research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bromido(η6-1-iso­propyl-4-methylbenzene)(7-oxo­cyclohepta-1,3,5-trien-1-olato-κ2O,O′)osmium

CROSSMARK_Color_square_no_text.svg

aChemistry Department, University of South Africa, Pretoria, 0003, South Africa, and bMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: clayths@unisa.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 November 2017; accepted 22 January 2018; online 2 February 2018)

In the title compound, [OsBr(C10H14)(C7H5O2)], the central OsII ion is ligated by a hexa­haptic η6 p-cymene ring, a Br ligand and two O atoms of a chelating tropolonate group. The p-cymene ligand presents more than one conformation, giving rise to a discrete disorder, which was modelled with two different orientations with occupancy values of 0.561 (15) and 0.439 (15). The crystal packing features C—H⋯O and C—H⋯Br hydrogen bonding. Aromatic ππ stacking inter­actions are also observed between adjacent non-benzenoid aromatic tropolone rings.

1. Chemical context

The chemistry of half-sandwich organometallic OsII–arene complexes with O-donor ligands has drawn considerable inter­est because of their potential application as anti­cancer agents (Zhang & Sadler, 2017[Zhang, P. & Sadler, P. J. (2017). J. Organomet. Chem. 839, 5-14.]). In particular, several complexes of this type with O,O- and N,O-chelating ligands have been investigated (Hanif et al., 2010[Hanif, M., Henke, H., Meier, S. M., Martic, S., Labib, M., Kandioller, W., Jakupec, M. A., Arion, V. B., Kraatz, H.-B., Keppler, B. K. & Hartinger, C. G. (2010). Inorg. Chem. 49, 7953-7963.]; van Rijt et al., 2009[Rijt, S. H. van, Peacock, A. F., Johnstone, R. D., Parsons, S. & Sadler, P. J. (2009). Inorg. Chem. 48, 1753-1762.]). While the complexes with N,O-ligands have shown in vitro anti­cancer activity comparable to Cisplatin, the benchmark anti­cancer metallopharmaceutical, complexes with O,O-ligands exhibit low activity. This has been attributed to the poor stability of these complexes in aqueous solution and the formation of inactive hy­droxy-bridged dimers (Hanif et al., 2014[Hanif, M., Babak, M. V. & Hartinger, C. G. (2014). Drug Discov. Today, 19, 1640-1648.]). The mechanism of the cytotoxic action of the OsII–arene complexes is generally thought to involve hydrolysis of the Os—X bond (where X = a halide ligand) to generate an active Os–OH2 species, which binds to biomolecules leading to cellular dysfunction and consequently triggering apoptosis. While the anti­cancer activity of the OsII–arene complexes has often been compared to that of their Ru analogues, no defin­itive structure–activity relationship has yet been elucidated. In addition, the OsII–arene complexes appear to have an altered pharmacological profile in comparison with the ruthenium complexes (Bruijnincx & Sadler, 2009[Bruijnincx, P. C. A. & Sadler, P. J. (2009). Adv. Inorg. Chem. 61, 1-62.]). As part of our studies in this area, single-crystal X-ray diffraction was used to determine the structure of the title compound, (I)[link].

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] and selected geometrical data are presented in Table 1[link]. The complex adopts a `three-legged piano-stool' geometry, where the η6-coord­inated arene ring is present as the seat, and the two O atoms of the tropolonate ligand along with the bromido ligand as the three legs of the stool.

[Scheme 1]

Table 1
Selected bond lengths (Å)

Os1—C1A 2.090 (12) Os1—C3B 2.167 (19)
Os1—C2A 2.125 (14) Os1—C4B 2.192 (16)
Os1—C3A 2.158 (14) Os1—C5B 2.21 (2)
Os1—C4A 2.157 (12) Os1—C6B 2.21 (2)
Os1—C5A 2.123 (18) Os1—O1 2.088 (6)
Os1—C6A 2.089 (18) Os1—O2 2.071 (6)
Os1—C1B 2.187 (13) Os1—Br1 2.5472 (12)
Os1—C2B 2.164 (17)    
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids. Only one orientation of the disordered benzene ring is shown.

The tropolonato anion is chelated to the metal centre, forming a five-membered OsO2C2 ring, which is almost planar, with the tight bite angle [76.3 (2)°] of the tropolonate chelate resulting in a distorted pseudo-octa­hedral coordination sphere. The rigid tropolonate ligand backbone is made up of an almost planar seven-membered ring consisting of conjugated sp2 carbon atoms. The Os—O bond lengths [2.071 (6) and 2.088 (6) Å] are similar to those of the related ruthenium compound (ca 2.1 Å) published previously (Dwivedi et al., 2016[Dwivedi, A. D., Binnani, C., Tyagi, D., Rawat, K. S., Li, P.-Z., Zhao, Y., Mobin, S. M., Pathak, B. & Singh, S. K. (2016). Inorg. Chem. 55, 6739-6749.]). The isobidentate nature of the OsO2C2 moiety is evidence of delocalization of the C=O bonds of the tropolone ligand upon coordination [C11—O1 = 1.303 (11), C17—O2 = 1.299 (11)Å]. The aromatic ring of the p-cymene ligand appears almost planar, with the displacement of the arene ring centroid from the OsII center [1.676 Å] being comparable with other similar complexes (Peacock et al., 2007[Peacock, A. F. A., Melchart, M., Deeth, R. J., Habtemariam, A., Parsons, S. & Sadler, P. J. (2007). Chem. Eur. J. 13, 2601-2613.]; Kandioller et al. 2013[Kandioller, W., Balsano, E., Meier, S. M., Jungwirth, U., Göschl, S., Roller, A., Jakupec, M. A., Berger, W., Keppler, B. K. & Hartinger, C. G. (2013). Chem. Commun. 49, 3348-3350.]).

3. Supra­molecular features

In the crystal, the coordinated O atoms of the tropolonate ligand accept weak C—H⋯O inter­actions (Table 2[link]) from the p-cymene ring in the range 2.40–2.72 Å, which contribute to the crystal packing. In addition, the bromide ion acts as a hydrogen-bond acceptor, forming C—H⋯Br hydrogen bonds with a C—H group from the arene ring of an adjacent mol­ecule. There is also a ππ stacking inter­action between the tropolone ligands with the plane-to-plane distances of the stacked aromatic ring moieties at 3.895 Å (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯O1i 0.95 2.40 3.24 (2) 148
C3B—H3B⋯O1i 0.95 2.75 3.38 (2) 124
C5B—H5B⋯O2ii 0.95 2.50 3.25 (2) 136
C6A—H6A⋯O2ii 0.95 2.71 3.39 (2) 124
C5A—H5A⋯O2ii 0.95 2.77 3.39 (2) 124
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z.
[Figure 2]
Figure 2
Detail of the packing of (I)[link] showing aromatic ππ stacking between the seven-membered rings as a blue dashed line.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related structures revealed that the isostructural ruthenium complex, [(η6-p-cymene)Ru(trop)Cl] (OTIMOV; Dwivedi et al., 2016[Dwivedi, A. D., Binnani, C., Tyagi, D., Rawat, K. S., Li, P.-Z., Zhao, Y., Mobin, S. M., Pathak, B. & Singh, S. K. (2016). Inorg. Chem. 55, 6739-6749.]), and similar osmium complexes (QEYXIC; Peacock et al., 2007[Peacock, A. F. A., Melchart, M., Deeth, R. J., Habtemariam, A., Parsons, S. & Sadler, P. J. (2007). Chem. Eur. J. 13, 2601-2613.] and BENYUQ; Kandioller et al., 2013[Kandioller, W., Balsano, E., Meier, S. M., Jungwirth, U., Göschl, S., Roller, A., Jakupec, M. A., Berger, W., Keppler, B. K. & Hartinger, C. G. (2013). Chem. Commun. 49, 3348-3350.]) have been reported.

5. Synthesis and crystallization

All synthetic procedures were carried out using standard Schlenk techniques under an atmosphere of argon. The osmium dimer [Os(η6-p-cymene)Br2]2 (1.037 g, 1.07 mmol) and sodium tropolonate (0.448 g, 3.11 mmol) were suspended in methanol (100 ml). The suspension was stirred at room temperature overnight to give a dark-brown solution. The solution was filtered and the solvent was removed in vacuo. The residue was extracted with CH2Cl2 (80 ml). The solvent was removed under reduced pressure to give the title compound as a red–brown solid. Yield 72% (0.807 g, 1.54 mmol). Red blocks of (I)[link] were obtained by slow evaporation from a concentrated di­chloro­methane solution at room temperature over several days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C1–C10 atoms of the p-cymene ligand were modelled as disordered over two orientations with occupancies of 0.561 (15) and 0.439 (15).

Table 3
Experimental details

Crystal data
Chemical formula C17H19BrO2Os
Mr 525.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.1574 (5), 14.6104 (7), 10.8342 (5)
β (°) 110.454 (2)
V3) 1654.78 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.12
Crystal size (mm) 0.12 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector
Absorption correction Integration (XPREP; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.538, 0.714
No. of measured, independent and observed [I > 2σ(I)] reflections 58616, 3990, 3614
Rint 0.079
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.118, 1.15
No. of reflections 3990
No. of parameters 259
No. of restraints 384
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 5.63, −2.07
Computer programs: APEX3, SAINT-Plus and XPREP (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Bromido(η6-1-isopropyl-4-methylbenzene)(7-oxocyclohepta-1,3,5-trien-\ 1-olato-κ2O,O')osmium top
Crystal data top
C17H19BrO2OsF(000) = 992
Mr = 525.43Dx = 2.109 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9941 reflections
a = 11.1574 (5) Åθ = 3.3–28.3°
b = 14.6104 (7) ŵ = 10.12 mm1
c = 10.8342 (5) ÅT = 173 K
β = 110.454 (2)°Block, red
V = 1654.78 (13) Å30.12 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: integration
Bruker XPREP (Bruker, 2016)
h = 1414
Tmin = 0.538, Tmax = 0.714k = 1919
58616 measured reflectionsl = 1414
3990 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0137P)2 + 44.2634P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3990 reflectionsΔρmax = 5.63 e Å3
259 parametersΔρmin = 2.07 e Å3
384 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.2170 (16)1.0600 (9)0.1234 (11)0.035 (3)0.561 (15)
C2A0.1066 (14)1.0131 (11)0.1297 (16)0.034 (3)0.561 (15)
H2A0.03641.04550.12020.041*0.561 (15)
C3A0.0988 (13)0.9190 (11)0.1497 (16)0.036 (3)0.561 (15)
H3A0.02340.8870.1540.043*0.561 (15)
C4A0.2015 (16)0.8718 (9)0.1635 (12)0.035 (3)0.561 (15)
C5A0.3120 (14)0.9186 (13)0.1572 (19)0.034 (3)0.561 (15)
H5A0.38220.88630.16660.041*0.561 (15)
C6A0.3197 (13)1.0127 (13)0.1372 (19)0.033 (3)0.561 (15)
H6A0.39511.04470.13290.039*0.561 (15)
C7A0.2286 (19)1.1633 (10)0.1010 (16)0.040 (3)0.561 (15)
H7A0.32111.17680.05290.048*0.561 (15)
C8A0.155 (2)1.1965 (17)0.013 (2)0.050 (5)0.561 (15)
H8A10.18331.16170.06910.076*0.561 (15)
H8A20.17261.26170.00590.076*0.561 (15)
H8A30.06351.18730.05920.076*0.561 (15)
C9A0.190 (2)1.2146 (16)0.2316 (19)0.048 (5)0.561 (15)
H9A10.19821.28060.21480.073*0.561 (15)
H9A20.2461.19620.27970.073*0.561 (15)
H9A30.10111.19990.28440.073*0.561 (15)
C10A0.193 (2)0.7683 (12)0.1851 (17)0.046 (4)0.561 (15)
H10A0.1440.74110.13450.068*0.561 (15)
H10B0.27890.7420.15580.068*0.561 (15)
H10C0.14930.75520.2790.068*0.561 (15)
C1B0.175 (2)0.8944 (11)0.1821 (12)0.033 (3)0.439 (15)
C2B0.0910 (16)0.9528 (13)0.1515 (19)0.028 (3)0.439 (15)
H2B0.00970.9310.15480.034*0.439 (15)
C3B0.1259 (18)1.0430 (12)0.116 (2)0.031 (4)0.439 (15)
H3B0.06841.08290.09530.037*0.439 (15)
C4B0.2448 (19)1.0749 (12)0.1114 (16)0.031 (3)0.439 (15)
C5B0.3288 (16)1.0166 (17)0.142 (2)0.028 (3)0.439 (15)
H5B0.41011.03840.13870.033*0.439 (15)
C6B0.2939 (19)0.9263 (15)0.177 (2)0.031 (3)0.439 (15)
H6B0.35140.88650.19820.037*0.439 (15)
C7B0.140 (2)0.7948 (13)0.2213 (16)0.042 (4)0.439 (15)
H7B0.22260.75990.19450.05*0.439 (15)
C8B0.054 (3)0.7458 (19)0.160 (3)0.049 (6)0.439 (15)
H8B10.09270.74920.06330.073*0.439 (15)
H8B20.030.77520.18850.073*0.439 (15)
H8B30.04470.68150.18710.073*0.439 (15)
C9B0.084 (3)0.791 (2)0.3714 (18)0.047 (6)0.439 (15)
H9B10.14050.82280.40860.07*0.439 (15)
H9B20.07430.7270.40030.07*0.439 (15)
H9B30.00040.82070.40180.07*0.439 (15)
C10B0.280 (3)1.1744 (14)0.072 (2)0.040 (5)0.439 (15)
H10D0.26061.21210.15110.06*0.439 (15)
H10E0.37091.17860.01950.06*0.439 (15)
H10F0.22941.19630.01930.06*0.439 (15)
C110.2519 (8)0.9918 (7)0.2698 (9)0.0254 (18)
C120.2049 (9)0.9871 (8)0.3746 (10)0.033 (2)
H120.12960.95150.35750.04*
C130.2518 (10)1.0265 (8)0.4988 (10)0.037 (2)
H130.20661.01160.55590.045*
C140.3564 (11)1.0851 (9)0.5517 (11)0.045 (3)
H140.37161.10580.6390.054*
C150.4393 (10)1.1163 (8)0.4942 (10)0.038 (2)
H150.50311.15740.54590.045*
C160.4436 (9)1.0967 (7)0.3722 (10)0.032 (2)
H160.51061.12660.35280.038*
C170.3659 (8)1.0398 (7)0.2702 (9)0.0256 (18)
O10.1888 (6)0.9495 (5)0.1605 (6)0.0312 (15)
O20.3948 (6)1.0300 (5)0.1647 (6)0.0287 (14)
Br10.40095 (10)0.81751 (8)0.13655 (12)0.0417 (3)
Os10.26979 (3)0.95325 (3)0.01352 (3)0.02377 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.019 (6)0.056 (6)0.031 (6)0.004 (5)0.011 (5)0.007 (5)
C2A0.018 (6)0.061 (7)0.022 (6)0.002 (6)0.005 (5)0.006 (7)
C3A0.019 (5)0.064 (8)0.024 (6)0.007 (6)0.007 (5)0.001 (7)
C4A0.028 (6)0.060 (7)0.015 (6)0.003 (5)0.007 (5)0.000 (6)
C5A0.021 (5)0.059 (6)0.022 (7)0.002 (5)0.008 (6)0.001 (6)
C6A0.025 (5)0.056 (5)0.022 (6)0.002 (5)0.016 (5)0.008 (6)
C7A0.029 (9)0.055 (6)0.048 (8)0.000 (6)0.026 (7)0.012 (7)
C8A0.058 (12)0.059 (11)0.047 (10)0.001 (10)0.034 (9)0.001 (9)
C9A0.052 (11)0.056 (10)0.046 (9)0.012 (10)0.028 (9)0.011 (8)
C10A0.038 (10)0.065 (7)0.032 (9)0.009 (7)0.010 (8)0.012 (9)
C1B0.022 (7)0.056 (7)0.017 (7)0.003 (5)0.002 (6)0.001 (6)
C2B0.022 (6)0.051 (8)0.017 (6)0.005 (6)0.013 (5)0.013 (7)
C3B0.016 (6)0.056 (8)0.022 (7)0.002 (6)0.009 (6)0.000 (7)
C4B0.022 (7)0.048 (6)0.028 (7)0.002 (5)0.015 (6)0.008 (6)
C5B0.021 (6)0.049 (6)0.021 (7)0.001 (5)0.017 (6)0.014 (6)
C6B0.027 (6)0.056 (6)0.013 (7)0.000 (5)0.012 (6)0.001 (6)
C7B0.029 (9)0.059 (8)0.030 (8)0.004 (7)0.003 (7)0.006 (8)
C8B0.055 (14)0.050 (12)0.044 (11)0.010 (10)0.020 (11)0.009 (11)
C9B0.050 (14)0.058 (14)0.030 (8)0.005 (11)0.013 (9)0.013 (8)
C10B0.030 (11)0.051 (8)0.047 (12)0.002 (8)0.023 (10)0.000 (9)
C110.017 (4)0.038 (5)0.023 (4)0.007 (4)0.009 (3)0.004 (4)
C120.024 (4)0.050 (6)0.028 (5)0.001 (4)0.012 (4)0.004 (4)
C130.033 (5)0.060 (7)0.025 (5)0.005 (5)0.018 (4)0.000 (4)
C140.046 (6)0.057 (7)0.025 (5)0.018 (6)0.002 (5)0.006 (5)
C150.037 (5)0.043 (6)0.028 (5)0.003 (5)0.005 (4)0.006 (4)
C160.028 (5)0.038 (6)0.029 (5)0.001 (4)0.010 (4)0.004 (4)
C170.020 (4)0.033 (5)0.025 (4)0.004 (4)0.009 (3)0.000 (4)
O10.019 (3)0.053 (4)0.024 (3)0.005 (3)0.010 (3)0.006 (3)
O20.020 (3)0.046 (4)0.026 (3)0.006 (3)0.016 (3)0.004 (3)
Br10.0316 (5)0.0392 (6)0.0526 (7)0.0059 (4)0.0128 (5)0.0038 (5)
Os10.01538 (16)0.0385 (2)0.02000 (17)0.00078 (14)0.00944 (12)0.00243 (15)
Geometric parameters (Å, º) top
Os1—C1A2.090 (12)C1B—C2B1.39
Os1—C2A2.125 (14)C1B—C6B1.39
Os1—C3A2.158 (14)C1B—C7B1.528 (10)
Os1—C4A2.157 (12)C2B—C3B1.39
Os1—C5A2.123 (18)C2B—H2B0.95
Os1—C6A2.089 (18)C3B—C4B1.39
Os1—C1B2.187 (13)C3B—H3B0.95
Os1—C2B2.164 (17)C4B—C5B1.39
Os1—C3B2.167 (19)C4B—C10B1.526 (10)
Os1—C4B2.192 (16)C5B—C6B1.39
Os1—C5B2.21 (2)C5B—H5B0.95
Os1—C6B2.21 (2)C6B—H6B0.95
Os1—O12.088 (6)C7B—C9B1.527 (11)
Os1—O22.071 (6)C7B—C8B1.527 (11)
Os1—Br12.5472 (12)C7B—H7B1
C1A—C2A1.39C8B—H8B10.98
C1A—C6A1.39C8B—H8B20.98
C1A—C7A1.528 (10)C8B—H8B30.98
C2A—C3A1.39C9B—H9B10.98
C2A—H2A0.95C9B—H9B20.98
C3A—C4A1.39C9B—H9B30.98
C3A—H3A0.95C10B—H10D0.98
C4A—C5A1.39C10B—H10E0.98
C4A—C10A1.528 (10)C10B—H10F0.98
C5A—C6A1.39C11—O11.303 (11)
C5A—H5A0.95C11—C121.408 (13)
C6A—H6A0.95C11—C171.452 (13)
C7A—C9A1.524 (10)C12—C131.388 (14)
C7A—C8A1.531 (10)C12—H120.95
C7A—H7A1C13—C141.399 (17)
C8A—H8A10.98C13—H130.95
C8A—H8A20.98C14—C151.362 (17)
C8A—H8A30.98C14—H140.95
C9A—H9A10.98C15—C161.369 (14)
C9A—H9A20.98C15—H150.95
C9A—H9A30.98C16—C171.413 (13)
C10A—H10A0.98C16—H160.95
C10A—H10B0.98C17—O21.299 (11)
C10A—H10C0.98
C2A—C1A—C6A120C5B—C6B—H6B120
C2A—C1A—C7A121.3 (12)C1B—C6B—H6B120
C6A—C1A—C7A118.7 (12)Os1—C6B—H6B130.1
C2A—C1A—Os172.1 (6)C9B—C7B—C8B111 (2)
C6A—C1A—Os170.5 (6)C9B—C7B—C1B107.5 (14)
C7A—C1A—Os1129.6 (4)C8B—C7B—C1B117.5 (19)
C1A—C2A—C3A120C9B—C7B—H7B106.7
C1A—C2A—Os169.4 (6)C8B—C7B—H7B106.7
C3A—C2A—Os172.4 (4)C1B—C7B—H7B106.7
C1A—C2A—H2A120C7B—C8B—H8B1109.5
C3A—C2A—H2A120C7B—C8B—H8B2109.5
Os1—C2A—H2A130.9H8B1—C8B—H8B2109.5
C2A—C3A—C4A120C7B—C8B—H8B3109.5
C2A—C3A—Os169.8 (4)H8B1—C8B—H8B3109.5
C4A—C3A—Os171.2 (5)H8B2—C8B—H8B3109.5
C2A—C3A—H3A120C7B—C9B—H9B1109.5
C4A—C3A—H3A120C7B—C9B—H9B2109.5
Os1—C3A—H3A131.9H9B1—C9B—H9B2109.5
C5A—C4A—C3A120C7B—C9B—H9B3109.5
C5A—C4A—C10A120.2 (13)H9B1—C9B—H9B3109.5
C3A—C4A—C10A119.8 (13)H9B2—C9B—H9B3109.5
C5A—C4A—Os169.7 (6)C4B—C10B—H10D109.5
C3A—C4A—Os171.2 (6)C4B—C10B—H10E109.5
C10A—C4A—Os1131.8 (4)H10D—C10B—H10E109.5
C6A—C5A—C4A120C4B—C10B—H10F109.5
C6A—C5A—Os169.4 (4)H10D—C10B—H10F109.5
C4A—C5A—Os172.4 (5)H10E—C10B—H10F109.5
C6A—C5A—H5A120O1—C11—C12118.3 (9)
C4A—C5A—H5A120O1—C11—C17115.2 (8)
Os1—C5A—H5A130.9C12—C11—C17126.4 (9)
C5A—C6A—C1A120C13—C12—C11129.9 (10)
C5A—C6A—Os172.1 (4)C13—C12—H12115.1
C1A—C6A—Os170.6 (5)C11—C12—H12115.1
C5A—C6A—H6A120C12—C13—C14129.0 (10)
C1A—C6A—H6A120C12—C13—H13115.5
Os1—C6A—H6A129.8C14—C13—H13115.5
C9A—C7A—C1A110.9 (12)C15—C14—C13128.3 (10)
C9A—C7A—C8A112.4 (16)C15—C14—H14115.8
C1A—C7A—C8A112.2 (15)C13—C14—H14115.8
C9A—C7A—H7A107C14—C15—C16129.1 (11)
C1A—C7A—H7A107C14—C15—H15115.5
C8A—C7A—H7A107C16—C15—H15115.5
C7A—C8A—H8A1109.5C15—C16—C17131.2 (10)
C7A—C8A—H8A2109.5C15—C16—H16114.4
H8A1—C8A—H8A2109.5C17—C16—H16114.4
C7A—C8A—H8A3109.5O2—C17—C16118.7 (8)
H8A1—C8A—H8A3109.5O2—C17—C11115.5 (8)
H8A2—C8A—H8A3109.5C16—C17—C11125.8 (9)
C7A—C9A—H9A1109.5C11—O1—Os1116.1 (6)
C7A—C9A—H9A2109.5C17—O2—Os1116.7 (6)
H9A1—C9A—H9A2109.5O2—Os1—O176.3 (2)
C7A—C9A—H9A3109.5O2—Os1—C6A95.9 (5)
H9A1—C9A—H9A3109.5O1—Os1—C6A155.7 (6)
H9A2—C9A—H9A3109.5O2—Os1—C1A95.9 (4)
C4A—C10A—H10A109.5O1—Os1—C1A118.1 (5)
C4A—C10A—H10B109.5C6A—Os1—C1A38.9 (3)
H10A—C10A—H10B109.5O2—Os1—C5A121.7 (5)
C4A—C10A—H10C109.5O1—Os1—C5A160.9 (6)
H10A—C10A—H10C109.5C6A—Os1—C5A38.5 (3)
H10B—C10A—H10C109.5C1A—Os1—C5A69.7 (4)
C2B—C1B—C6B120O2—Os1—C2A121.5 (5)
C2B—C1B—C7B121.6 (16)O1—Os1—C2A94.5 (5)
C6B—C1B—C7B118.4 (16)C6A—Os1—C2A69.7 (3)
C2B—C1B—Os170.5 (7)C1A—Os1—C2A38.5 (2)
C6B—C1B—Os172.5 (8)C5A—Os1—C2A81.8 (3)
C7B—C1B—Os1129.3 (5)O2—Os1—C4A158.9 (5)
C1B—C2B—C3B120O1—Os1—C4A123.4 (5)
C1B—C2B—Os172.2 (7)C6A—Os1—C4A69.0 (4)
C3B—C2B—Os171.4 (5)C1A—Os1—C4A81.7 (3)
C1B—C2B—H2B120C5A—Os1—C4A37.9 (2)
C3B—C2B—H2B120C2A—Os1—C4A68.4 (3)
Os1—C2B—H2B128.6O2—Os1—C3A158.7 (5)
C4B—C3B—C2B120O1—Os1—C3A97.2 (5)
C4B—C3B—Os172.4 (7)C6A—Os1—C3A81.7 (3)
C2B—C3B—Os171.2 (5)C1A—Os1—C3A69.0 (3)
C4B—C3B—H3B120C5A—Os1—C3A68.4 (3)
C2B—C3B—H3B120C2A—Os1—C3A37.9 (2)
Os1—C3B—H3B128.7C4A—Os1—C3A37.6 (2)
C3B—C4B—C5B120O2—Os1—C2B145.8 (6)
C3B—C4B—C10B118.4 (16)O1—Os1—C2B96.3 (5)
C5B—C4B—C10B121.6 (16)O2—Os1—C3B109.1 (5)
C3B—C4B—Os170.4 (7)O1—Os1—C3B95.2 (6)
C5B—C4B—Os172.5 (8)C2B—Os1—C3B37.4 (3)
C10B—C4B—Os1129.3 (5)O2—Os1—C1B160.6 (6)
C6B—C5B—C4B120O1—Os1—C1B122.5 (6)
C6B—C5B—Os171.6 (5)C2B—Os1—C1B37.3 (2)
C4B—C5B—Os170.7 (6)C3B—Os1—C1B67.1 (4)
C6B—C5B—H5B120O2—Os1—C4B87.4 (4)
C4B—C5B—H5B120O1—Os1—C4B119.8 (6)
Os1—C5B—H5B130.2C2B—Os1—C4B67.1 (4)
C5B—C6B—C1B120C3B—Os1—C4B37.2 (3)
C5B—C6B—Os171.8 (5)C1B—Os1—C4B78.8 (4)
C1B—C6B—Os170.6 (6)
C6A—C1A—C2A—C3A0C2B—C3B—C4B—C5B0
C7A—C1A—C2A—C3A179.8 (3)Os1—C3B—C4B—C5B55.0 (5)
Os1—C1A—C2A—C3A53.8 (5)C2B—C3B—C4B—C10B179.9 (3)
C6A—C1A—C2A—Os153.8 (5)Os1—C3B—C4B—C10B124.9 (6)
C7A—C1A—C2A—Os1126.0 (5)C2B—C3B—C4B—Os155.0 (5)
C1A—C2A—C3A—C4A0C3B—C4B—C5B—C6B0
Os1—C2A—C3A—C4A52.4 (6)C10B—C4B—C5B—C6B179.8 (3)
C1A—C2A—C3A—Os152.4 (6)Os1—C4B—C5B—C6B54.0 (5)
C2A—C3A—C4A—C5A0C3B—C4B—C5B—Os154.0 (5)
Os1—C3A—C4A—C5A51.8 (5)C10B—C4B—C5B—Os1125.9 (5)
C2A—C3A—C4A—C10A179.8 (3)C4B—C5B—C6B—C1B0
Os1—C3A—C4A—C10A128.1 (5)Os1—C5B—C6B—C1B53.6 (7)
C2A—C3A—C4A—Os151.8 (5)C4B—C5B—C6B—Os153.6 (7)
C3A—C4A—C5A—C6A0C2B—C1B—C6B—C5B0
C10A—C4A—C5A—C6A179.8 (3)C7B—C1B—C6B—C5B180.0 (3)
Os1—C4A—C5A—C6A52.5 (4)Os1—C1B—C6B—C5B54.2 (5)
C3A—C4A—C5A—Os152.5 (4)C2B—C1B—C6B—Os154.2 (5)
C10A—C4A—C5A—Os1127.4 (5)C7B—C1B—C6B—Os1125.8 (6)
C4A—C5A—C6A—C1A0C2B—C1B—C7B—C9B93.9 (19)
Os1—C5A—C6A—C1A53.8 (5)C6B—C1B—C7B—C9B86.1 (19)
C4A—C5A—C6A—Os153.8 (5)Os1—C1B—C7B—C9B176.3 (18)
C2A—C1A—C6A—C5A0C2B—C1B—C7B—C8B32 (2)
C7A—C1A—C6A—C5A179.8 (3)C6B—C1B—C7B—C8B148 (2)
Os1—C1A—C6A—C5A54.5 (4)Os1—C1B—C7B—C8B58 (3)
C2A—C1A—C6A—Os154.5 (4)O1—C11—C12—C13178.9 (11)
C7A—C1A—C6A—Os1125.3 (5)C17—C11—C12—C131.2 (18)
C2A—C1A—C7A—C9A93.8 (15)C11—C12—C13—C143 (2)
C6A—C1A—C7A—C9A86.4 (16)C12—C13—C14—C151 (2)
Os1—C1A—C7A—C9A174.1 (14)C13—C14—C15—C162 (2)
C2A—C1A—C7A—C8A32.8 (16)C14—C15—C16—C170 (2)
C6A—C1A—C7A—C8A147.0 (15)C15—C16—C17—O2176.9 (11)
Os1—C1A—C7A—C8A59 (2)C15—C16—C17—C114.9 (18)
C6B—C1B—C2B—C3B0O1—C11—C17—O24.0 (12)
C7B—C1B—C2B—C3B180.0 (3)C12—C11—C17—O2176.0 (9)
Os1—C1B—C2B—C3B55.1 (6)O1—C11—C17—C16174.3 (9)
C6B—C1B—C2B—Os155.1 (6)C12—C11—C17—C165.8 (16)
C7B—C1B—C2B—Os1124.8 (6)C12—C11—O1—Os1176.6 (7)
C1B—C2B—C3B—C4B0C17—C11—O1—Os13.4 (10)
Os1—C2B—C3B—C4B55.5 (8)C16—C17—O2—Os1175.7 (7)
C1B—C2B—C3B—Os155.5 (8)C11—C17—O2—Os12.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···O1i0.952.403.24 (2)148
C3B—H3B···O1i0.952.753.38 (2)124
C5B—H5B···O2ii0.952.503.25 (2)136
C6A—H6A···O2ii0.952.713.39 (2)124
C5A—H5A···O2ii0.952.773.39 (2)124
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z.
 

Acknowledgements

We gratefully acknowledge Anglo American Technical Solutions: Research for generous donations of potassium osmate. We would like to thank the Molecular Sciences Institute at the University of the Witwatersrand for infrastructure support. The National Research Foundation National Equipment Programme (UID: 78572) is thanked for financing the purchase of the single crystal diffractometer.

Funding information

This work is based on the research supported in part by the National Research Foundation of South Africa, Grant Nos. 99234 and 96345.

References

First citationBruijnincx, P. C. A. & Sadler, P. J. (2009). Adv. Inorg. Chem. 61, 1–62.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDwivedi, A. D., Binnani, C., Tyagi, D., Rawat, K. S., Li, P.-Z., Zhao, Y., Mobin, S. M., Pathak, B. & Singh, S. K. (2016). Inorg. Chem. 55, 6739–6749.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanif, M., Babak, M. V. & Hartinger, C. G. (2014). Drug Discov. Today, 19, 1640–1648.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHanif, M., Henke, H., Meier, S. M., Martic, S., Labib, M., Kandioller, W., Jakupec, M. A., Arion, V. B., Kraatz, H.-B., Keppler, B. K. & Hartinger, C. G. (2010). Inorg. Chem. 49, 7953–7963.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKandioller, W., Balsano, E., Meier, S. M., Jungwirth, U., Göschl, S., Roller, A., Jakupec, M. A., Berger, W., Keppler, B. K. & Hartinger, C. G. (2013). Chem. Commun. 49, 3348–3350.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeacock, A. F. A., Melchart, M., Deeth, R. J., Habtemariam, A., Parsons, S. & Sadler, P. J. (2007). Chem. Eur. J. 13, 2601–2613.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRijt, S. H. van, Peacock, A. F., Johnstone, R. D., Parsons, S. & Sadler, P. J. (2009). Inorg. Chem. 48, 1753–1762.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, P. & Sadler, P. J. (2017). J. Organomet. Chem. 839, 5–14.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds