research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4,4′-bi­pyridyl-κN)bis­­[N-(2-hy­droxy­ethyl)-N-iso­propyl­di­thio­carbamato-κ2S,S′]zinc(II)–4,4′-bi­pyridyl (2/1) and its isostructural cadmium(II) analogue

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 October 2017; accepted 6 October 2017; online 13 October 2017)

The title structures, [M(C6H12NOS2)2(C10H8N2)]·0.5C10H8N2, for M = Zn, (I), and Cd, (II), feature terminally bound 4,4′-bipyridyl ligands and non-coordinating 4,4′-bi­pyridyl mol­ecules, with the latter disposed about a centre of inversion. The coordination geometry about the metal atom is defined by two non-symmetrically chelating di­thio­carbamate ligands and a pyridyl N atom. The NS4 donor sets are distorted but, approximate to trigonal bipyramidal in each case. In the crystal, hy­droxy-O—H⋯O(hy­droxy) and hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds between the zinc-containing mol­ecules lead to a supra­molecular layer parallel to (100). The three-dimensional architecture arises as the layers are linked via methine-C—H⋯S, pyridyl-C—H⋯O(hy­droxy) and ππ [inter-centroid distance between coordinated pyridyl rings = 3.6246 (18) Å] inter­actions. Channels along the c-axis direction are occupied by the non-coordinating 4,4′-bipyridine mol­ecules, which are held in place by C—H⋯π(chelate ring) contacts.

1. Chemical context

The ditopic ligand 4,4′-bi­pyridyl is ubiquitous in coordination chemistry, usually providing bridges between metal centres to generate coordination polymers. While bidentate bridging is normally observed in the structural chemistry of zinc(II) bis­(N,N′-di­alkyl­dithio­carbamate)s, these more often than not lead to binuclear species of the general formula [Zn(S2CNRR′)2]2(4,4′-bipyrid­yl) as first observed in the archetypal compound [Zn(S2CNEt2)2]2(4,4′-bipyrid­yl) (Zem­skova et al., 1994[Zemskova, S. M., Glinskaya, L. A., Durasov, V. B., Klevtsova, R. F. & Larionov, S. V. (1994). J. Struct. Chem. 34, 794-802.]) and in other compounds relevant to the present study, such as {Zn[S2CN(R)CH2CH2OH]2}2(4,4′-bipyrid­yl) for R = Me, Et and CH2CH2OH (Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]). The exceptional structure is that of Zn[S2CN(n-Pr)2]2(4,4′-bipyrid­yl), which features a relatively rare monodentate coordination mode for the 4,4′-bipyridyl mol­ecule (Klevtsova et al., 2001[Klevtsova, R. F., Glinskaya, L. A., Berus, E. I. & Larionov, S. V. (2001). J. Struct. Chem. 42, 639-647.]). The analogous chemistry for cadmium(II) bis(N,N′-di­alkyl­dithio­carbamate)s is considerably less explored with the only example in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) being a linear coordination polymer in the crystal of {Cd[S2CN(CH2Ph)2]2(4,4′-bipyrid­yl)}n (Fan et al., 2007[Fan, J., Wei, F.-X., Zhang, W.-G., Yin, X., Lai, C.-S. & Tiekink, E. R. T. (2007). Acta Chim. Sinica, 65, 2014-2018.]). The difference in chemistry between zinc and cadmium di­thio­carbamates can be rationalized in terms of the larger size of cadmium versus zinc but, also in terms of the reduced Lewis acidity of the zinc atom owing to the strong chelation mode of the di­thio­carbamate ligand. This is also true for cadmium whereby unusual coordination modes are found for related pyridyl-containing mol­ecules that might otherwise be expected to be bridging. This is discussed further below in Database survey. In the present report, the crystal and mol­ec­ular structures of two compounds, formulated as Zn[S2CN(i-Pr)CH2CH2OH]2(4,4′-bipyrid­yl)·0.5(4,4′-bipyrid­yl) (I)[link] and the cadmium analogue (II)[link], are described, i.e. featuring monodentate and non-coordinating 4,4′-bi­pyridine mol­ecules.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the constituents of (I)[link] are shown in Fig. 1[link]a and selected geometric parameters are collected in Table 1[link]. The asymmetric unit comprises an entire mol­ecule of Zn[S2CN(i-Pr)CH2CH2OH]2(4,4′-bipyrid­yl) and half a mol­ecule of 4,4′-bi­pyridine, the latter being disposed about a centre of inversion. The zinc atom is coordinated by two di­thio­carbamate ligands that form disparate Zn—S bond lengths. This is seen in the values of Δ(Zn—S) = Zn—Slong − Zn—Sshort, which compute to 0.19 and 0.23 Å for the S1- and S3-di­thio­carbamate ligands, respectively. The fifth position in the coordination geometry is occupied by a pyridyl-N atom. Based on the value of τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), which equals to 0.0 and 1.0 for ideal square-pyramidal and trigonal–bipyramidal geometries, respectively, it is possible to assign a coordination geometry based on the NS4 donor set. In (I)[link], τ = 0.64 indicating a highly distorted coordination geometry but, one approximating a trigonal bipyramid. In this description, the less tightly bound S2 and S4 atoms define the axial positions, Table 1[link]. The coordinated 4,4′-bipyridyl mol­ecule is non-planar with the dihedral angle between the two residues being 28.12 (14)°.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Zn—N3 2.077 (2) C1—S1 1.733 (3)
Zn—S1 2.3540 (10) C1—S2 1.715 (3)
Zn—S2 2.5366 (9) C7—S3 1.735 (3)
Zn—S3 2.3541 (9) C7—S4 1.714 (3)
Zn—S4 2.5904 (9)    
       
S1—Zn—S3 124.19 (3) S2—Zn—S4 162.87 (3)
[Figure 1]
Figure 1
The mol­ecular structures of the constituents of (a) (I)[link] and (b) (II)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. For each of (I)[link] and (II)[link], the 4,4′-bi­pyridine mol­ecule has been expanded to show the entire mol­ecule; unlabelled atoms are related by the symmetry operationx, 2 − y, −z.

Crystals of (II)[link] are isostructural to those of (I)[link], Fig. 1[link]b and Table 2[link]. Some differences in mol­ecular geometry are apparent, most notably in the degree of symmetry in the Cd—S bond lengths, i.e. Δ(Cd—S) = 0.09 and 0.11 Å for the S1- and S3-di­thio­carbamate ligands, respectively. This is reflected in the narrower ranges in the C—S bond lengths in (II)[link] cf. (I)[link], Tables 1[link] and 2[link]. The value of τ = 0.67 suggests a coordination geometry marginally closer to trigonal bipyramidal in (II)[link] than for (I)[link]. The dihedral angle between the two rings comprising the coordinated 4,4′-bipyridyl mol­ecule is 28.86 (7)°.

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Cd—N3 2.3011 (11) C1—S1 1.7310 (12)
Cd—S1 2.5547 (3) C1—S2 1.7218 (12)
Cd—S2 2.6500 (3) C7—S3 1.7328 (13)
Cd—S3 2.5620 (4) C7—S4 1.7257 (13)
Cd—S4 2.6696 (4)    
       
S1—Cd—S3 125.725 (11) S2—Cd—S4 165.865 (11)

3. Supra­molecular features

The mol­ecular packing of (I)[link] comprises conventional hydrogen bonding as well as a number of weaker, non-covalent inter­actions, Table 3[link]. The presence of hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds leads to the formation of a centrosymmetric, 28-membered {⋯HOC2NCSZnSCNC2O}2 synthon. This ring contains two additional hy­droxy-O—H H atoms and these form hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds with the non-coordinating end of the monodentate 4,4′-bipyridyl mol­ecules. This network of hydrogen bonds leads to the formation of a two-dimensional array lying parallel to (100), Fig. 2[link]a. These layers are connected into double-layers via methine-C—H⋯S and ππ inter­actions involving the coordinated pyridyl ring [inter-centroid distance between the (N3/C13–C17) and (N3/C13–C17)i rings = 3.6246 (18) Å and angle of inclination = 0.46 (13)° for symmetry code (i): −x, y, [{1\over 2}] − z]. The double-layers are connected into a three-dimensional architecture via 4,4′-bipyridyl-C—H⋯O(hy­droxy) inter­actions, involving an H atom from the non-coordinating ring of the coordinated 4,4′-bipyridyl mol­ecule. This architecture defines channels parallel to the c axis in which residue the non-coordinating 4,4′-bi­pyridine mol­ecules. The closest inter­action between the host and guests are of the type pyridine-C—H⋯π(Zn/S3/S4/C7), i.e. C—H⋯π(chelate ring), a supra­molecular synthon gaining prominence in the structural chemistry of metal-containing species (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]), especially for di­thio­carbamates (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]) owing to the ability of the di­thio­carbamate ligand to form strong chelating inter­actions (see above).

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the Zn/S3/S4/C7 chelate ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N4i 0.83 (2) 1.88 (2) 2.7085 (15) 176 (1)
O2—H2O⋯O1ii 0.83 (1) 1.89 (1) 2.7162 (14) 173 (2)
C4—H4⋯S2iii 1.00 2.68 3.5395 (14) 144
C22—H22⋯O2iv 0.95 2.40 3.3473 (17) 174
C26—H26⋯Cg1v 0.95 3.00 3.776 (3) 140
Symmetry codes: (i) [-x, y-1, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (iv) [x, -y, z-{\script{1\over 2}}]; (v) x, y+1, z.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) view of two-dimensional supra­molecular array sustained by hy­droxy-O—H⋯O(hy­droxy) and hy­droxy-O–H⋯N(pyrid­yl) hydrogen bonding with all but the acidic H atoms removed and (b) a view of the unit-cell contents in projection down the c axis, with the non-coordinating 4,4′-bipyridine mol­ecules in one channel highlighted in space-filling mode. The O—H⋯O, O—H⋯N, C—H⋯O, C—H⋯S and ππ inter­actions are shown as orange, blue, pink, sea-blue and purple dashed lines, respectively.

The mol­ecular packing for isostructural (II)[link] follows that just described for (I)[link], Table 4[link]. However, in this case, the putative pyridyl-C—H⋯π(Cd/S3/S4/C7) inter­action is just beyond the sum of the van der Waals radii for this type of contact (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the Cd/S3/S4/C7 chelate ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N4i 0.85 (2) 1.85 (2) 2.697 (3) 179 (3)
O2—H2O⋯O1ii 0.84 (2) 1.88 (2) 2.718 (3) 176 (4)
C4—H4⋯S2iii 1.00 2.67 3.515 (3) 142
C22—H22⋯O2iv 0.95 2.36 3.300 (3) 170
C26—H26⋯Cg1v 0.95 3.04 3.7943 (15) 138
Symmetry codes: (i) [-x, y-1, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (iv) [x, -y, z-{\script{1\over 2}}]; (v) x, y+1, z.

4. Database survey

As mentioned in the Chemical context, ditopic ligands such as 4,4′-bipyridyl are normally observed providing bridges between metal centres. Thus, the structures of (I)[link] and (II)[link] are doubly curious as not only is the 4,4′-bipyridyl ligand coordinating in a monodentate fashion, there is a non-coordinating 4,4′-bi­pyridine mol­ecule in the crystal. Recent reports confirm these inter­esting observations with related bipyridyl-type mol­ecules of both the zinc(II) and, especially, cadmium(II) di­thio­carbamates. Thus, just as for the 4,4′-bipyridyl structures mentioned in the Chemical context, i.e. [Zn(S2CNEt2)2]2(4,4′-bipyrid­yl) (Zemskova et al., 1994[Zemskova, S. M., Glinskaya, L. A., Durasov, V. B., Klevtsova, R. F. & Larionov, S. V. (1994). J. Struct. Chem. 34, 794-802.]) and Zn[S2CN(n-Pr)2]2(4,4′-bipyrid­yl) (Klevtsova et al., 2001[Klevtsova, R. F., Glinskaya, L. A., Berus, E. I. & Larionov, S. V. (2001). J. Struct. Chem. 42, 639-647.]), with the anti­cipated bidentate, bridging and non-anti­cipated terminal coordination, respectively, similar chemistry occurs for the ditopic ligand with an ethyl­ene space, i.e. trans-bis­(4-pyrid­yl)ethyl­ene (bpe) where structures of both bridging, i.e. [Zn(S2CNEt2)2]2(bpe) (Arman et al., 2009[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1472-m1473.]), and terminal, i.e. Zn[S2CN(n-Pr)2]2(bpe) (Lai & Tiekink, 2003[Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251-252.]), coordination modes are known. Very recently, terminal coordination was found for 4-pyridine­aldazine in the structure of Zn[S2CN(Me)CH2CH2OH2]2(4-pyridine­aldazine) (Broker et al., 2017[Broker, G. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1458-1464.]). In the realm of cadmium di­thio­carbamates, the potentially bridging ligand just mentioned occurs in the structure of Cd[S2CN(n-Pr)CH2CH2OH2]2(4-pyridine­alda­zine)2 with both being terminally bound (Broker & Tiekink, 2011[Broker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320-m321.]). The ditopic ligand bpe was mentioned above. In the case of cadmium di­thio­carbamates, a bidentate, bridging mode is seen in the crystal of [Cd(S2CNEt2)2(bpe)]n (Chai et al., 2003[Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249-250.]). However, in another example both bridging and terminal modes, in a 1:2 ratio, are seen in the structure of Cd[S2CN(i-Pr)CH2CH2OH2]2(bpe)3 (Jotani et al., 2016[Jotani, M. M., Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1700-1709.]). The occurrence of unusual coordination modes for these bipyridyl-type ligands indicate additional factors are coming into play, often a competition between hydrogen bonding and M←N donor inter­actions but, not always as seen in the structure of Zn[S2CN(n-Pr)2]2(4,4′-bipyrid­yl) (Klevtsova et al., 2001[Klevtsova, R. F., Glinskaya, L. A., Berus, E. I. & Larionov, S. V. (2001). J. Struct. Chem. 42, 639-647.]).

5. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification·The melting point was determined using an Krüss KSP1N melting point meter. The IR spectra were obtained by the attenuated total reflectance (ATR) technique on a Perkin Elmer RX1 FTIR spectrophotometer from 4000 to 400 cm−1. 1H and 13C NMR spectra were recorded at room temperature in DMSO-d6 solution on a Bruker Avance 400MHz NMR spectrometer.

Synthesis of (I)[link]: 4,4′-bi­pyridine (1.79 mmol, 0.28 g) in ethanol (25 ml) was added dropwise to bis­(N-2-hy­droxy­ethyl,N-iso­propyl­dithio­carbamato)zinc(II) (1.21 mmol, 0.51 g) in ethanol (25 ml). The resulting mixture was stirred for 0.5 h follow by filtration. After a week of slow evaporation of the filtrate, yellow blocks precipitated (yield: 0.698 g, 88%; m.p. 445.6 K). IR (cm−1): 1467 (m) [ν(C—N)], 1175 (m) [ν(C—S)] cm−1. 1H NMR: δ 8.78–7.83 (m, 12H, aromatic H), 5.14 (sept, 2H, NCH, 6.63 Hz), 4.90 (t, 2H, OH, 5.38 Hz), 3.78–3.64 (m, 8H, NCH2CH2O), 1.18 (d, 12H, CH3, 6.72 Hz). 13C NMR: δ 204.15 (CS2), 150.53, 144.65, 121.58 (aromatic-C), 58.21 (CH2O), 55.53 (NCH2), 49.80 (NCH), 19.88 (CH3).

Synthesis of (II)[link]: 4,4′-bi­pyridine (1.61 mmol, 0.25 g) in ethanol (25 ml) was added dropwise to bis­(N-2-hy­droxy­ethyl,N-iso­propyl­dithio­carbamato)cadmium(II) (1.07 mmol, 0.50 g) in ethanol (25 ml). The resulting mixture was stirred for 0.5 h follow by filtration. A week of slow evaporation of the filtrate yielded yellow blocks (yield: 0.652 g, 87%; m.p. 438.7 K). IR (cm−1): 1467 (m) [ν(C—N)], 1174 (m) [ν(C—S)] cm−1. 1H NMR: δ 8.79–7.80 (m, 12H, aromatic H), 5.22 (sept, 2H, NCH, 6.63 Hz), 4.84 (t, 2H, OH, 5.52 Hz), 3.80–3.64 (m, 8H, NCH2CH2O), 1.17 (d, 12H, CH3, 6.72 Hz). 13C NMR: δ 205.29 (CS2), 150.57, 144.46, 121.41 (aromatic-C), 58.26 (CH2O), 56.62 (NCH2), 50.47 (NCH), 19.91 (CH3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For each of (I)[link] and (II)[link], carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H atoms were located in difference-Fourier maps but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O). For (I)[link], owing to poor agreement, two reflections, i.e. (0 0 6) and (27 3 4), were omitted from the final cycles of refinement. For (II)[link], one reflection, i.e. ([\overline{27}] 7 7), was omitted for the same reason.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Zn(C6H12NOS2)2(C10H8N2)]·0.5C10H8N2 [Cd(C6H12NOS2)2(C10H8N2)]·0.5C10H8N2
Mr 656.22 703.25
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 100 100
a, b, c (Å) 22.418 (5), 11.501 (2), 25.094 (5) 22.7028 (12), 11.5950 (6), 24.8196 (13)
β (°) 105.50 (3) 103.385 (1)
V3) 6235 (2) 6356.0 (6)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.09 0.98
Crystal size (mm) 0.30 × 0.20 × 0.20 0.04 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.])
Tmin, Tmax 0.968, 0.979 0.962, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 31204, 7738, 5204 41284, 7847, 7204
Rint 0.082 0.023
(sin θ/λ)max−1) 0.667 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.00 0.019, 0.049, 0.99
No. of reflections 7738 7847
No. of parameters 358 358
No. of restraints 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.46 0.46, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(4,4'-Bipyridyl-κN)bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-κ2S,S']zinc(II)–4,4'-bipyridyl (2/1) (I) top
Crystal data top
[Zn(C6H12NOS2)2(C10H8N2)]·0.5C10H8N2F(000) = 2744
Mr = 656.22Dx = 1.398 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.418 (5) ÅCell parameters from 3045 reflections
b = 11.501 (2) Åθ = 2.3–25.2°
c = 25.094 (5) ŵ = 1.09 mm1
β = 105.50 (3)°T = 100 K
V = 6235 (2) Å3Block, yellow
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7738 independent reflections
Radiation source: fine-focus sealed tube5204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2729
Tmin = 0.968, Tmax = 0.979k = 1515
31204 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0351P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
7738 reflectionsΔρmax = 0.48 e Å3
358 parametersΔρmin = 0.46 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.05280 (2)0.31725 (3)0.16518 (2)0.01632 (9)
S10.04838 (3)0.24709 (6)0.12760 (3)0.01626 (15)
S20.00828 (3)0.43350 (6)0.07767 (3)0.01723 (15)
S30.14139 (3)0.24004 (6)0.14471 (3)0.01887 (16)
S40.09136 (3)0.14774 (6)0.23371 (3)0.01927 (16)
O10.20135 (9)0.08393 (16)0.01233 (8)0.0200 (4)
H1O0.1869 (13)0.034 (2)0.0372 (9)0.030*
O20.25910 (9)0.01819 (18)0.09286 (8)0.0250 (5)
H2O0.2425 (14)0.036 (3)0.0599 (6)0.038*
N10.10592 (10)0.35160 (18)0.03253 (9)0.0138 (5)
N20.18772 (10)0.05318 (19)0.20497 (9)0.0162 (5)
N30.06894 (10)0.45571 (18)0.22034 (9)0.0147 (5)
N40.15344 (12)0.9270 (2)0.40786 (10)0.0240 (6)
N50.02413 (12)0.7932 (2)0.11006 (10)0.0260 (6)
C10.05450 (12)0.3457 (2)0.07419 (11)0.0140 (5)
C20.15890 (12)0.2760 (2)0.03229 (11)0.0157 (6)
H2A0.19740.31190.00930.019*
H2B0.16300.26820.07040.019*
C30.15066 (13)0.1563 (2)0.00952 (11)0.0180 (6)
H3A0.14880.16320.02930.022*
H3B0.11140.12140.03140.022*
C40.11249 (13)0.4398 (2)0.01199 (11)0.0183 (6)
H40.06990.46350.01290.022*
C50.14485 (14)0.5472 (2)0.00182 (13)0.0280 (7)
H5A0.14900.60490.02770.042*
H5B0.18600.52580.00520.042*
H5C0.12040.58020.03690.042*
C60.14513 (14)0.3914 (3)0.06898 (11)0.0265 (7)
H6A0.14840.45240.09690.040*
H6B0.12130.32590.07760.040*
H6C0.18670.36470.06910.040*
C70.14472 (13)0.1375 (2)0.19613 (11)0.0167 (6)
C80.23385 (12)0.0495 (2)0.17274 (11)0.0185 (6)
H8A0.27190.01100.19500.022*
H8B0.24480.13000.16500.022*
C90.21025 (13)0.0148 (3)0.11867 (11)0.0208 (6)
H9A0.19760.09470.12550.025*
H9B0.17400.02590.09470.025*
C100.19577 (13)0.0287 (2)0.25202 (11)0.0216 (6)
H100.15600.03030.26290.026*
C110.24603 (15)0.0160 (3)0.30141 (12)0.0342 (8)
H11A0.25110.03840.33240.051*
H11B0.28520.02270.29120.051*
H11C0.23410.09250.31240.051*
C120.20898 (15)0.1525 (2)0.23619 (13)0.0294 (7)
H12A0.21400.20370.26830.044*
H12B0.17440.18010.20610.044*
H12C0.24710.15320.22410.044*
C130.06136 (13)0.5664 (2)0.20303 (11)0.0190 (6)
H130.04580.58090.16450.023*
C140.07504 (12)0.6604 (2)0.23849 (11)0.0182 (6)
H140.06920.73730.22420.022*
C150.09742 (12)0.6424 (2)0.29521 (11)0.0158 (6)
C160.10366 (12)0.5272 (2)0.31327 (11)0.0165 (6)
H160.11750.51020.35170.020*
C170.08975 (12)0.4380 (2)0.27525 (11)0.0169 (6)
H170.09510.36020.28840.020*
C180.11560 (13)0.7408 (2)0.33461 (11)0.0172 (6)
C190.08885 (13)0.8507 (2)0.32338 (12)0.0208 (6)
H190.05710.86410.29030.025*
C200.10898 (14)0.9398 (2)0.36078 (12)0.0235 (7)
H200.09021.01410.35260.028*
C210.17857 (14)0.8211 (2)0.41830 (12)0.0251 (7)
H210.21010.81020.45170.030*
C220.16164 (13)0.7269 (2)0.38367 (11)0.0192 (6)
H220.18110.65360.39320.023*
C230.00233 (15)0.7643 (2)0.05770 (13)0.0277 (7)
H230.01480.68580.05010.033*
C240.01294 (14)0.8414 (2)0.01340 (12)0.0256 (7)
H240.03180.81510.02310.031*
C250.00438 (12)0.9574 (2)0.02306 (11)0.0152 (6)
C260.03155 (13)0.9879 (2)0.07766 (11)0.0218 (6)
H260.04441.06580.08680.026*
C270.03987 (14)0.9051 (3)0.11860 (12)0.0260 (7)
H270.05810.92920.15560.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01770 (18)0.01443 (16)0.01542 (16)0.00168 (14)0.00199 (13)0.00196 (13)
S10.0195 (4)0.0144 (3)0.0137 (3)0.0037 (3)0.0024 (3)0.0018 (3)
S20.0190 (4)0.0162 (3)0.0149 (3)0.0062 (3)0.0019 (3)0.0018 (3)
S30.0212 (4)0.0169 (3)0.0191 (4)0.0009 (3)0.0062 (3)0.0018 (3)
S40.0232 (4)0.0183 (3)0.0172 (4)0.0032 (3)0.0071 (3)0.0019 (3)
O10.0201 (11)0.0164 (10)0.0207 (11)0.0046 (8)0.0006 (9)0.0059 (8)
O20.0193 (11)0.0349 (12)0.0216 (11)0.0052 (9)0.0066 (9)0.0113 (10)
N10.0157 (12)0.0126 (11)0.0126 (11)0.0023 (9)0.0031 (9)0.0012 (8)
N20.0159 (12)0.0178 (12)0.0139 (11)0.0007 (10)0.0020 (9)0.0006 (9)
N30.0134 (12)0.0159 (11)0.0134 (11)0.0017 (9)0.0010 (9)0.0001 (9)
N40.0313 (15)0.0186 (12)0.0204 (13)0.0010 (11)0.0039 (11)0.0049 (10)
N50.0279 (15)0.0205 (13)0.0284 (14)0.0004 (11)0.0055 (12)0.0037 (11)
C10.0161 (14)0.0120 (12)0.0146 (13)0.0001 (11)0.0050 (11)0.0028 (10)
C20.0113 (14)0.0175 (13)0.0176 (14)0.0014 (11)0.0025 (11)0.0039 (11)
C30.0165 (15)0.0202 (14)0.0163 (14)0.0059 (11)0.0026 (11)0.0010 (11)
C40.0195 (15)0.0186 (14)0.0150 (14)0.0025 (12)0.0014 (11)0.0064 (11)
C50.0345 (19)0.0170 (15)0.0354 (18)0.0029 (13)0.0142 (15)0.0076 (13)
C60.0271 (18)0.0318 (17)0.0162 (15)0.0034 (14)0.0020 (13)0.0073 (13)
C70.0175 (15)0.0154 (13)0.0147 (14)0.0044 (11)0.0003 (11)0.0047 (10)
C80.0153 (15)0.0213 (14)0.0189 (14)0.0005 (12)0.0044 (12)0.0045 (11)
C90.0166 (15)0.0242 (15)0.0216 (15)0.0037 (12)0.0047 (12)0.0049 (12)
C100.0215 (16)0.0227 (15)0.0200 (15)0.0053 (13)0.0046 (12)0.0054 (12)
C110.039 (2)0.0365 (19)0.0228 (17)0.0076 (16)0.0007 (15)0.0012 (14)
C120.0344 (19)0.0234 (16)0.0299 (18)0.0057 (14)0.0076 (15)0.0068 (13)
C130.0201 (15)0.0198 (14)0.0143 (14)0.0016 (12)0.0002 (12)0.0007 (11)
C140.0198 (15)0.0136 (13)0.0195 (14)0.0014 (11)0.0022 (12)0.0002 (11)
C150.0115 (14)0.0179 (14)0.0181 (14)0.0011 (11)0.0042 (11)0.0021 (11)
C160.0193 (15)0.0183 (14)0.0115 (13)0.0017 (12)0.0035 (11)0.0010 (11)
C170.0191 (15)0.0138 (13)0.0179 (14)0.0003 (11)0.0050 (12)0.0010 (11)
C180.0200 (16)0.0154 (13)0.0172 (14)0.0008 (11)0.0067 (12)0.0008 (11)
C190.0212 (16)0.0180 (14)0.0206 (15)0.0032 (12)0.0012 (12)0.0015 (11)
C200.0289 (17)0.0160 (14)0.0250 (16)0.0019 (13)0.0065 (13)0.0040 (12)
C210.0324 (18)0.0223 (15)0.0161 (14)0.0017 (14)0.0013 (13)0.0025 (12)
C220.0239 (16)0.0163 (14)0.0166 (14)0.0008 (12)0.0042 (12)0.0023 (11)
C230.0342 (19)0.0154 (14)0.0330 (18)0.0033 (13)0.0077 (15)0.0007 (13)
C240.0342 (19)0.0179 (15)0.0233 (16)0.0031 (13)0.0051 (14)0.0013 (12)
C250.0120 (14)0.0135 (13)0.0203 (14)0.0026 (11)0.0049 (11)0.0014 (11)
C260.0270 (17)0.0109 (13)0.0255 (16)0.0030 (12)0.0035 (13)0.0013 (11)
C270.0295 (18)0.0244 (16)0.0208 (16)0.0003 (14)0.0009 (13)0.0022 (13)
Geometric parameters (Å, º) top
Zn—N32.077 (2)C8—H8A0.9900
Zn—S12.3540 (10)C8—H8B0.9900
Zn—S22.5366 (9)C9—H9A0.9900
Zn—S32.3541 (9)C9—H9B0.9900
Zn—S42.5904 (9)C10—C111.525 (4)
C1—S11.733 (3)C10—C121.529 (4)
C1—S21.715 (3)C10—H101.0000
C7—S31.735 (3)C11—H11A0.9800
C7—S41.714 (3)C11—H11B0.9800
O1—C31.426 (3)C11—H11C0.9800
O1—H1O0.843 (10)C12—H12A0.9800
O2—C91.414 (3)C12—H12B0.9800
O2—H2O0.837 (10)C12—H12C0.9800
N1—C11.335 (3)C13—C141.381 (4)
N1—C21.471 (3)C13—H130.9500
N1—C41.486 (3)C14—C151.392 (4)
N2—C71.343 (3)C14—H140.9500
N2—C81.474 (3)C15—C161.396 (4)
N2—C101.483 (3)C15—C181.486 (4)
N3—C131.341 (3)C16—C171.378 (4)
N3—C171.347 (3)C16—H160.9500
N4—C201.335 (4)C17—H170.9500
N4—C211.338 (3)C18—C221.388 (4)
N5—C231.331 (4)C18—C191.395 (4)
N5—C271.337 (4)C19—C201.381 (4)
C2—C31.520 (4)C19—H190.9500
C2—H2A0.9900C20—H200.9500
C2—H2B0.9900C21—C221.377 (4)
C3—H3A0.9900C21—H210.9500
C3—H3B0.9900C22—H220.9500
C4—C51.519 (4)C23—C241.391 (4)
C4—C61.527 (4)C23—H230.9500
C4—H41.0000C24—C251.393 (4)
C5—H5A0.9800C24—H240.9500
C5—H5B0.9800C25—C261.388 (4)
C5—H5C0.9800C25—C25i1.489 (5)
C6—H6A0.9800C26—C271.377 (4)
C6—H6B0.9800C26—H260.9500
C6—H6C0.9800C27—H270.9500
C8—C91.512 (4)
N3—Zn—S1120.49 (7)O2—C9—C8107.2 (2)
N3—Zn—S3115.32 (7)O2—C9—H9A110.3
S1—Zn—S3124.19 (3)C8—C9—H9A110.3
N3—Zn—S297.53 (6)O2—C9—H9B110.3
S1—Zn—S273.73 (3)C8—C9—H9B110.3
S3—Zn—S299.76 (3)H9A—C9—H9B108.5
N3—Zn—S499.60 (6)N2—C10—C11109.8 (2)
S1—Zn—S497.06 (3)N2—C10—C12112.1 (2)
S3—Zn—S473.12 (3)C11—C10—C12111.9 (2)
S2—Zn—S4162.87 (3)N2—C10—H10107.6
C1—S1—Zn87.38 (9)C11—C10—H10107.6
C1—S2—Zn82.03 (9)C12—C10—H10107.6
C7—S3—Zn88.01 (10)C10—C11—H11A109.5
C7—S4—Zn81.07 (10)C10—C11—H11B109.5
C3—O1—H1O106 (2)H11A—C11—H11B109.5
C9—O2—H2O105 (2)C10—C11—H11C109.5
C1—N1—C2120.0 (2)H11A—C11—H11C109.5
C1—N1—C4121.0 (2)H11B—C11—H11C109.5
C2—N1—C4118.8 (2)C10—C12—H12A109.5
C7—N2—C8120.5 (2)C10—C12—H12B109.5
C7—N2—C10121.3 (2)H12A—C12—H12B109.5
C8—N2—C10117.7 (2)C10—C12—H12C109.5
C13—N3—C17117.0 (2)H12A—C12—H12C109.5
C13—N3—Zn121.84 (18)H12B—C12—H12C109.5
C17—N3—Zn121.11 (17)N3—C13—C14123.2 (2)
C20—N4—C21116.7 (2)N3—C13—H13118.4
C23—N5—C27115.3 (3)C14—C13—H13118.4
N1—C1—S2122.3 (2)C13—C14—C15120.0 (2)
N1—C1—S1120.8 (2)C13—C14—H14120.0
S2—C1—S1116.84 (15)C15—C14—H14120.0
N1—C2—C3111.0 (2)C14—C15—C16116.8 (2)
N1—C2—H2A109.4C14—C15—C18121.8 (2)
C3—C2—H2A109.4C16—C15—C18121.4 (2)
N1—C2—H2B109.4C17—C16—C15119.8 (2)
C3—C2—H2B109.4C17—C16—H16120.1
H2A—C2—H2B108.0C15—C16—H16120.1
O1—C3—C2109.4 (2)N3—C17—C16123.2 (2)
O1—C3—H3A109.8N3—C17—H17118.4
C2—C3—H3A109.8C16—C17—H17118.4
O1—C3—H3B109.8C22—C18—C19117.4 (2)
C2—C3—H3B109.8C22—C18—C15120.6 (2)
H3A—C3—H3B108.2C19—C18—C15121.9 (2)
N1—C4—C5109.9 (2)C20—C19—C18119.4 (3)
N1—C4—C6112.4 (2)C20—C19—H19120.3
C5—C4—C6111.8 (2)C18—C19—H19120.3
N1—C4—H4107.5N4—C20—C19123.4 (3)
C5—C4—H4107.5N4—C20—H20118.3
C6—C4—H4107.5C19—C20—H20118.3
C4—C5—H5A109.5N4—C21—C22124.2 (3)
C4—C5—H5B109.5N4—C21—H21117.9
H5A—C5—H5B109.5C22—C21—H21117.9
C4—C5—H5C109.5C21—C22—C18118.9 (3)
H5A—C5—H5C109.5C21—C22—H22120.6
H5B—C5—H5C109.5C18—C22—H22120.6
C4—C6—H6A109.5N5—C23—C24124.5 (3)
C4—C6—H6B109.5N5—C23—H23117.8
H6A—C6—H6B109.5C24—C23—H23117.8
C4—C6—H6C109.5C23—C24—C25119.4 (3)
H6A—C6—H6C109.5C23—C24—H24120.3
H6B—C6—H6C109.5C25—C24—H24120.3
N2—C7—S4122.3 (2)C26—C25—C24116.3 (2)
N2—C7—S3120.0 (2)C26—C25—C25i122.2 (3)
S4—C7—S3117.69 (16)C24—C25—C25i121.5 (3)
N2—C8—C9112.2 (2)C27—C26—C25119.9 (3)
N2—C8—H8A109.2C27—C26—H26120.1
C9—C8—H8A109.2C25—C26—H26120.1
N2—C8—H8B109.2N5—C27—C26124.7 (3)
C9—C8—H8B109.2N5—C27—H27117.7
H8A—C8—H8B107.9C26—C27—H27117.7
C2—N1—C1—S2178.61 (19)C17—N3—C13—C141.4 (4)
C4—N1—C1—S23.1 (3)Zn—N3—C13—C14176.2 (2)
C2—N1—C1—S11.6 (3)N3—C13—C14—C150.5 (4)
C4—N1—C1—S1177.10 (19)C13—C14—C15—C161.3 (4)
Zn—S2—C1—N1178.6 (2)C13—C14—C15—C18177.0 (3)
Zn—S2—C1—S11.23 (13)C14—C15—C16—C172.1 (4)
Zn—S1—C1—N1178.5 (2)C18—C15—C16—C17176.2 (3)
Zn—S1—C1—S21.31 (14)C13—N3—C17—C160.5 (4)
C1—N1—C2—C383.1 (3)Zn—N3—C17—C16177.1 (2)
C4—N1—C2—C3101.3 (3)C15—C16—C17—N31.2 (4)
N1—C2—C3—O1177.3 (2)C14—C15—C18—C22150.2 (3)
C1—N1—C4—C593.7 (3)C16—C15—C18—C2228.0 (4)
C2—N1—C4—C581.8 (3)C14—C15—C18—C1927.9 (4)
C1—N1—C4—C6141.0 (3)C16—C15—C18—C19153.9 (3)
C2—N1—C4—C643.5 (3)C22—C18—C19—C200.2 (4)
C8—N2—C7—S4178.27 (18)C15—C18—C19—C20178.0 (3)
C10—N2—C7—S46.7 (3)C21—N4—C20—C190.4 (4)
C8—N2—C7—S32.4 (3)C18—C19—C20—N40.2 (5)
C10—N2—C7—S3173.96 (19)C20—N4—C21—C220.4 (5)
Zn—S4—C7—N2176.4 (2)N4—C21—C22—C180.1 (5)
Zn—S4—C7—S32.93 (13)C19—C18—C22—C210.2 (4)
Zn—S3—C7—N2176.2 (2)C15—C18—C22—C21177.9 (3)
Zn—S3—C7—S43.19 (14)C27—N5—C23—C241.1 (5)
C7—N2—C8—C986.4 (3)N5—C23—C24—C250.4 (5)
C10—N2—C8—C9101.7 (3)C23—C24—C25—C260.1 (4)
N2—C8—C9—O2176.9 (2)C23—C24—C25—C25i178.3 (3)
C7—N2—C10—C1194.0 (3)C24—C25—C26—C270.1 (4)
C8—N2—C10—C1177.8 (3)C25i—C25—C26—C27178.5 (3)
C7—N2—C10—C12140.9 (3)C23—N5—C27—C261.3 (5)
C8—N2—C10—C1247.3 (3)C25—C26—C27—N50.8 (5)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the Cd/S3/S4/C7 chelate ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N4ii0.85 (2)1.85 (2)2.697 (3)179 (3)
O2—H2O···O1iii0.84 (2)1.88 (2)2.718 (3)176 (4)
C4—H4···S2iv1.002.673.515 (3)142
C22—H22···O2v0.952.363.300 (3)170
C26—H26···Cg1vi0.953.043.7943 (15)138
Symmetry codes: (ii) x, y1, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z; (v) x, y, z1/2; (vi) x, y+1, z.
(4,4'-Bipyridyl-κN)bis(N-2-hydroxyethyl-N-isopropyldithiocarbamato-κ2S,S')cadmium(II)–4,4'-bipyridyl (2/1) (II) top
Crystal data top
[Cd(C6H12NOS2)2(C10H8N2)]·0.5C10H8N2F(000) = 2888
Mr = 703.25Dx = 1.470 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.7028 (12) ÅCell parameters from 24754 reflections
b = 11.5950 (6) Åθ = 2.2–28.3°
c = 24.8196 (13) ŵ = 0.98 mm1
β = 103.385 (1)°T = 100 K
V = 6356.0 (6) Å3Block, yellow
Z = 80.04 × 0.04 × 0.03 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7847 independent reflections
Radiation source: fine-focus sealed tube7204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.962, Tmax = 0.971k = 1515
41284 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0249P)2 + 6.291P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
7847 reflectionsΔρmax = 0.46 e Å3
358 parametersΔρmin = 0.24 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.04996 (2)0.31263 (2)0.16486 (2)0.01723 (3)
S10.05744 (2)0.24286 (3)0.12217 (2)0.01723 (6)
S20.00085 (2)0.43727 (3)0.07636 (2)0.01907 (7)
S30.14726 (2)0.23031 (3)0.14448 (2)0.02008 (7)
S40.09406 (2)0.14429 (3)0.23619 (2)0.02109 (7)
O10.20171 (4)0.08734 (8)0.00837 (4)0.02070 (19)
H1O0.1878 (8)0.0408 (13)0.0337 (6)0.031*
O20.26295 (4)0.02139 (9)0.09436 (4)0.0253 (2)
H2O0.2468 (8)0.0409 (17)0.0620 (5)0.038*
N10.10858 (5)0.35363 (9)0.02905 (4)0.0151 (2)
N20.19087 (5)0.05102 (10)0.20849 (4)0.0180 (2)
N30.06811 (5)0.46557 (9)0.22553 (4)0.0166 (2)
N40.15540 (6)0.92852 (10)0.41323 (5)0.0257 (2)
N50.02716 (6)0.79642 (11)0.11132 (6)0.0294 (3)
C10.05999 (5)0.34592 (10)0.07123 (5)0.0146 (2)
C20.16139 (5)0.27871 (11)0.02738 (5)0.0169 (2)
H2A0.19800.31560.00450.020*
H2B0.16760.26930.06530.020*
C30.15277 (6)0.16054 (11)0.00341 (5)0.0189 (2)
H3A0.15160.16830.03600.023*
H3B0.11390.12660.02370.023*
C40.11285 (6)0.44310 (11)0.01475 (5)0.0187 (2)
H40.07060.46740.01490.022*
C50.14574 (7)0.54876 (13)0.00028 (7)0.0298 (3)
H5A0.14840.60720.02930.045*
H5B0.18660.52690.00250.045*
H5C0.12340.58030.03520.045*
C60.14156 (7)0.39715 (14)0.07228 (6)0.0269 (3)
H6A0.14340.45890.09960.040*
H6B0.11720.33320.08110.040*
H6C0.18260.36980.07320.040*
C70.14824 (6)0.13339 (11)0.19783 (5)0.0176 (2)
C80.23758 (6)0.04441 (12)0.17638 (5)0.0198 (3)
H8A0.27400.00630.19900.024*
H8B0.24910.12340.16770.024*
C90.21556 (6)0.02239 (12)0.12279 (6)0.0216 (3)
H9A0.20550.10270.13090.026*
H9B0.17880.01430.09990.026*
C100.19723 (6)0.02799 (12)0.25659 (6)0.0235 (3)
H100.15790.02760.26820.028*
C110.24587 (8)0.01794 (16)0.30508 (6)0.0369 (4)
H11A0.25000.03430.33680.055*
H11B0.28460.02290.29410.055*
H11C0.23420.09480.31540.055*
C120.20978 (7)0.15172 (13)0.24188 (7)0.0302 (3)
H12A0.21360.20080.27470.045*
H12B0.17630.17960.21240.045*
H12C0.24750.15440.22910.045*
C130.06012 (6)0.57559 (11)0.20834 (5)0.0184 (2)
H130.04370.59030.17020.022*
C140.07479 (6)0.66804 (11)0.24394 (5)0.0182 (2)
H140.06880.74460.23010.022*
C150.09848 (5)0.64880 (11)0.30033 (5)0.0153 (2)
C160.10526 (6)0.53450 (11)0.31809 (5)0.0168 (2)
H160.12010.51730.35620.020*
C170.09027 (6)0.44634 (11)0.27985 (5)0.0172 (2)
H170.09590.36890.29250.021*
C180.11718 (6)0.74550 (11)0.33969 (5)0.0167 (2)
C190.08995 (6)0.85379 (12)0.33087 (6)0.0226 (3)
H190.05770.86710.29950.027*
C200.11034 (7)0.94170 (12)0.36829 (6)0.0263 (3)
H200.09141.01500.36170.032*
C210.18115 (7)0.82418 (12)0.42167 (6)0.0241 (3)
H210.21310.81340.45350.029*
C220.16396 (6)0.73140 (11)0.38674 (5)0.0196 (2)
H220.18370.65900.39460.024*
C230.00188 (8)0.76757 (13)0.05982 (7)0.0323 (3)
H230.01540.69020.05330.039*
C240.01356 (7)0.84325 (12)0.01538 (6)0.0288 (3)
H240.03430.81720.02030.035*
C250.00530 (6)0.95788 (11)0.02321 (5)0.0188 (2)
C260.03523 (7)0.98828 (12)0.07680 (6)0.0258 (3)
H260.04901.06510.08480.031*
C270.04485 (7)0.90635 (13)0.11837 (7)0.0299 (3)
H270.06550.92990.15450.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01892 (5)0.01605 (5)0.01519 (5)0.00140 (3)0.00083 (3)0.00184 (3)
S10.02100 (15)0.01453 (14)0.01510 (14)0.00512 (11)0.00201 (11)0.00145 (11)
S20.02016 (15)0.01946 (15)0.01593 (14)0.00819 (12)0.00078 (11)0.00279 (11)
S30.02200 (15)0.02007 (15)0.01891 (15)0.00138 (12)0.00624 (12)0.00193 (12)
S40.02419 (16)0.02194 (16)0.01883 (15)0.00403 (12)0.00847 (12)0.00277 (12)
O10.0189 (4)0.0182 (4)0.0216 (5)0.0049 (4)0.0023 (4)0.0050 (4)
O20.0196 (5)0.0355 (6)0.0214 (5)0.0060 (4)0.0062 (4)0.0109 (4)
N10.0155 (5)0.0150 (5)0.0151 (5)0.0024 (4)0.0041 (4)0.0010 (4)
N20.0174 (5)0.0204 (5)0.0158 (5)0.0001 (4)0.0028 (4)0.0006 (4)
N30.0167 (5)0.0170 (5)0.0150 (5)0.0016 (4)0.0016 (4)0.0009 (4)
N40.0340 (7)0.0196 (6)0.0230 (6)0.0005 (5)0.0057 (5)0.0054 (5)
N50.0313 (7)0.0235 (6)0.0328 (7)0.0015 (5)0.0061 (5)0.0050 (5)
C10.0170 (6)0.0129 (5)0.0146 (5)0.0020 (4)0.0052 (4)0.0016 (4)
C20.0135 (5)0.0172 (6)0.0198 (6)0.0028 (4)0.0036 (5)0.0001 (5)
C30.0172 (6)0.0188 (6)0.0192 (6)0.0040 (5)0.0015 (5)0.0023 (5)
C40.0186 (6)0.0207 (6)0.0167 (6)0.0018 (5)0.0036 (5)0.0054 (5)
C50.0379 (8)0.0205 (7)0.0345 (8)0.0032 (6)0.0156 (7)0.0084 (6)
C60.0281 (7)0.0324 (8)0.0175 (6)0.0029 (6)0.0002 (5)0.0056 (6)
C70.0188 (6)0.0182 (6)0.0146 (5)0.0037 (5)0.0014 (4)0.0033 (5)
C80.0168 (6)0.0228 (6)0.0197 (6)0.0019 (5)0.0038 (5)0.0047 (5)
C90.0192 (6)0.0248 (7)0.0211 (6)0.0047 (5)0.0055 (5)0.0067 (5)
C100.0236 (7)0.0269 (7)0.0191 (6)0.0044 (5)0.0031 (5)0.0046 (5)
C110.0408 (9)0.0442 (10)0.0199 (7)0.0038 (8)0.0047 (6)0.0004 (7)
C120.0320 (8)0.0254 (7)0.0336 (8)0.0054 (6)0.0087 (6)0.0083 (6)
C130.0188 (6)0.0203 (6)0.0149 (6)0.0009 (5)0.0013 (5)0.0010 (5)
C140.0192 (6)0.0159 (6)0.0182 (6)0.0024 (5)0.0018 (5)0.0019 (5)
C150.0131 (5)0.0164 (6)0.0160 (6)0.0000 (4)0.0028 (4)0.0020 (4)
C160.0175 (6)0.0187 (6)0.0136 (5)0.0006 (5)0.0026 (4)0.0011 (4)
C170.0184 (6)0.0158 (6)0.0166 (6)0.0018 (5)0.0025 (5)0.0015 (5)
C180.0187 (6)0.0158 (6)0.0164 (6)0.0008 (5)0.0055 (5)0.0009 (5)
C190.0254 (7)0.0199 (6)0.0213 (6)0.0050 (5)0.0032 (5)0.0009 (5)
C200.0337 (8)0.0170 (6)0.0273 (7)0.0053 (6)0.0055 (6)0.0029 (5)
C210.0283 (7)0.0224 (7)0.0188 (6)0.0006 (5)0.0005 (5)0.0034 (5)
C220.0228 (6)0.0166 (6)0.0188 (6)0.0019 (5)0.0036 (5)0.0012 (5)
C230.0436 (9)0.0152 (6)0.0365 (8)0.0051 (6)0.0062 (7)0.0002 (6)
C240.0392 (8)0.0171 (6)0.0284 (7)0.0059 (6)0.0045 (6)0.0032 (6)
C250.0169 (6)0.0146 (6)0.0256 (7)0.0011 (5)0.0067 (5)0.0018 (5)
C260.0272 (7)0.0182 (6)0.0291 (7)0.0026 (5)0.0010 (6)0.0026 (5)
C270.0328 (8)0.0253 (7)0.0284 (7)0.0006 (6)0.0003 (6)0.0005 (6)
Geometric parameters (Å, º) top
Cd—N32.3011 (11)C8—H8A0.9900
Cd—S12.5547 (3)C8—H8B0.9900
Cd—S22.6500 (3)C9—H9A0.9900
Cd—S32.5620 (4)C9—H9B0.9900
Cd—S42.6696 (4)C10—C121.523 (2)
C1—S11.7310 (12)C10—C111.528 (2)
C1—S21.7218 (12)C10—H101.0000
C7—S31.7328 (13)C11—H11A0.9800
C7—S41.7257 (13)C11—H11B0.9800
O1—C31.4259 (15)C11—H11C0.9800
O1—H1O0.833 (9)C12—H12A0.9800
O2—C91.4168 (16)C12—H12B0.9800
O2—H2O0.832 (9)C12—H12C0.9800
N1—C11.3364 (16)C13—C141.3801 (18)
N1—C21.4733 (15)C13—H130.9500
N1—C41.4895 (16)C14—C151.3960 (17)
N2—C71.3416 (17)C14—H140.9500
N2—C81.4688 (16)C15—C161.3940 (17)
N2—C101.4851 (17)C15—C181.4832 (17)
N3—C131.3441 (16)C16—C171.3827 (17)
N3—C171.3441 (16)C16—H160.9500
N4—C201.3363 (19)C17—H170.9500
N4—C211.3389 (18)C18—C191.3942 (18)
N5—C271.3356 (19)C18—C221.3944 (18)
N5—C231.338 (2)C19—C201.3846 (19)
C2—C31.5242 (18)C19—H190.9500
C2—H2A0.9900C20—H200.9500
C2—H2B0.9900C21—C221.3801 (18)
C3—H3A0.9900C21—H210.9500
C3—H3B0.9900C22—H220.9500
C4—C51.520 (2)C23—C241.386 (2)
C4—C61.5220 (19)C23—H230.9500
C4—H41.0000C24—C251.3960 (18)
C5—H5A0.9800C24—H240.9500
C5—H5B0.9800C25—C261.3917 (19)
C5—H5C0.9800C25—C25i1.487 (3)
C6—H6A0.9800C26—C271.382 (2)
C6—H6B0.9800C26—H260.9500
C6—H6C0.9800C27—H270.9500
C8—C91.5202 (18)
N3—Cd—S1121.64 (3)O2—C9—C8107.32 (10)
N3—Cd—S3112.61 (3)O2—C9—H9A110.3
S1—Cd—S3125.725 (11)C8—C9—H9A110.3
N3—Cd—S295.71 (3)O2—C9—H9B110.3
S1—Cd—S269.571 (10)C8—C9—H9B110.3
S3—Cd—S2104.839 (11)H9A—C9—H9B108.5
N3—Cd—S498.43 (3)N2—C10—C12112.15 (11)
S1—Cd—S4102.645 (11)N2—C10—C11109.64 (12)
S3—Cd—S469.533 (10)C12—C10—C11112.07 (13)
S2—Cd—S4165.865 (11)N2—C10—H10107.6
C1—S1—Cd87.22 (4)C12—C10—H10107.6
C1—S2—Cd84.39 (4)C11—C10—H10107.6
C7—S3—Cd87.13 (4)C10—C11—H11A109.5
C7—S4—Cd83.88 (5)C10—C11—H11B109.5
C3—O1—H1O106.5 (13)H11A—C11—H11B109.5
C9—O2—H2O105.2 (13)C10—C11—H11C109.5
C1—N1—C2120.10 (10)H11A—C11—H11C109.5
C1—N1—C4121.37 (10)H11B—C11—H11C109.5
C2—N1—C4118.36 (10)C10—C12—H12A109.5
C7—N2—C8120.56 (11)C10—C12—H12B109.5
C7—N2—C10121.95 (11)H12A—C12—H12B109.5
C8—N2—C10117.13 (11)C10—C12—H12C109.5
C13—N3—C17117.88 (11)H12A—C12—H12C109.5
C13—N3—Cd122.21 (8)H12B—C12—H12C109.5
C17—N3—Cd119.83 (8)N3—C13—C14122.62 (12)
C20—N4—C21117.14 (12)N3—C13—H13118.7
C27—N5—C23115.51 (13)C14—C13—H13118.7
N1—C1—S2121.29 (9)C13—C14—C15119.85 (12)
N1—C1—S1120.01 (9)C13—C14—H14120.1
S2—C1—S1118.69 (7)C15—C14—H14120.1
N1—C2—C3111.34 (10)C16—C15—C14117.23 (11)
N1—C2—H2A109.4C16—C15—C18121.11 (11)
C3—C2—H2A109.4C14—C15—C18121.64 (11)
N1—C2—H2B109.4C17—C16—C15119.62 (11)
C3—C2—H2B109.4C17—C16—H16120.2
H2A—C2—H2B108.0C15—C16—H16120.2
O1—C3—C2109.17 (10)N3—C17—C16122.77 (12)
O1—C3—H3A109.8N3—C17—H17118.6
C2—C3—H3A109.8C16—C17—H17118.6
O1—C3—H3B109.8C19—C18—C22117.47 (12)
C2—C3—H3B109.8C19—C18—C15121.90 (12)
H3A—C3—H3B108.3C22—C18—C15120.62 (11)
N1—C4—C5109.96 (11)C20—C19—C18119.37 (13)
N1—C4—C6112.47 (11)C20—C19—H19120.3
C5—C4—C6112.12 (12)C18—C19—H19120.3
N1—C4—H4107.3N4—C20—C19123.24 (13)
C5—C4—H4107.3N4—C20—H20118.4
C6—C4—H4107.3C19—C20—H20118.4
C4—C5—H5A109.5N4—C21—C22123.81 (13)
C4—C5—H5B109.5N4—C21—H21118.1
H5A—C5—H5B109.5C22—C21—H21118.1
C4—C5—H5C109.5C21—C22—C18118.98 (12)
H5A—C5—H5C109.5C21—C22—H22120.5
H5B—C5—H5C109.5C18—C22—H22120.5
C4—C6—H6A109.5N5—C23—C24124.26 (14)
C4—C6—H6B109.5N5—C23—H23117.9
H6A—C6—H6B109.5C24—C23—H23117.9
C4—C6—H6C109.5C23—C24—C25119.73 (14)
H6A—C6—H6C109.5C23—C24—H24120.1
H6B—C6—H6C109.5C25—C24—H24120.1
N2—C7—S4121.13 (10)C26—C25—C24116.13 (13)
N2—C7—S3119.58 (10)C26—C25—C25i121.98 (15)
S4—C7—S3119.30 (8)C24—C25—C25i121.88 (15)
N2—C8—C9111.65 (10)C27—C26—C25119.81 (13)
N2—C8—H8A109.3C27—C26—H26120.1
C9—C8—H8A109.3C25—C26—H26120.1
N2—C8—H8B109.3N5—C27—C26124.56 (14)
C9—C8—H8B109.3N5—C27—H27117.7
H8A—C8—H8B108.0C26—C27—H27117.7
C2—N1—C1—S2176.55 (9)C17—N3—C13—C141.25 (19)
C4—N1—C1—S21.29 (16)Cd—N3—C13—C14175.45 (10)
C2—N1—C1—S13.28 (16)N3—C13—C14—C150.6 (2)
C4—N1—C1—S1178.54 (9)C13—C14—C15—C161.00 (19)
Cd—S2—C1—N1176.80 (10)C13—C14—C15—C18177.49 (12)
Cd—S2—C1—S13.36 (6)C14—C15—C16—C171.82 (18)
Cd—S1—C1—N1176.69 (10)C18—C15—C16—C17176.68 (12)
Cd—S1—C1—S23.48 (7)C13—N3—C17—C160.37 (19)
C1—N1—C2—C383.28 (14)Cd—N3—C17—C16176.41 (9)
C4—N1—C2—C3101.32 (13)C15—C16—C17—N31.19 (19)
N1—C2—C3—O1173.57 (10)C16—C15—C18—C19152.60 (13)
C1—N1—C4—C593.77 (14)C14—C15—C18—C1928.96 (19)
C2—N1—C4—C581.57 (14)C16—C15—C18—C2228.66 (18)
C1—N1—C4—C6140.52 (12)C14—C15—C18—C22149.77 (13)
C2—N1—C4—C644.15 (15)C22—C18—C19—C200.4 (2)
C8—N2—C7—S4178.55 (9)C15—C18—C19—C20178.33 (13)
C10—N2—C7—S45.59 (17)C21—N4—C20—C190.3 (2)
C8—N2—C7—S31.70 (16)C18—C19—C20—N40.1 (2)
C10—N2—C7—S3174.65 (10)C20—N4—C21—C220.3 (2)
Cd—S4—C7—N2176.04 (10)N4—C21—C22—C180.1 (2)
Cd—S4—C7—S33.71 (7)C19—C18—C22—C210.45 (19)
Cd—S3—C7—N2175.91 (10)C15—C18—C22—C21178.35 (12)
Cd—S3—C7—S43.85 (7)C27—N5—C23—C240.4 (2)
C7—N2—C8—C984.72 (15)N5—C23—C24—C250.2 (3)
C10—N2—C8—C9102.00 (13)C23—C24—C25—C260.1 (2)
N2—C8—C9—O2178.55 (11)C23—C24—C25—C25i179.10 (16)
C7—N2—C10—C12138.65 (13)C24—C25—C26—C270.3 (2)
C8—N2—C10—C1248.17 (16)C25i—C25—C26—C27178.94 (16)
C7—N2—C10—C1196.19 (15)C23—N5—C27—C260.2 (2)
C8—N2—C10—C1176.99 (15)C25—C26—C27—N50.1 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the Zn/S3/S4/C7 chelate ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N4ii0.83 (2)1.88 (2)2.7085 (15)176 (1)
O2—H2O···O1iii0.83 (1)1.89 (1)2.7162 (14)173 (2)
C4—H4···S2iv1.002.683.5395 (14)144
C22—H22···O2v0.952.403.3473 (17)174
C26—H26···Cg1vi0.953.003.776 (3)140
Symmetry codes: (ii) x, y1, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z; (v) x, y, z1/2; (vi) x, y+1, z.
 

Acknowledgements

Sunway University is thanked for support of biological and crystal engineering studies of metal di­thio­carbamates.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1472–m1473.  Web of Science CSD CrossRef IUCr Journals
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–941.  Web of Science CSD CrossRef CAS
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBroker, G. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1458–1464.  Web of Science CSD CrossRef IUCr Journals
First citationBroker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320–m321.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.  Web of Science CSD CrossRef CAS
First citationFan, J., Wei, F.-X., Zhang, W.-G., Yin, X., Lai, C.-S. & Tiekink, E. R. T. (2007). Acta Chim. Sinica, 65, 2014–2018.  CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJotani, M. M., Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1700–1709.  Web of Science CSD CrossRef IUCr Journals
First citationKlevtsova, R. F., Glinskaya, L. A., Berus, E. I. & Larionov, S. V. (2001). J. Struct. Chem. 42, 639–647.  Web of Science CSD CrossRef CAS
First citationLai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.  Web of Science CrossRef CAS
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZemskova, S. M., Glinskaya, L. A., Durasov, V. B., Klevtsova, R. F. & Larionov, S. V. (1994). J. Struct. Chem. 34, 794–802.  CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds