research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Investigation of solid-state photochemical nitro–nitrito linkage isomerization: crystal structures of trans-bis­­(ethyl­enedi­amine)(iso­thio­cyanato)­nitritocobalt(III) salts: thio­cyanate, chloride monohydrate, and perchlorate–thio­cyanate­(0.75/0.25)

CROSSMARK_Color_square_no_text.svg

aResearch and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, bDepartment of Chemistry, Chiba Institute of Technology, Shibazono 2-1-1, Narashino, Chiba 275-0023, Japan, and cDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: ohba@a3.keio.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 September 2018; accepted 25 September 2018; online 28 September 2018)

The reaction cavities of the nitro groups in the crystals of the title compounds, trans-[Co(NO2)(NCS)(C2H8N2)2X, X = SCN (I), Cl·H2O (II), and (ClO4)0.75(SCN)0.25 (III), have been investigated, revealing that the geometry of the inter­molecular N—H⋯O hydrogen bonds in (I) is unsuitable for nitro–nitrito photo-isomerization. The common main building block of these crystal structures is a centrosymmetric pair of complex cations connected by pairwise N—H⋯O(nitro) hydrogen bonds forming an R22(4) ring, which is a narrow diamond shape in (I) but is approximately square in (II) and (III). The structure of (I) was reported earlier [Börtin (1976[Börtin, O. (1976). Acta Chem. Scand. A, 30, 503-506.]). Acta Chem. Scand. A, 30, 503–506] but is described here with an improved disorder model for the thio­cyanate anions and to higher precision.

1. Chemical context

The nitrite ion is one of the well-known ligands that show linkage isomerism even in the solid state (Hatcher & Raithby, 2013[Hatcher, L. E. & Raithby, P. R. (2013). Acta Cryst. C69, 1448-1456.]). Adell (1971[Adell, B. (1971). Z. Anorg. Allg. Chem. 386, 122-128.]) prepared trans-[Co(en)2(NO2)(NCS)]X (en = ethyl­enedi­amine, X = a counter-anion and a solvent mol­ecule if incorporated into the crystal structure) to show that irradiation by sunlight or visible light (λ > 430 nm) alters the color of the crystals from orange to red for perchlorate and nitrate salts, indicating nitro–nitrito photochemical isomerization, but not for thio­cyanate. These facts suggest that the photo-isomerization is inter­rupted by some steric condition in (I)[link] where X = SCN. Börtin (1976[Börtin, O. (1976). Acta Chem. Scand. A, 30, 503-506.]) determined the crystal structure of (I)[link], but failed to find the steric obstacles to the reaction, and the puzzle has been left unsolved. Kubota & Ohba (1992[Kubota, M. & Ohba, S. (1992). Acta Cryst. B48, 627-632.]) investigated the solid-state nitro–nitrito photochemical reaction of [Co(NH3)5NO2]Cl2 to show that the shape of the reaction cavity in the nitro plane is of crucial importance. It is noted that not only the steric condition around the nitro group, but also the electronic effects of the co-existing ligands are important for the longer lifetime of the much less stable nitrito form (Miyoshi et al., 1983[Miyoshi, K., Katoda, N. & Yoneda, H. (1983). Inorg. Chem. 22, 1839-1843.]), the thio­cyanate ligand at the trans position being favorable. When the powders were irradiated by a 150 W Xe lamp without filtering, the color changed immediately from yellow to orange for (II)[link] and (III)[link] but not for (I)[link], in agreement with the observations of Adell (1971[Adell, B. (1971). Z. Anorg. Allg. Chem. 386, 122-128.]). In the present study, the structures of the three title crystals were investigated to reveal the steric conditions that make (I)[link] photo-inactive.

[Scheme 1]

2. Structural commentary

The crystal structure of (I)[link] has been redetermined in the present study with a more sophisticated treatment of the disorder of thio­cyanate ions [R(F2) = 0.048 for 2845 observed reflections] than that reported by Börtin (1976[Börtin, O. (1976). Acta Chem. Scand. A, 30, 503-506.]) [R(F) = 0.077 for 1970 reflections], and the s.u.'s of the bond lengths were reduced to less than half of the previous values. The mol­ecular structures of (I)–(III) are shown in Figs. 1[link]–3[link][link], respectively. The coordination geometry around the Co atoms is octa­hedral, and the Co—N(nitro) bond lengths are similar to one another, 1.905 (3) Å in (I)[link], 1.912 (2) Å in (II)[link] and 1.915 (4) and 1.916 (4) Å in (III)[link]. The conformations of the ethyl­ene­diammine ligands are gauche in (I)[link] and (III)[link], and envelope in (II)[link]. The short C17—C18 distance of 1.417 (8) Å in (I)[link] may be an artifact of unresolved disorder over two orientations by the puckering of the chelate ring as mentioned by Börtin (1976[Börtin, O. (1976). Acta Chem. Scand. A, 30, 503-506.]). The combination of the two ethyl­enedi­amine chelate rings in each complex is δ and λ, and the Co(en)2 moiety possesses approximate mirror symmetry. In (I)[link], there are two independent thio­cyanate counter-ions, which are disordered around twofold axes and are therefore half occupied. In (II)[link], there is a chloride counter-ion and an ordered water mol­ecule of crystallization. In (III)[link], one of the two perchlorate ions (Cl4/O16–O19) lies on a center of symmetry, showing orientational disorder. Furthermore, an unexpected thio­cyanate ion (S7/C43/N32) exists on a center of symmetry, possessing two possible orientations. The asymmetric unit of (III)[link] comprises two complex cations, one and half perchlorate ions, and half a thio­cyanate ion.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 30% probability level. Only one of two possible orientations of the disordered thio­cyanate (N13/C20/S3 and N14/C21/S4) ions is indicated for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing displacement ellipsoids at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing displacement ellipsoids at the 30% probability level. Only one of two possible orientations of the disordered thio­cyanate (S7/C43/N32) and perchlorate (Cl4/O16–O19) ions is indicated for clarity.

3. Supra­molecular features

The crystal structures of (I)–(III) are shown in Figs. 4[link]–6[link][link], respectively. The complex cations and the counter-anions are connected via numerous hydrogen bonds (Tables 1[link]–3[link][link]), forming three-dimensional networks. The circumstances of the nitro groups in (I)[link] and (II)[link] are compared in Fig. 7[link], where the surrounding hydrogen-bond donors are projected on the nitro plane. The nitro O atoms act as acceptors of intra- and inter­molecular N/O—H⋯O hydrogen bonds. It is expected that the nitro–nitrito photo-isomerization occurs via an N,O-bidentate transition state (Johnson & Pashman, 1975[Johnson, D. A. & Pashman, K. A. (1975). Inorg. Nucl. Chem. Lett. 11, 23-28.]) by rotating the nitrite ion in its original plane because of the feasible charge density due to the lone pairs of the nitrite N and O atoms (Okuda et al., 1990[Okuda, M., Ohba, S., Saito, Y., Ito, T. & Shibuya, I. (1990). Acta Cryst. B46, 343-347.]). It seems that the N,O-bidentate mode is prevented by the inter­molecular N—H⋯O hydrogen bonds in (I)[link], but it may be allowed in (II)[link] because of the vacant space behind the nitro O4 atom. This can be seen from the slices of the cavity around the NO2 group (Fig. 8[link]), which is defined as the concave space limited by the envelope surfaces of spheres placed at the positions of neighboring atoms, each sphere having a radius 1.0 Å greater (as selected by Kubota & Ohba, 1992[Kubota, M. & Ohba, S. (1992). Acta Cryst. B48, 627-632.]) than the corresponding van der Waals radius (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) except for the Co, its radius being assumed to be 1.90 Å, which is a little shorter than the Co—N(nitro) distance. Asymmetric inter­molecular hydrogen-bond contacts are also observed in (III)[link] (Fig. 9[link]), and the reaction cavities show the vacancy at one of the two O atoms, O8 and O10 (Fig. 10[link]). The R22(4) ring formed by the pair of nitro groups is observed not only in (III)[link] but also in (I)[link] and (II)[link] (Fig. 11[link]). These four-membered rings are essentially planar with the O⋯H distances ranging from 2.33 to 2.49 Å. However, there are apparent differences in the geometry. That in (I)[link] is a narrow rhomb with the inter­ior angles at O6 and H10B being 33.3 and 146.7°, respectively, and inclined to the nitro plane by 79.2 (3)°. The corresponding angles at O4 and H9A in (II)[link] are 98.7 and 81.3°, and the dihedral angle with the nitro plane is 45.5 (2)°. The shape of the ring in (III)[link] is also nearly square with inter­ior angles of 87.3–92.4°, and the dihedral angles with the nitro planes are 53.6 (2) and 53.8 (2)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯O5 0.89 2.31 2.861 (5) 120
N9—H9B⋯S4i 0.89 2.75 3.443 (4) 136
N9—H9B⋯S4ii 0.89 2.58 3.404 (4) 154
N10—H10A⋯S3iii 0.89 2.73 3.480 (7) 143
N10—H10A⋯N13iv 0.89 2.63 3.41 (2) 147
N10—H10B⋯O6 0.89 2.49 2.950 (5) 113
N10—H10B⋯O6v 0.89 2.33 3.013 (4) 133
N11—H11A⋯O6 0.89 2.40 2.869 (5) 113
N11—H11A⋯N14 0.89 2.53 3.28 (3) 142
N11—H11A⋯N14vi 0.89 2.36 3.12 (2) 143
N11—H11B⋯S2iii 0.89 2.77 3.360 (3) 125
N12—H12A⋯O5vii 0.89 2.23 3.011 (4) 146
N12—H12B⋯O5 0.89 2.47 2.984 (5) 117
C15—H15A⋯S2viii 0.97 2.83 3.731 (4) 155
C18—H18B⋯S3ix 0.97 2.87 3.627 (8) 136
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vi) [-x+1, y, -z+{\script{1\over 2}}]; (vii) [x, -y, z+{\script{1\over 2}}]; (viii) [-x, y, -z+{\script{1\over 2}}]; (ix) [x, -y, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O5i 0.82 (2) 2.19 (2) 2.958 (3) 156 (4)
O6—H6B⋯Cl2 0.83 (2) 2.45 (2) 3.253 (3) 162 (4)
N9—H9A⋯O4 0.89 2.49 2.960 (3) 114
N9—H9A⋯O4ii 0.89 2.48 3.191 (3) 138
N9—H9B⋯Cl2iii 0.89 2.43 3.297 (2) 165
N10—H10A⋯O6 0.89 2.08 2.960 (3) 171
N10—H10B⋯Cl2iv 0.89 2.75 3.461 (2) 138
N11—H11A⋯Cl2iv 0.89 2.44 3.260 (2) 153
N11—H11B⋯Cl2 0.89 2.42 3.285 (2) 164
N12—H12A⋯Cl2iii 0.89 2.47 3.335 (2) 164
N12—H12B⋯S3v 0.89 2.75 3.585 (2) 157
N12—H12B⋯O5 0.89 2.41 2.887 (3) 114
C15—H15B⋯S3vi 0.97 2.77 3.546 (3) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N22—H22A⋯O9 0.89 2.39 2.925 (5) 119
N22—H22B⋯S7 0.89 2.64 3.456 (12) 153
N23—H23A⋯S6i 0.89 2.82 3.429 (4) 127
N23—H23B⋯O8 0.89 2.41 2.884 (5) 113
N23—H23B⋯O10 0.89 2.34 3.021 (5) 133
N24—H24A⋯S7ii 0.89 2.79 3.475 (18) 135
N24—H24A⋯O8 0.89 2.41 2.875 (6) 113
N24—H24B⋯S6i 0.89 2.84 3.437 (4) 126
N24—H24B⋯O12i 0.89 2.53 3.192 (6) 132
N25—H25A⋯O11iii 0.89 2.28 3.059 (5) 147
N25—H25B⋯O9 0.89 2.45 2.973 (5) 118
N25—H25B⋯O18 0.89 2.56 3.237 (12) 133
N25—H25B⋯O19iv 0.89 2.44 3.089 (15) 130
N28—H28A⋯O8 0.89 2.36 3.057 (5) 135
N28—H28A⋯O10 0.89 2.45 2.915 (6) 113
N28—H28B⋯O13 0.89 2.48 3.107 (6) 128
N29—H29A⋯O15v 0.89 2.39 3.266 (7) 170
N29—H29B⋯O11 0.89 2.38 2.919 (6) 119
N30—H30A⋯O11 0.89 2.44 2.967 (6) 118
N30—H30B⋯O9vi 0.89 2.30 3.067 (5) 144
N31—H31A⋯S5vii 0.89 2.74 3.343 (4) 126
N31—H31A⋯O16vi 0.89 2.57 3.294 (17) 139
N31—H31B⋯O10 0.89 2.40 2.856 (6) 112
N31—H31B⋯O14viii 0.89 2.45 3.172 (6) 139
C35—H35B⋯O17ix 0.97 2.24 3.09 (2) 145
C36—H36A⋯O12i 0.97 2.56 3.119 (8) 117
C36—H36B⋯O18 0.97 2.53 3.249 (11) 131
C37—H37A⋯O16iv 0.97 2.48 3.290 (15) 141
C37—H37A⋯O19iv 0.97 2.55 3.197 (17) 124
C39—H39A⋯O13 0.97 2.44 3.133 (8) 128
C41—H41A⋯O13vi 0.97 2.38 3.202 (8) 143
C41—H41B⋯O18vi 0.97 2.37 3.272 (12) 155
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) -x+2, -y+1, -z+1; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x+1, y, z; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ix) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal structure of (I)[link], projected along c. N—H⋯O/N/S hydrogen bonds are shown as blue dashed lines. Both possible orientations of the disordered thio­cyanate ions are indicated.
[Figure 5]
Figure 5
The crystal structure of (II)[link], projected along a. Hydrogen bonds are shown as dashed lines in blue for O—H⋯O/Cl and N—H⋯O, and in red for N—H⋯Cl.
[Figure 6]
Figure 6
The crystal structure of (III)[link], projected along a. N—H⋯O/N and C—H⋯O hydrogen bonds are shown as blue dashed lines. Both possible orientations of the disordered thio­cyanate (S7/C43/N32) and perchlorate (Cl4/O16–O19) ions are indicated.
[Figure 7]
Figure 7
Comparison of the steric circumstances of the nitro group in (I)[link] and (II)[link]. Dashed lines in blue indicate O(nitro)⋯H short contacts shorter than 2.5 Å. Only part of the di­amine ligands are shown for clarity. Symmetry codes for (I)[link]: (v) −x + [{1\over 2}], −y + [{1\over 2}], −z; (ix) x, −y, z − [{1\over 2}]. For (II)[link]: (ii) −x + 1, −y + 1, −z + 1; (v) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].
[Figure 8]
Figure 8
Comparison of the slices of the cavity around the nitro group within 0.1 Å from the plane in (I)[link] and (II)[link].
[Figure 9]
Figure 9
The steric circumstances of the nitro groups in (III)[link]. Dashed lines in blue show the O(nitro)⋯H short contacts shorter than 2.5 Å. Only parts of the di­amine ligands are shown for clarity. Symmetry codes: (ix) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (x) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}].
[Figure 10]
Figure 10
The slices of the cavity in (III)[link] around the nitro groups within 0.1 Å from the planes.
[Figure 11]
Figure 11
Comparison of the short contact pair of the nitro group in (I)[link] and (II)[link]. Dashed lines in blue show the O(nitro)⋯H short contacts shorter than 2.5 Å. Only parts of the di­amine ligands are shown for clarity. Symmetry codes for (I)[link]: (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (v) −x + [{1\over 2}], −y + [{1\over 2}], −z; (ix) x, −y, z − [{1\over 2}]. For (II)[link]: (ii) −x + 1, −y + 1, −z + 1, (v) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (vii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}].

4. Database survey

Grenthe & Nordin (1979[Grenthe, I. & Nordin, E. (1979). Inorg. Chem. 18, 1869-1874.]) reported the structures of trans-{Co(en)2(NO2)(NCS)]·X (X = ClO4 and I) obtained after solid-state thermal isomerization of the nitrito complexes (monoclinic P21, Z = 2). The lattice constants did not correspond to the crystals grown from aqueous solutions of the nitro complexes. Except for Börtin (1976[Börtin, O. (1976). Acta Chem. Scand. A, 30, 503-506.]) (X = SCN) there is no other entry of the title nitro­cobalt complex in the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

5. Synthesis and crystallization

The title thio­cyanate salt (I)[link] was prepared by a literature method (Adell, 1971[Adell, B. (1971). Z. Anorg. Allg. Chem. 386, 122-128.]; Nakahara & Shibata, 1977[Nakahara, K. & Shibata, M. (1977). Editors. Sin-Jikken-Kagaku-Kouza [New Experimental Chemistry Course] Vol. 8, Syntheses of Inorganic Compounds III, pp. 1256-1262. The Chemical Society of Japan. Tokyo: Maruzen.]) from cobalt(II) nitrate hexa­hydrate via trans-[Co(en)2(NO2)2]NO3 and then trans-[Co(en)2Cl(NO2)]NO3. The crystals of (I)[link] were grown from a hot aqueous solution. Crystals of (I)[link] were pulverized and dissolved in conc. HCl over a moderate heat, and impurities were removed by filtration. To the filtrate, some amount of ethanol was added. The solution was concentrated to precipitate the chloride (II)[link], which was recrystallized with a small amount of water as solvent. To the saturated aqueous solution of (II)[link], NaClO4 powder was added to precipitate the perchlorate (III)[link]. Crystals of (III)[link] were grown from an aqueous solution. The possibility of contamination of (III)[link] by chloride ions was eliminated because no precipitation of AgCl occurred when AgNO3 was added to an aqueous solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms bound to C and N were positioned geometrically. They were refined as riding, with N—H = 0.89 Å, C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C/N).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Co(NCS)(NO2)(C2H8N2)2](CNS) [Co(NCS)(NO2)(C2H8N2)2]Cl·H2O [Co(NCS)(NO2)(C2H8N2)2](ClO4)0.75(CNS)0.25
Mr 341.31 336.69 372.33
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 299 301 301
a, b, c (Å) 16.3222 (7), 16.0137 (6), 11.1284 (4) 8.9059 (4), 12.3302 (5), 12.2915 (5) 11.3141 (6), 16.2969 (7), 16.1298 (7)
β (°) 110.2599 (13) 92.295 (2) 109.023 (2)
V3) 2728.77 (19) 1348.67 (10) 2811.7 (2)
Z 8 4 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.57 1.63 1.58
Crystal size (mm) 0.25 × 0.25 × 0.20 0.25 × 0.20 × 0.20 0.35 × 0.30 × 0.27
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.667, 0.743 0.697, 0.762 0.544, 0.774
No. of measured, independent and observed [I > 2σ(I)] reflections 14627, 3166, 2845 14312, 3153, 2830 30435, 6595, 5411
Rint 0.023 0.024 0.034
(sin θ/λ)max−1) 0.659 0.659 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.173, 1.06 0.032, 0.131, 0.98 0.063, 0.221, 1.10
No. of reflections 3166 3153 6595
No. of parameters 179 161 379
No. of restraints 18 3 13
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.99, −0.92 0.74, −0.54 1.40, −1.15
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CAVITY (Ohashi et al., 1981[Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805-5812.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

In (I)[link], the non-coordinating thio­cyanate ions S3/C20/N13 and S4/C21/N14 lie around the twofold axis with the mol­ecular axes perpendicular and slightly inclined, respectively, showing orientational disorder. Their geometries were restrained with EADP or SIMU commands. Three reflections showing very poor agreement with Iobs much smaller than Icalc were omitted from the final refinement.

In (II)[link], the H atoms of the water mol­ecule were located from difference-density maps, and their coordinates were refined with the geometry restrained, and with Uiso(H) = 1.5Ueq(O). Eight reflections showing poor agreement were omitted from the final refinement, since their Iobs were much smaller than Icalc.

In (III)[link], atom Cl4 of one of the two independent perchlor­ate ions lies on a center of symmetry, showing orientational disorder. Another independent and indistinct anion lies over the center of symmetry, but is not a perchlorate ion since the electron-density peaks of the O atoms are missing. It is not a chloride ion either, judging from the lack of precipitation of AgCl with silver nitrate. The most probable and suitable assumption is that the thio­cyanate ion has two possible orientations as seen in (I)[link], and the expected composition is supported by the measured density of the crystals, 1.76 (2) Mg m−3, which agrees well with the calculated value, 1.759 Mg m−3. The geometry of the disordered thio­cyanate ion was restrained with an EADP instruction for the terminal S7/N32 atoms and DELU and ISOR instructions for the central C43 atom to avoid the abnormally large residual peak near the C43 atom. One reflection with Iobs much smaller than Icalc was omitted from the final refinement.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and CAVITY (Ohashi et al., 1981); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

trans-Bis(ethylenediamine)(isothiocyanato)nitritocobalt(III) thiocyanate (I) top
Crystal data top
[Co(CNS)(NO2)(C2H8N2)2](CNS)F(000) = 1408
Mr = 341.31Dx = 1.662 Mg m3
Dm = 1.65 (2) Mg m3
Dm measured by flotation
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.3222 (7) ÅCell parameters from 9404 reflections
b = 16.0137 (6) Åθ = 2.5–27.9°
c = 11.1284 (4) ŵ = 1.57 mm1
β = 110.2599 (13)°T = 299 K
V = 2728.77 (19) Å3Prism, orange-red
Z = 80.25 × 0.25 × 0.20 mm
Data collection top
Bruker D8 VENTURE
diffractometer
2845 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 27.9°, θmin = 2.3°
Tmin = 0.667, Tmax = 0.743h = 2117
14627 measured reflectionsk = 1921
3166 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.1131P)2 + 7.7542P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max = 0.004
S = 1.06Δρmax = 0.99 e Å3
3166 reflectionsΔρmin = 0.92 e Å3
179 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 restraintsExtinction coefficient: 0.0080 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.24789 (3)0.11825 (3)0.23306 (4)0.0283 (2)
S20.16608 (6)0.13940 (6)0.59617 (8)0.0395 (3)
S30.4182 (2)0.1460 (3)0.6750 (5)0.0699 (8)0.5
S40.4754 (2)0.45097 (14)0.2044 (3)0.0701 (8)0.5
O50.2530 (4)0.0509 (3)0.0120 (4)0.1008 (17)
O60.3109 (3)0.1679 (3)0.0477 (4)0.0816 (12)
N70.2733 (2)0.1111 (2)0.0787 (3)0.0404 (7)
N80.2210 (2)0.12697 (17)0.3870 (3)0.0388 (7)
N90.13307 (19)0.0704 (2)0.1463 (3)0.0403 (6)
H9A0.13080.04800.07200.048*
H9B0.12230.03040.19430.048*
N100.19177 (19)0.22653 (18)0.1777 (3)0.0379 (6)
H10A0.18850.25440.24510.045*
H10B0.22350.25660.14260.045*
N110.36443 (17)0.16416 (19)0.3219 (3)0.0379 (6)
H11A0.37840.20000.27100.045*
H11B0.36490.19150.39180.045*
N120.30175 (19)0.00934 (17)0.2894 (3)0.0357 (6)
H12A0.27040.01890.32710.043*
H12B0.30270.01990.22190.043*
N130.5878 (6)0.1646 (14)0.8455 (16)0.0699 (8)0.5
N140.5058 (18)0.2805 (4)0.248 (3)0.061 (3)0.5
C150.0661 (3)0.1389 (3)0.1234 (5)0.0552 (11)
H15A0.01210.12270.05680.066*
H15B0.05380.15020.20120.066*
C160.1033 (3)0.2141 (3)0.0836 (4)0.0537 (10)
H16A0.10600.20620.00130.064*
H16B0.06720.26250.08190.064*
C170.4281 (3)0.0962 (3)0.3576 (6)0.0694 (15)
H17A0.45190.08800.28980.083*
H17B0.47590.11170.43460.083*
C180.3910 (3)0.0202 (3)0.3795 (7)0.087 (2)
H18A0.39050.01970.46640.105*
H18B0.42680.02610.37060.105*
C190.1993 (2)0.13285 (19)0.4742 (3)0.0323 (7)
C200.5197 (4)0.1522 (7)0.7695 (10)0.0699 (8)0.5
C210.4903 (12)0.3510 (3)0.2317 (12)0.039 (3)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0326 (3)0.0277 (3)0.0275 (3)0.00172 (14)0.0139 (2)0.00089 (13)
S20.0484 (5)0.0413 (5)0.0350 (5)0.0026 (3)0.0225 (4)0.0027 (3)
S30.0537 (11)0.090 (3)0.063 (2)0.0010 (13)0.0167 (11)0.0041 (15)
S40.098 (2)0.0466 (11)0.095 (2)0.0011 (11)0.0704 (18)0.0035 (10)
O50.182 (5)0.077 (3)0.082 (3)0.052 (3)0.096 (3)0.041 (2)
O60.113 (3)0.087 (3)0.064 (2)0.041 (2)0.055 (2)0.0007 (19)
N70.0512 (18)0.0401 (15)0.0365 (16)0.0047 (13)0.0234 (13)0.0018 (11)
N80.0469 (18)0.0393 (16)0.0328 (14)0.0005 (11)0.0171 (13)0.0005 (11)
N90.0382 (14)0.0425 (16)0.0421 (16)0.0056 (12)0.0163 (12)0.0004 (12)
N100.0434 (15)0.0337 (14)0.0372 (14)0.0065 (11)0.0147 (12)0.0083 (11)
N110.0306 (13)0.0399 (15)0.0403 (15)0.0061 (11)0.0086 (11)0.0033 (12)
N120.0421 (15)0.0307 (13)0.0342 (13)0.0014 (11)0.0129 (11)0.0001 (10)
N130.0537 (11)0.090 (3)0.063 (2)0.0010 (13)0.0167 (11)0.0041 (15)
N140.076 (8)0.056 (4)0.055 (3)0.035 (8)0.026 (5)0.009 (9)
C150.0320 (19)0.067 (3)0.063 (3)0.0023 (17)0.0127 (18)0.007 (2)
C160.049 (2)0.047 (2)0.058 (2)0.0099 (17)0.0088 (18)0.0082 (18)
C170.0308 (19)0.060 (3)0.104 (4)0.0011 (19)0.006 (2)0.015 (3)
C180.055 (3)0.047 (3)0.129 (5)0.015 (2)0.008 (3)0.007 (3)
C190.0352 (16)0.0303 (15)0.0329 (16)0.0005 (11)0.0136 (13)0.0005 (11)
C200.0537 (11)0.090 (3)0.063 (2)0.0010 (13)0.0167 (11)0.0041 (15)
C210.036 (9)0.059 (4)0.018 (8)0.011 (4)0.005 (6)0.004 (3)
Geometric parameters (Å, º) top
Co1—N71.905 (3)N11—C171.462 (6)
Co1—N81.915 (3)N11—H11A0.8900
Co1—N91.944 (3)N11—H11B0.8900
Co1—N121.956 (3)N12—C181.466 (6)
Co1—N111.958 (3)N12—H12A0.8900
Co1—N101.958 (3)N12—H12B0.8900
S2—C191.630 (3)N13—C201.157 (4)
S3—C201.629 (3)N14—C211.156 (4)
S4—C211.633 (3)C15—C161.484 (6)
O5—N71.191 (5)C15—H15A0.9700
O6—N71.212 (4)C15—H15B0.9700
N8—C191.146 (5)C16—H16A0.9700
N9—C151.507 (5)C16—H16B0.9700
N9—H9A0.8900C17—C181.417 (8)
N9—H9B0.8900C17—H17A0.9700
N10—C161.474 (5)C17—H17B0.9700
N10—H10A0.8900C18—H18A0.9700
N10—H10B0.8900C18—H18B0.9700
N7—Co1—N8179.03 (13)Co1—N11—H11B109.8
N7—Co1—N990.11 (14)H11A—N11—H11B108.2
N8—Co1—N989.61 (14)C18—N12—Co1110.1 (3)
N7—Co1—N1291.22 (13)C18—N12—H12A109.6
N8—Co1—N1289.72 (12)Co1—N12—H12A109.6
N9—Co1—N1293.23 (13)C18—N12—H12B109.6
N7—Co1—N1190.05 (14)Co1—N12—H12B109.6
N8—Co1—N1190.25 (14)H12A—N12—H12B108.2
N9—Co1—N11178.80 (13)C16—C15—N9107.1 (3)
N12—Co1—N1185.57 (12)C16—C15—H15A110.3
N7—Co1—N1089.64 (13)N9—C15—H15A110.3
N8—Co1—N1089.41 (12)C16—C15—H15B110.3
N9—Co1—N1085.84 (13)N9—C15—H15B110.3
N12—Co1—N10178.74 (12)H15A—C15—H15B108.6
N11—Co1—N1095.35 (12)N10—C16—C15107.4 (3)
O5—N7—O6119.3 (4)N10—C16—H16A110.2
O5—N7—Co1120.6 (3)C15—C16—H16A110.2
O6—N7—Co1120.1 (3)N10—C16—H16B110.2
C19—N8—Co1175.5 (3)C15—C16—H16B110.2
C15—N9—Co1108.3 (2)H16A—C16—H16B108.5
C15—N9—H9A110.0C18—C17—N11112.3 (4)
Co1—N9—H9A110.0C18—C17—H17A109.1
C15—N9—H9B110.0N11—C17—H17A109.1
Co1—N9—H9B110.0C18—C17—H17B109.1
H9A—N9—H9B108.4N11—C17—H17B109.1
C16—N10—Co1109.9 (2)H17A—C17—H17B107.9
C16—N10—H10A109.7C17—C18—N12111.5 (4)
Co1—N10—H10A109.7C17—C18—H18A109.3
C16—N10—H10B109.7N12—C18—H18A109.3
Co1—N10—H10B109.7C17—C18—H18B109.3
H10A—N10—H10B108.2N12—C18—H18B109.3
C17—N11—Co1109.4 (3)H18A—C18—H18B108.0
C17—N11—H11A109.8N8—C19—S2178.4 (4)
Co1—N11—H11A109.8N13—C20—S3170.7 (13)
C17—N11—H11B109.8N14—C21—S4175 (2)
Co1—N9—C15—C1640.7 (4)N9—Co1—N10—C1611.2 (3)
Co1—N10—C16—C1536.7 (4)N12—Co1—N11—C1710.8 (3)
N9—C15—C16—N1050.2 (5)N11—Co1—N12—C188.7 (4)
Co1—N11—C17—C1829.4 (6)O5—N7—Co1—N941.7 (4)
N11—C17—C18—N1237.6 (8)O5—N7—Co1—N1251.5 (5)
Co1—N12—C18—C1727.4 (7)O6—N7—Co1—N1052.8 (4)
N10—Co1—N9—C1516.5 (3)O6—N7—Co1—N1142.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O50.892.312.861 (5)120
N9—H9B···S4i0.892.753.443 (4)136
N9—H9B···S4ii0.892.583.404 (4)154
N10—H10A···S3iii0.892.733.480 (7)143
N10—H10A···N13iv0.892.633.41 (2)147
N10—H10B···O60.892.492.950 (5)113
N10—H10B···O6v0.892.333.013 (4)133
N11—H11A···O60.892.402.869 (5)113
N11—H11A···N140.892.533.28 (3)142
N11—H11A···N14vi0.892.363.12 (2)143
N11—H11B···S2iii0.892.773.360 (3)125
N12—H12A···O5vii0.892.233.011 (4)146
N12—H12B···O50.892.472.984 (5)117
C15—H15A···S2viii0.972.833.731 (4)155
C18—H18B···S3ix0.972.873.627 (8)136
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z; (vi) x+1, y, z+1/2; (vii) x, y, z+1/2; (viii) x, y, z+1/2; (ix) x, y, z1/2.
trans-Bis(ethylenediamine)(isothiocyanato)nitritocobalt(III) chloride monohydrate (II) top
Crystal data top
[Co(CNS)(NO2)(C2H8N2)2]Cl·H2OF(000) = 696
Mr = 336.69Dx = 1.658 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9059 (4) ÅCell parameters from 9532 reflections
b = 12.3302 (5) Åθ = 2.3–27.9°
c = 12.2915 (5) ŵ = 1.63 mm1
β = 92.295 (2)°T = 301 K
V = 1348.67 (10) Å3Prism, orange-red
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker D8 VENTURE
diffractometer
2830 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 27.9°, θmin = 2.3°
Tmin = 0.697, Tmax = 0.762h = 1111
14312 measured reflectionsk = 1616
3153 independent reflectionsl = 1416
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0994P)2 + 0.7693P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.74 e Å3
3153 reflectionsΔρmin = 0.54 e Å3
161 parametersExtinction correction: SHELXL2014 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.018 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.34572 (3)0.73903 (2)0.40502 (2)0.02724 (16)
Cl20.40898 (8)1.10470 (6)0.34687 (5)0.0491 (2)
S30.38808 (9)0.91789 (7)0.07167 (5)0.0517 (2)
O40.4510 (3)0.6054 (2)0.56850 (19)0.0696 (7)
O50.2569 (3)0.6935 (3)0.61042 (18)0.0682 (7)
O60.6880 (3)0.9433 (2)0.29973 (18)0.0564 (5)
H6A0.693 (5)0.921 (3)0.237 (2)0.085*
H6B0.615 (4)0.985 (3)0.296 (3)0.085*
N70.3525 (2)0.67061 (18)0.54472 (16)0.0385 (5)
N80.3409 (2)0.80927 (16)0.26542 (15)0.0340 (4)
N90.3774 (2)0.60117 (16)0.33151 (17)0.0352 (4)
H9A0.37980.54720.37960.042*
H9B0.30300.58880.28260.042*
N100.5649 (3)0.75194 (18)0.41100 (19)0.0371 (5)
H10A0.59160.81300.37840.045*
H10B0.59850.75470.48010.045*
N110.3149 (2)0.88049 (17)0.47145 (17)0.0377 (4)
H11A0.36320.88300.53620.045*
H11B0.35250.93200.42970.045*
N120.1264 (2)0.72780 (19)0.39439 (19)0.0370 (5)
H12A0.09720.69600.33210.044*
H12B0.09370.68830.44920.044*
C130.3590 (2)0.85381 (19)0.18492 (18)0.0320 (5)
C140.5213 (3)0.6079 (2)0.2776 (2)0.0480 (6)
H14A0.51040.65240.21260.058*
H14B0.55380.53610.25650.058*
C150.6333 (3)0.6570 (3)0.3556 (3)0.0540 (7)
H15A0.72060.68050.31720.065*
H15B0.66570.60350.40940.065*
C160.1541 (4)0.9003 (3)0.4845 (3)0.0624 (9)
H16A0.13300.97720.47730.075*
H16B0.12600.87730.55640.075*
C170.0649 (3)0.8381 (3)0.3989 (3)0.0574 (8)
H17A0.04010.83560.41700.069*
H17B0.07190.87330.32870.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0312 (2)0.0290 (2)0.0215 (2)0.00349 (10)0.00019 (13)0.00291 (10)
Cl20.0641 (4)0.0417 (4)0.0398 (4)0.0020 (3)0.0179 (3)0.0020 (2)
S30.0625 (5)0.0604 (5)0.0331 (3)0.0169 (3)0.0144 (3)0.0177 (3)
O40.0947 (18)0.0658 (15)0.0484 (12)0.0288 (13)0.0047 (11)0.0255 (11)
O50.0630 (14)0.104 (2)0.0386 (11)0.0020 (14)0.0162 (10)0.0212 (13)
O60.0571 (12)0.0649 (14)0.0475 (12)0.0113 (10)0.0066 (10)0.0063 (10)
N70.0471 (11)0.0404 (11)0.0281 (9)0.0086 (9)0.0015 (8)0.0057 (8)
N80.0421 (10)0.0320 (10)0.0277 (9)0.0022 (8)0.0004 (7)0.0030 (8)
N90.0408 (10)0.0322 (9)0.0323 (10)0.0002 (8)0.0015 (8)0.0013 (8)
N100.0329 (10)0.0482 (12)0.0300 (11)0.0069 (8)0.0014 (8)0.0054 (8)
N110.0471 (11)0.0352 (10)0.0305 (10)0.0041 (8)0.0006 (8)0.0019 (8)
N120.0331 (10)0.0462 (12)0.0319 (11)0.0049 (8)0.0040 (8)0.0001 (8)
C130.0335 (10)0.0341 (11)0.0284 (10)0.0031 (8)0.0004 (8)0.0008 (9)
C140.0500 (15)0.0463 (14)0.0482 (15)0.0108 (11)0.0096 (12)0.0018 (12)
C150.0379 (13)0.0566 (17)0.0676 (19)0.0027 (12)0.0031 (12)0.0009 (15)
C160.0541 (17)0.0601 (19)0.074 (2)0.0053 (14)0.0171 (15)0.0243 (17)
C170.0408 (14)0.0608 (18)0.070 (2)0.0089 (13)0.0001 (13)0.0088 (16)
Geometric parameters (Å, º) top
Co1—N71.912 (2)N10—H10B0.8900
Co1—N81.9210 (19)N11—C161.468 (4)
Co1—N111.950 (2)N11—H11A0.8900
Co1—N91.951 (2)N11—H11B0.8900
Co1—N101.957 (2)N12—C171.468 (4)
Co1—N121.957 (2)N12—H12A0.8900
S3—C131.630 (2)N12—H12B0.8900
O4—N71.217 (3)C14—C151.485 (4)
O5—N71.229 (3)C14—H14A0.9700
O6—H6A0.821 (18)C14—H14B0.9700
O6—H6B0.833 (18)C15—H15A0.9700
N8—C131.149 (3)C15—H15B0.9700
N9—C141.468 (3)C16—C171.504 (5)
N9—H9A0.8900C16—H16A0.9700
N9—H9B0.8900C16—H16B0.9700
N10—C151.496 (4)C17—H17A0.9700
N10—H10A0.8900C17—H17B0.9700
N7—Co1—N8179.20 (8)C16—N11—H11B109.6
N7—Co1—N1191.06 (9)Co1—N11—H11B109.6
N8—Co1—N1188.41 (9)H11A—N11—H11B108.1
N7—Co1—N991.81 (9)C17—N12—Co1107.75 (18)
N8—Co1—N988.72 (8)C17—N12—H12A110.2
N11—Co1—N9177.11 (8)Co1—N12—H12A110.2
N7—Co1—N1090.38 (9)C17—N12—H12B110.2
N8—Co1—N1089.06 (9)Co1—N12—H12B110.2
N11—Co1—N1093.92 (9)H12A—N12—H12B108.5
N9—Co1—N1085.73 (9)N8—C13—S3178.8 (2)
N7—Co1—N1291.38 (9)N9—C14—C15107.9 (2)
N8—Co1—N1289.18 (9)N9—C14—H14A110.1
N11—Co1—N1286.24 (9)C15—C14—H14A110.1
N9—Co1—N1294.01 (9)N9—C14—H14B110.1
N10—Co1—N12178.23 (9)C15—C14—H14B110.1
H6A—O6—H6B103 (3)H14A—C14—H14B108.4
O4—N7—O5120.4 (2)C14—C15—N10109.7 (2)
O4—N7—Co1120.22 (18)C14—C15—H15A109.7
O5—N7—Co1119.42 (19)N10—C15—H15A109.7
C13—N8—Co1170.41 (19)C14—C15—H15B109.7
C14—N9—Co1107.74 (16)N10—C15—H15B109.7
C14—N9—H9A110.2H15A—C15—H15B108.2
Co1—N9—H9A110.2N11—C16—C17109.2 (2)
C14—N9—H9B110.2N11—C16—H16A109.8
Co1—N9—H9B110.2C17—C16—H16A109.8
H9A—N9—H9B108.5N11—C16—H16B109.8
C15—N10—Co1110.07 (17)C17—C16—H16B109.8
C15—N10—H10A109.6H16A—C16—H16B108.3
Co1—N10—H10A109.6N12—C17—C16108.2 (3)
C15—N10—H10B109.6N12—C17—H17A110.1
Co1—N10—H10B109.6C16—C17—H17A110.1
H10A—N10—H10B108.2N12—C17—H17B110.1
C16—N11—Co1110.45 (18)C16—C17—H17B110.1
C16—N11—H11A109.6H17A—C17—H17B108.4
Co1—N11—H11A109.6
Co1—N9—C14—C1544.9 (3)N9—Co1—N10—C152.0 (2)
N9—C14—C15—N1044.1 (3)N12—Co1—N11—C163.5 (2)
Co1—N10—C15—C1422.6 (3)N11—Co1—N12—C1721.6 (2)
Co1—N11—C16—C1727.5 (3)O4—N7—Co1—N946.3 (2)
Co1—N12—C17—C1641.7 (3)O4—N7—Co1—N1039.4 (2)
N11—C16—C17—N1245.6 (4)O5—N7—Co1—N1146.3 (2)
N10—Co1—N9—C1426.2 (2)O5—N7—Co1—N1240.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O5i0.82 (2)2.19 (2)2.958 (3)156 (4)
O6—H6B···Cl20.83 (2)2.45 (2)3.253 (3)162 (4)
N9—H9A···O40.892.492.960 (3)114
N9—H9A···O4ii0.892.483.191 (3)138
N9—H9B···Cl2iii0.892.433.297 (2)165
N10—H10A···O60.892.082.960 (3)171
N10—H10B···Cl2iv0.892.753.461 (2)138
N11—H11A···Cl2iv0.892.443.260 (2)153
N11—H11B···Cl20.892.423.285 (2)164
N12—H12A···Cl2iii0.892.473.335 (2)164
N12—H12B···S3v0.892.753.585 (2)157
N12—H12B···O50.892.412.887 (3)114
C15—H15B···S3vi0.972.773.546 (3)138
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y+2, z+1; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y+3/2, z+1/2.
trans-Bis(ethylenediamine)(isothiocyanato)nitritocobalt(III) perchlorate–thiocyanate(0.75/0.25) (III) top
Crystal data top
[Co(CNS)(NO2)(C2H8N2)2](ClO4)0.75(CNS)0.25F(000) = 1528
Mr = 372.33Dx = 1.759 Mg m3
Dm = 1.76 (2) Mg m3
Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3141 (6) ÅCell parameters from 9222 reflections
b = 16.2969 (7) Åθ = 2.5–27.9°
c = 16.1298 (7) ŵ = 1.58 mm1
β = 109.023 (2)°T = 301 K
V = 2811.7 (2) Å3Prism, orange
Z = 80.35 × 0.30 × 0.27 mm
Data collection top
Bruker D8 VENTURE
diffractometer
5411 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 27.9°, θmin = 2.3°
Tmin = 0.544, Tmax = 0.774h = 1411
30435 measured reflectionsk = 2119
6595 independent reflectionsl = 2121
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.221 w = 1/[σ2(Fo2) + (0.1199P)2 + 7.1456P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
6595 reflectionsΔρmax = 1.40 e Å3
379 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.26737 (5)0.24838 (3)0.26005 (4)0.02768 (18)
Co20.73662 (5)0.50800 (3)0.25489 (4)0.02803 (18)
Cl31.00831 (11)0.27237 (9)0.50358 (8)0.0488 (3)
Cl40.50000.00000.50000.0959 (11)
S50.16787 (10)0.26965 (7)0.18348 (9)0.0437 (3)
S61.17122 (10)0.49090 (7)0.32114 (9)0.0424 (3)
S70.0060 (12)0.0722 (6)0.0308 (12)0.0904 (14)0.5
O80.5136 (3)0.2946 (3)0.3191 (3)0.0638 (11)
O90.4876 (3)0.1716 (2)0.2726 (3)0.0623 (11)
O100.4904 (3)0.4615 (3)0.1966 (3)0.0643 (11)
O110.5155 (3)0.5834 (2)0.2431 (3)0.0677 (12)
O121.0988 (5)0.3160 (3)0.4766 (4)0.0846 (15)
O130.8923 (5)0.2694 (3)0.4343 (4)0.102 (2)
O141.0485 (5)0.1901 (3)0.5271 (4)0.0823 (15)
O150.9910 (6)0.3161 (4)0.5742 (4)0.0996 (19)
O160.5605 (16)0.0574 (9)0.4377 (10)0.127 (5)0.5
O170.385 (2)0.0198 (17)0.471 (2)0.225 (15)0.5
O180.5111 (10)0.0765 (7)0.4576 (8)0.083 (3)0.5
O190.588 (3)0.0018 (12)0.5753 (11)0.165 (10)0.5
N200.4445 (3)0.2367 (2)0.2869 (3)0.0360 (8)
N210.0916 (4)0.2626 (2)0.2337 (3)0.0386 (8)
N220.2391 (4)0.1979 (2)0.1448 (3)0.0406 (8)
H22A0.30880.17370.14310.049*
H22B0.17930.16010.13470.049*
N230.2773 (3)0.3522 (2)0.2017 (2)0.0349 (7)
H23A0.20940.38220.19640.042*
H23B0.34390.38050.23370.042*
N240.2970 (4)0.2984 (2)0.3751 (2)0.0405 (8)
H24A0.36060.33350.38650.049*
H24B0.22940.32580.37590.049*
N250.2551 (3)0.1441 (2)0.3166 (3)0.0392 (8)
H25A0.18940.11580.28350.047*
H25B0.32360.11420.32370.047*
N260.5597 (3)0.5190 (2)0.2292 (3)0.0358 (8)
N270.9128 (4)0.4954 (2)0.2794 (3)0.0429 (9)
N280.7299 (4)0.4059 (2)0.3167 (3)0.0399 (8)
H28A0.66410.37640.28580.048*
H28B0.79860.37650.32290.048*
N290.7668 (4)0.5619 (3)0.3677 (3)0.0435 (9)
H29A0.82820.59840.37670.052*
H29B0.69820.58790.36880.052*
N300.7443 (3)0.6115 (2)0.1954 (2)0.0369 (8)
H30A0.67870.64260.19340.044*
H30B0.81340.63870.22490.044*
N310.7049 (4)0.4565 (2)0.1403 (3)0.0420 (9)
H31A0.77300.43030.13840.050*
H31B0.64290.42030.13050.050*
N320.023 (4)0.0799 (17)0.037 (4)0.0904 (14)0.5
C330.0157 (4)0.2666 (2)0.2136 (3)0.0306 (8)
C340.2016 (5)0.2629 (3)0.0778 (3)0.0482 (12)
H34A0.11490.27810.06690.058*
H34B0.21120.24420.02330.058*
C350.2867 (6)0.3352 (3)0.1141 (3)0.0506 (12)
H35A0.37220.32200.11870.061*
H35B0.26020.38260.07610.061*
C360.3262 (5)0.2324 (4)0.4418 (3)0.0510 (12)
H36A0.31180.25130.49480.061*
H36B0.41290.21590.45660.061*
C370.2414 (5)0.1622 (3)0.4024 (3)0.0499 (12)
H37A0.26390.11450.44030.060*
H37B0.15540.17660.39520.060*
C381.0193 (4)0.4929 (2)0.2961 (3)0.0334 (9)
C390.7204 (6)0.4248 (4)0.4024 (4)0.0604 (15)
H39A0.74770.37840.44160.073*
H39B0.63450.43740.39730.073*
C400.8022 (7)0.4973 (4)0.4369 (4)0.0625 (16)
H40A0.79010.51720.49020.075*
H40B0.88940.48240.45000.075*
C410.7442 (7)0.5947 (4)0.1067 (4)0.0650 (16)
H41A0.70930.64120.06920.078*
H41B0.82930.58660.10710.078*
C420.6706 (7)0.5219 (4)0.0729 (4)0.0652 (16)
H42A0.68610.50330.02030.078*
H42B0.58230.53450.05790.078*
C430.0001 (8)0.0196 (4)0.0072 (6)0.0321 (18)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0238 (3)0.0235 (3)0.0337 (3)0.00122 (18)0.0066 (2)0.00090 (19)
Co20.0250 (3)0.0225 (3)0.0343 (3)0.00156 (18)0.0065 (2)0.00015 (19)
Cl30.0382 (6)0.0488 (7)0.0563 (7)0.0025 (5)0.0112 (5)0.0009 (5)
Cl40.0470 (12)0.091 (2)0.140 (3)0.0020 (12)0.0172 (15)0.0573 (19)
S50.0256 (5)0.0382 (6)0.0623 (7)0.0035 (4)0.0076 (5)0.0011 (5)
S60.0286 (5)0.0395 (6)0.0570 (7)0.0038 (4)0.0108 (5)0.0017 (5)
S70.066 (4)0.098 (3)0.105 (3)0.008 (3)0.024 (3)0.005 (2)
O80.0335 (18)0.059 (2)0.094 (3)0.0142 (17)0.0139 (19)0.015 (2)
O90.0354 (18)0.054 (2)0.094 (3)0.0127 (16)0.0170 (19)0.015 (2)
O100.0347 (19)0.056 (2)0.099 (3)0.0186 (17)0.0176 (19)0.015 (2)
O110.0360 (19)0.045 (2)0.118 (4)0.0091 (16)0.020 (2)0.011 (2)
O120.089 (4)0.074 (3)0.112 (4)0.021 (3)0.062 (3)0.005 (3)
O130.064 (3)0.078 (3)0.122 (5)0.003 (3)0.026 (3)0.008 (3)
O140.070 (3)0.060 (3)0.114 (4)0.016 (2)0.025 (3)0.030 (3)
O150.114 (5)0.106 (4)0.108 (4)0.024 (4)0.076 (4)0.035 (3)
O160.174 (15)0.093 (9)0.122 (11)0.051 (10)0.059 (10)0.014 (8)
O170.127 (13)0.24 (3)0.28 (3)0.112 (17)0.029 (18)0.07 (2)
O180.075 (6)0.070 (6)0.121 (9)0.015 (5)0.053 (6)0.030 (6)
O190.26 (3)0.128 (15)0.086 (10)0.104 (17)0.023 (13)0.018 (9)
N200.0240 (17)0.0368 (18)0.044 (2)0.0002 (14)0.0068 (15)0.0006 (15)
N210.0287 (18)0.0368 (19)0.046 (2)0.0032 (14)0.0060 (15)0.0037 (15)
N220.0374 (19)0.0339 (19)0.046 (2)0.0003 (15)0.0068 (16)0.0047 (15)
N230.0337 (18)0.0302 (17)0.0416 (19)0.0003 (14)0.0135 (15)0.0001 (14)
N240.0354 (19)0.041 (2)0.0406 (19)0.0017 (16)0.0066 (15)0.0010 (16)
N250.0322 (18)0.0327 (18)0.053 (2)0.0022 (14)0.0151 (16)0.0091 (16)
N260.0259 (17)0.0320 (17)0.046 (2)0.0028 (13)0.0064 (14)0.0003 (15)
N270.033 (2)0.038 (2)0.054 (2)0.0023 (15)0.0097 (17)0.0029 (17)
N280.0370 (19)0.0314 (18)0.052 (2)0.0033 (15)0.0159 (16)0.0092 (15)
N290.039 (2)0.043 (2)0.043 (2)0.0007 (16)0.0052 (16)0.0066 (16)
N300.0345 (18)0.0294 (17)0.048 (2)0.0007 (14)0.0142 (15)0.0024 (15)
N310.038 (2)0.0343 (19)0.049 (2)0.0010 (15)0.0083 (16)0.0065 (16)
N320.066 (4)0.098 (3)0.105 (3)0.008 (3)0.024 (3)0.005 (2)
C330.032 (2)0.0264 (18)0.0313 (19)0.0003 (15)0.0079 (16)0.0003 (14)
C340.052 (3)0.054 (3)0.035 (2)0.006 (2)0.009 (2)0.001 (2)
C350.064 (3)0.046 (3)0.047 (3)0.004 (2)0.025 (2)0.008 (2)
C360.047 (3)0.065 (3)0.035 (2)0.006 (2)0.006 (2)0.004 (2)
C370.050 (3)0.050 (3)0.054 (3)0.004 (2)0.024 (2)0.022 (2)
C380.032 (2)0.0285 (19)0.037 (2)0.0003 (15)0.0071 (16)0.0009 (15)
C390.078 (4)0.052 (3)0.056 (3)0.003 (3)0.027 (3)0.016 (2)
C400.067 (4)0.078 (4)0.035 (3)0.005 (3)0.006 (2)0.006 (2)
C410.096 (5)0.050 (3)0.055 (3)0.006 (3)0.033 (3)0.013 (2)
C420.079 (4)0.071 (4)0.043 (3)0.013 (3)0.016 (3)0.002 (3)
C430.027 (3)0.025 (3)0.045 (3)0.004 (3)0.012 (2)0.003 (3)
Geometric parameters (Å, º) top
Co1—N211.907 (4)N25—C371.471 (6)
Co1—N201.916 (4)N25—H25A0.8900
Co1—N241.953 (4)N25—H25B0.8900
Co1—N251.956 (4)N27—C381.147 (6)
Co1—N231.957 (3)N28—C391.455 (7)
Co1—N221.961 (4)N28—H28A0.8900
Co2—N271.912 (4)N28—H28B0.8900
Co2—N261.915 (4)N29—C401.491 (7)
Co2—N291.947 (4)N29—H29A0.8900
Co2—N311.954 (4)N29—H29B0.8900
Co2—N281.954 (4)N30—C411.455 (7)
Co2—N301.957 (4)N30—H30A0.8900
Cl3—O151.410 (5)N30—H30B0.8900
Cl3—O131.421 (5)N31—C421.480 (7)
Cl3—O121.426 (5)N31—H31A0.8900
Cl3—O141.427 (4)N31—H31B0.8900
Cl4—O171.27 (2)N32—C431.158 (4)
Cl4—O191.30 (2)C34—C351.514 (8)
Cl4—O181.447 (10)C34—H34A0.9700
Cl4—O161.674 (13)C34—H34B0.9700
S5—C331.630 (4)C35—H35A0.9700
S6—C381.633 (4)C35—H35B0.9700
S7—C431.627 (4)C36—C371.496 (8)
O8—N201.227 (5)C36—H36A0.9700
O9—N201.220 (5)C36—H36B0.9700
O10—N261.224 (5)C37—H37A0.9700
O11—N261.215 (5)C37—H37B0.9700
N21—C331.152 (6)C39—C401.491 (9)
N22—C341.473 (6)C39—H39A0.9700
N22—H22A0.8900C39—H39B0.9700
N22—H22B0.8900C40—H40A0.9700
N23—C351.479 (6)C40—H40B0.9700
N23—H23A0.8900C41—C421.451 (9)
N23—H23B0.8900C41—H41A0.9700
N24—C361.481 (6)C41—H41B0.9700
N24—H24A0.8900C42—H42A0.9700
N24—H24B0.8900C42—H42B0.9700
N21—Co1—N20178.72 (16)C39—N28—H28A109.8
N21—Co1—N2490.29 (17)Co2—N28—H28A109.8
N20—Co1—N2489.06 (16)C39—N28—H28B109.8
N21—Co1—N2588.97 (16)Co2—N28—H28B109.8
N20—Co1—N2592.09 (16)H28A—N28—H28B108.3
N24—Co1—N2586.33 (17)C40—N29—Co2107.7 (3)
N21—Co1—N2390.39 (16)C40—N29—H29A110.2
N20—Co1—N2388.56 (16)Co2—N29—H29A110.2
N24—Co1—N2394.38 (16)C40—N29—H29B110.2
N25—Co1—N23179.05 (16)Co2—N29—H29B110.2
N21—Co1—N2290.19 (17)H29A—N29—H29B108.5
N20—Co1—N2290.46 (17)C41—N30—Co2109.5 (3)
N24—Co1—N22179.51 (16)C41—N30—H30A109.8
N25—Co1—N2293.62 (17)Co2—N30—H30A109.8
N23—Co1—N2285.67 (16)C41—N30—H30B109.8
N27—Co2—N26179.05 (17)Co2—N30—H30B109.8
N27—Co2—N2990.07 (18)H30A—N30—H30B108.2
N26—Co2—N2990.74 (17)C42—N31—Co2108.0 (3)
N27—Co2—N3190.42 (18)C42—N31—H31A110.1
N26—Co2—N3188.77 (17)Co2—N31—H31A110.1
N29—Co2—N31178.61 (17)C42—N31—H31B110.1
N27—Co2—N2890.79 (17)Co2—N31—H31B110.1
N26—Co2—N2888.78 (16)H31A—N31—H31B108.4
N29—Co2—N2886.09 (17)N21—C33—S5178.3 (4)
N31—Co2—N2895.20 (17)N22—C34—C35106.4 (4)
N27—Co2—N3089.11 (16)N22—C34—H34A110.5
N26—Co2—N3091.34 (16)C35—C34—H34A110.5
N29—Co2—N3092.72 (17)N22—C34—H34B110.5
N31—Co2—N3085.99 (16)C35—C34—H34B110.5
N28—Co2—N30178.80 (16)H34A—C34—H34B108.7
O15—Cl3—O13108.5 (4)N23—C35—C34106.3 (4)
O15—Cl3—O12107.3 (3)N23—C35—H35A110.5
O13—Cl3—O12110.4 (4)C34—C35—H35A110.5
O15—Cl3—O14112.1 (4)N23—C35—H35B110.5
O13—Cl3—O14108.0 (3)C34—C35—H35B110.5
O12—Cl3—O14110.6 (3)H35A—C35—H35B108.7
O17—Cl4—O19136.1 (14)N24—C36—C37106.6 (4)
O17—Cl4—O18106.4 (12)N24—C36—H36A110.4
O19—Cl4—O18107.6 (11)C37—C36—H36A110.4
O17—Cl4—O16102.0 (16)N24—C36—H36B110.4
O19—Cl4—O16102.0 (10)C37—C36—H36B110.4
O18—Cl4—O1694.7 (6)H36A—C36—H36B108.6
O9—N20—O8120.6 (4)N25—C37—C36107.7 (4)
O9—N20—Co1119.7 (3)N25—C37—H37A110.2
O8—N20—Co1119.7 (3)C36—C37—H37A110.2
C33—N21—Co1175.1 (4)N25—C37—H37B110.2
C34—N22—Co1108.2 (3)C36—C37—H37B110.2
C34—N22—H22A110.1H37A—C37—H37B108.5
Co1—N22—H22A110.1N27—C38—S6178.8 (5)
C34—N22—H22B110.1N28—C39—C40107.1 (5)
Co1—N22—H22B110.1N28—C39—H39A110.3
H22A—N22—H22B108.4C40—C39—H39A110.3
C35—N23—Co1109.3 (3)N28—C39—H39B110.3
C35—N23—H23A109.8C40—C39—H39B110.3
Co1—N23—H23A109.8H39A—C39—H39B108.6
C35—N23—H23B109.8N29—C40—C39107.3 (4)
Co1—N23—H23B109.8N29—C40—H40A110.3
H23A—N23—H23B108.3C39—C40—H40A110.3
C36—N24—Co1108.4 (3)N29—C40—H40B110.3
C36—N24—H24A110.0C39—C40—H40B110.3
Co1—N24—H24A110.0H40A—C40—H40B108.5
C36—N24—H24B110.0C42—C41—N30109.9 (5)
Co1—N24—H24B110.0C42—C41—H41A109.7
H24A—N24—H24B108.4N30—C41—H41A109.7
C37—N25—Co1108.0 (3)C42—C41—H41B109.7
C37—N25—H25A110.1N30—C41—H41B109.7
Co1—N25—H25A110.1H41A—C41—H41B108.2
C37—N25—H25B110.1C41—C42—N31109.4 (5)
Co1—N25—H25B110.1C41—C42—H42A109.8
H25A—N25—H25B108.4N31—C42—H42A109.8
O11—N26—O10119.7 (4)C41—C42—H42B109.8
O11—N26—Co2120.3 (3)N31—C42—H42B109.8
O10—N26—Co2119.9 (3)H42A—C42—H42B108.2
C38—N27—Co2175.6 (4)N32—C43—S7168 (2)
C39—N28—Co2109.3 (3)
Co1—N22—C34—C3542.9 (5)N25—Co1—N24—C3614.3 (3)
Co1—N23—C35—C3438.5 (5)N24—Co1—N25—C3714.4 (3)
N22—C34—C35—N2353.2 (5)N29—Co2—N28—C3913.3 (4)
Co1—N24—C36—C3739.4 (5)N28—Co2—N29—C4015.3 (4)
Co1—N25—C37—C3640.0 (5)N31—Co2—N30—C419.3 (4)
N24—C36—C37—N2552.3 (5)N30—Co2—N31—C4215.1 (4)
Co2—N28—C39—C4038.7 (5)O8—N20—Co1—N2348.4 (4)
Co2—N29—C40—C3940.3 (6)O8—N20—Co1—N2446.0 (4)
N28—C39—C40—N2951.9 (7)O9—N20—Co1—N2246.7 (4)
Co2—N30—C41—C4232.7 (6)O9—N20—Co1—N2547.0 (4)
N30—C41—C42—N3146.2 (7)O10—N26—Co2—N2850.7 (4)
Co2—N31—C42—C4137.1 (6)O10—N26—Co2—N3144.5 (4)
N23—Co1—N22—C3417.6 (3)O11—N26—Co2—N2944.9 (4)
N22—Co1—N23—C3512.2 (3)O11—N26—Co2—N3047.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22A···O90.892.392.925 (5)119
N22—H22B···S70.892.643.456 (12)153
N23—H23A···S6i0.892.823.429 (4)127
N23—H23B···O80.892.412.884 (5)113
N23—H23B···O100.892.343.021 (5)133
N24—H24A···S7ii0.892.793.475 (18)135
N24—H24A···O80.892.412.875 (6)113
N24—H24B···S6i0.892.843.437 (4)126
N24—H24B···O12i0.892.533.192 (6)132
N25—H25A···O11iii0.892.283.059 (5)147
N25—H25B···O90.892.452.973 (5)118
N25—H25B···O180.892.563.237 (12)133
N25—H25B···O19iv0.892.443.089 (15)130
N28—H28A···O80.892.363.057 (5)135
N28—H28A···O100.892.452.915 (6)113
N28—H28B···O130.892.483.107 (6)128
N29—H29A···O15v0.892.393.266 (7)170
N29—H29B···O110.892.382.919 (6)119
N30—H30A···O110.892.442.967 (6)118
N30—H30B···O9vi0.892.303.067 (5)144
N31—H31A···S5vii0.892.743.343 (4)126
N31—H31A···O16vi0.892.573.294 (17)139
N31—H31B···O100.892.402.856 (6)112
N31—H31B···O14viii0.892.453.172 (6)139
C35—H35B···O17ix0.972.243.09 (2)145
C36—H36A···O12i0.972.563.119 (8)117
C36—H36B···O180.972.533.249 (11)131
C37—H37A···O16iv0.972.483.290 (15)141
C37—H37A···O19iv0.972.553.197 (17)124
C39—H39A···O130.972.443.133 (8)128
C41—H41A···O13vi0.972.383.202 (8)143
C41—H41B···O18vi0.972.373.272 (12)155
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x+2, y+1, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x1/2, y+1/2, z1/2; (ix) x+1/2, y+1/2, z+1/2.
 

Footnotes

Present Address: R&D Group, Toyota Motor Corporation, Toyota-cho 1, Toyota, Aichi 471-8571, Japan.

Acknowledgements

The authors thank Dr Takashi Nemoto, Kyoto University, for making the program CAVITY available to the public.

References

First citationAdell, B. (1971). Z. Anorg. Allg. Chem. 386, 122–128.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBörtin, O. (1976). Acta Chem. Scand. A, 30, 503–506.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrenthe, I. & Nordin, E. (1979). Inorg. Chem. 18, 1869–1874.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHatcher, L. E. & Raithby, P. R. (2013). Acta Cryst. C69, 1448–1456.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohnson, D. A. & Pashman, K. A. (1975). Inorg. Nucl. Chem. Lett. 11, 23–28.  CrossRef Google Scholar
First citationKubota, M. & Ohba, S. (1992). Acta Cryst. B48, 627–632.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiyoshi, K., Katoda, N. & Yoneda, H. (1983). Inorg. Chem. 22, 1839–1843.  CrossRef CAS Web of Science Google Scholar
First citationNakahara, K. & Shibata, M. (1977). Editors. Sin-Jikken-Kagaku-Kouza [New Experimental Chemistry Course] Vol. 8, Syntheses of Inorganic Compounds III, pp. 1256-1262. The Chemical Society of Japan. Tokyo: Maruzen.  Google Scholar
First citationOhashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805–5812.  CSD CrossRef CAS Web of Science Google Scholar
First citationOkuda, M., Ohba, S., Saito, Y., Ito, T. & Shibuya, I. (1990). Acta Cryst. B46, 343–347.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds