryst. C45, 1002–1005.  CrossRef IUCr Journals Google Scholar
First citationZarkesh, R. A., Hopkins, M. D. & Jordan, R. F. (2014). Eur. J. Inorg. Chem. pp. 5491–5494.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds