research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-trans-Chlorido­{2-[(Rp)-2-(methyl­sulfan­yl)ferro­cen­yl]-2,5,6,7-tetra­hydro­pyrrolo­[1,2-c]imidazol-3-yl­­idene}bis­(tri­phenyl­phosphane-κP)palladium(II) hexa­fluorido­phosphate di­chloro­form disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada, and bDepartment of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
*Correspondence e-mail: alough@chem.utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 August 2016; accepted 16 August 2016; online 26 August 2016)

The title solvated complex, [FePd(C5H5)(C12H13N2S)Cl(C18H15P)2]PF6·2CHCl3, bearing a chiral ferrocenyl pyrrolo­imidazolyl­idene N-heterocyclic carbene (NHC) ligand, was synthesized by oxidative addition of a chloro­imidazolium salt to Pd(PPh3)4. The PdII ion is coordinated in a slightly distorted square-planar coordination geometry, with the Cl atom trans to the coordinating C atom of the pyrrolo­imidazolyl­idene ligand. The complex features a pendant thio­ether group that is not involved in coordination to Pd. In the crystal, weak C—H⋯F and C—H⋯π inter­actions connect the components of the structure, forming chains propagating along [1-10]. The fused pyrrolidine ring is in an envelope conformation, and the flap atom was refined as disordered over two sets of sites, with occupancies of 0.77 (4) and 0.23 (4).

1. Chemical context

N-Heterocyclic carbenes (NHCs), such as imidazolylidenes, are electron-rich σ-donor ligands that may be electronically and sterically fine-tuned by changing the substituents on the azole ring (Clavier, 2006[Clavier, M. H. C. (2006). N-Heterocyclic Carbenes in Synthesis, edited by S. P. Nolan, pp. 183-186. Weinheim: Wiley-VCH.]). These ligands exhibit weak π-back-bonding, resulting in increased electron density at the metal atom. Their overall electron-donating capacity is similar to that of tri­alkyl­phosphane ligands and is a main reason for inter­est in imidazolylidenes as ancillary ligands for transition-metal complexes with potential applications in catalysis (Hopkinson et al., 2014[Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485-496.]). In general, higher electron density at transition metal atomshas been shown to promote oxidative addition steps in catalytic cycles (Peris, 2007[Peris, E. (2007). Organomet. Chem. 21, 83-116.]). The selective synthesis of homochiral NHC ligands has been investigated concurrently with achiral forms. Particular attention has been paid to developing NHC ligands derived from planar chiral ferrocenes owing to the commercial importance of chiral ferrocene ligands, e.g. Josiphos (Schultz et al., 2005[Schultz, C., Dreher, S., Ikemoto, N., Williams, J., Grabowski, E., Krska, S., Sun, Y., Dormer, P. & DiMichele, L. (2005). Org. Lett. 7, 3405-3408.]), Xyliphos (Spindler et al., 1990[Spindler, F., Pugin, B. & Blaser, H.-U. (1990). Angew. Chem. Int. Ed. 29, 558-559.]) and PhTRAP (Kuwano et al., 2000[Kuwano, R., Sato, K., Kurokawa, T., Karube, D. & Ito, Y. (2000). J. Am. Chem. Soc. 122, 7614-7615.]). Some early examples of complexes bearing chiral ferrocenyl NHCs include Chung's iridium complex 1, in which the thio­ether group is not involved in metal ligation (Seo et al., 2003[Seo, H., Park, H. J., Kim, B. Y., Lee, J. H., Son, S. U. & Chung, Y. K. (2003). Organometallics, 22, 618-620.]) (Fig. 1[link]). In contrast, bidentate 2 (Debono et al., 2010[Debono, N., Labande, A., Manoury, E., Daran, J. C. & Poli, R. (2010). Organometallics, 29, 1879-1882.]) or tridentate pincer-like ferrocenyl NHC–phosphane ligands 3 (Gischig & Togni, 2004[Gischig, S. & Togni, A. (2004). Organometallics, 23, 2479-2487.]) have been prepared, which feature seven-membered palladacycles. Complex 2 has been shown to catalyze asymmetric Suzuki–Miyaura coupling of aryl bromides with naphthyl­boronic acids in up to 42% ee (Debono et al., 2010[Debono, N., Labande, A., Manoury, E., Daran, J. C. & Poli, R. (2010). Organometallics, 29, 1879-1882.]). The preceding chiral ferrocenyl NHC ligands were prepared by initial diastereoselective li­thia­tion of Ugi's amine (complexes 1 and 3) (Marquarding et al., 1970[Marquarding, D., Klusacek, H., Gokel, G., Hoffmann, P. & Ugi, I. (1970). J. Am. Chem. Soc. 92, 5389-5393.]) or Kagan's ferrocenyl acetal (complex 2) (Riant et al., 1993[Riant, O., Samuel, O. & Kagan, H. B. (1993). J. Am. Chem. Soc. 115, 5835-5836.]). We have recently reported that an iridium complex bearing a monodentate imidazolinyl­idene ligand catalyzes the hydrogenation of 2-substituted quinolines in up to 80% ee (John et al., 2015[John, J., Wilson-Konderka, C. & Metallinos, C. (2015). Adv. Synth. Catal. 357, 2071-2081.]). This ligand was prepared by diastereo­selective li­thia­tion of a ferrocene containing a new pyrrolo­imidazolone chiral auxiliary in which the N atom was directly attached to the cyclo­penta­dienyl (Cp) ring. The pyrrolo­imidazolone functionality doubled as a precursor to the NHC. In this sense, the NHC ligand in 4 is distinct from those in complexes 1–3, which have `pendant' imidazolylidenes. In this paper, we have extended this synthetic approach to prepare an unsaturated pyrrolo­imidazolyl­idene analogue of the ligands in complexes 1–3 to study its coordination behaviour with palladium. The crystal structure of the title compound, 8, is presented herein.

[Scheme 1]
[Figure 1]
Figure 1
Coordination complexes with chiral ferrocenyl NHC ligands.

2. Structural commentary

The mol­ecular structure of the title compound, 8, is shown in Fig. 2[link]. The PdII ion is coordinated in a slightly distorted square-planar coordination geometry, with the Cl atom trans to the pyrrolo­imidazolyl­idene ligand. The ligand is monodentate, with an Rp absolute configuration of the ferrocene moiety (Schlögl, 1967[Schlögl, K. (1967). Top. Stereochem. 1, 39-89.]). The Schlögl convention has been used to assign planar chirality (Rp or Sp) for consistency with our prior ferrocene work. As in iridium complex 1, the thio­ether group is not involved in coordination to the metal atom in the title complex. The tri­phenyl­phosphane ligands are in slightly different chemical environments, an observation that is consistent with the non-equivalency of their P atoms by 31P NMR spectroscopy. The cyclo­penta­dienyl (Cp) rings of the ferrocenyl group are tilted slightly, by 2.75 (14)°, with respect to each other. The dihedral angle between the fused imidazole ring and the Cp ring to which it is attached is 46.1 (2)°. The fused pyrrolidine ring is in an envelope conformation, with atom C3 forming the flap. Atom C3 is disordered over two sites, with refined occupancies of 0.77 (4) and 0.23 (4). Within the cation, there are siginficant intra­molecular ππ stacking inter­actions, with centroid–centroid distances less than 4 Å namely, Cg1⋯Cg6 = 3.712 (3) Å, Cg2⋯Cg5 = 3.861 (8) Å, Cg2⋯Cg6 = 3.675 Å and Cg3⋯Cg4 = 3.641 Å, where Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the N1/C1/N2/C4/C6, N2/C5/C4A/C3A/C2A, C7–C11, C18–C23, C30–C35 and C36–C41 rings, respectively.

[Figure 2]
Figure 2
The mol­ecular structure of the cation of the title compound, shown with 30% probabilty displacement ellipsoids. H atoms have been omitted for clarity. The minor disorder component is not shown.

3. Supra­molecular features

In the crystal, weak C—H⋯F and C—H⋯π inter­actions connect the components of the structure, forming chains propagating along [1[\overline{1}]0] (Table 1[link], Figs. 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C30–C35, C36–C41 and N1/C1/N2/C5/C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯F3i 0.95 2.40 3.297 (6) 158
C40—H40A⋯F1i 0.95 2.52 3.327 (7) 143
C50—H50A⋯F4ii 0.95 2.38 3.275 (7) 156
C54—H54A⋯F4 1.00 2.42 3.342 (7) 153
C54—H54A⋯F6 1.00 2.33 3.237 (7) 150
C55—H55A⋯F5 1.00 2.44 3.228 (7) 135
C55—H55A⋯F6 1.00 2.33 3.311 (7) 168
C2—H2BCg1 0.99 2.88 3.682 (6) 139
C15—H15ACg2iii 1.00 2.93 3.762 (7) 141
C35—H35ACg3 0.95 2.67 3.148 (6) 111
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of the crystal structure of 8, with weak C—H⋯π inter­actions shown as dashed lines. The centroids Cg1, Cg2 and Cg3, and the symmetry code are defined in Table 1[link]. Only H atoms involved in weak inter­actions are shown.
[Figure 4]
Figure 4
Part of the crystal structure of 8, with weak C—H⋯F inter­actions shown as dashed lines. Only H atoms involved in weak inter­actions are shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update February 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only two structures where a PdII ion is coordinated to a tetra­hydro-1H-pyrrolo­[1,2-c]imidazol-3-yl­idene ligand, viz. trans-chloro­(2-phenyl-5,6,7,7a-tetra­hydro-1H-pyrrolo­[1,2-c]imidazol-3-yl­idene)bis­(tri­phenyl­phosphine)palladium(II) chloride di­chloro­methane solvate (CSD refcode XAMPOR; Kremzow et al., 2005[Kremzow, D., Seidel, G., Lehmann, C. W. & Fürstner, A. (2005). Chem. Eur. J. 11, 1833-1853.]) and trans-chlorido­(2-phenyl-5,6,7,7a-tetra­hydro-1H-pyrrolo­[1,2-c]imidazol-3-yl­idene)bis­(tri­phenyl­phosphine)palladium(II) hexa­fluorido­phosphate di­chloro­methane solvate (XAMPIL; Kremzow et al., 2005[Kremzow, D., Seidel, G., Lehmann, C. W. & Fürstner, A. (2005). Chem. Eur. J. 11, 1833-1853.]). The Pd—Ccarbene bond length is 1.975 (2) and 1.9687 (17) Å in XAMPOR and XAMPIL, respectively, and these values are the same within experimental error as the value of 1.988 (5)Å in the title compound.

5. Synthesis and crystallization

5.1. General

The stereoselective synthesis of planar chiral ferrocene 6 by diastereoselective li­thia­tion has been reported previously (Metallinos et al., 2012[Metallinos, C., John, J., Zaifman, J. & Emberson, K. (2012). Adv. Synth. Catal. 354, 602-606.], 2013[Metallinos, C., John, J., Nelson, J., Dudding, T. & Belding, L. (2013). Adv. Synth. Catal. 355, 1211-1219.]). Thus, sequential deprotonation of imidazolone 5, followed by elecrophile quenching with dimethyl di­sulfide and subsequent acid-induced elimination of silanol, gave the chiral unsaturated urea 6. Heating urea 6 in neat phospho­rus oxychloride in a sealed tube at 323 K resulted in the formation of chloro­imidazolium salt 7, which was isolated as the hexa­fluorido­phosphate salt upon salt metathesis. Chloride 7 readily underwent oxidative addition with Pd(PPh3)4 according to the method of Fürstner et al. (2003[Fürstner, A., Seidel, G., Kremzow, D. & Lehmann, C. W. (2003). Organometallics, 22, 907-909.]) to give the title palladium complex 8 in 67% yield. Recrystallization of 8 from chloro­form solution containing a small amount of pentane gave the product as small yellow crystals that were suitable for X-ray diffraction. The reaction scheme is shown in Fig. 5[link].

[Figure 5]
Figure 5
The reaction scheme.

5.2. Preparation of (+)-3-chloro-2-[(Rp)-2-(methyl­sulfan­yl)ferrocen­yl]-2,5,6,7-tetra­hydro­pyrrolo­[1,2-c]imidazol-4-ium hexa­fluoro­phosphate, 7

A mixture of imidazolone 6 (147 mg, 0.42 mmol) in neat POCl3 (0.5 ml, 5.36 mmol) was heated at 323 K for 16 h. The resulting solution changed progressively from orange to black during this period. After cooling to room temperature, the volatiles were removed under high vacuum. The black residue obtained was dissolved in CH2Cl2 (10 ml) and treated with a saturated solution of KPF6 in H2O/MeOH (2 ml). The mixture was stirred for 15 min at room temperature, resulting in a colour change from black to deep red. Water was added (10 ml), resulting in a biphasic mixture from which the organic layer was isolated, washed with water, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was taken up in CH2Cl2 (2 ml) and added to an ice-cooled Et2O solution in an ice bath. The precipitate was collected by Hirsch funnel filtration and washed with cold Et2O to give a gold–beige powder [yield 161 mg, 78%; m.p. 368 K (Et2O)]. [α]D +30.2 (c 1.0, CHCl3); IR (ATR, solid) νmax: 3152, 2977, 2923, 2875, 2858, 2851, 1650, 1537, 827 cm−1; 1H NMR (400 MHz, acetone-d6): δ 8.04 (s, 1H), 4.96 (s, 1H), 4.75 (s, 1H), 4.61 (s, 1H), 4.51 (bs, 7H), 3.23 (s, 2H), 2.80 (s, 2H), 2.21 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 138.4, 128.1, 120.2, 93.9, 79.1, 72.3, 72.0, 68.1, 67.4, 48.6, 27.2, 24.0, 20.9; ESI–MS [m/z (%)]: 373 (M+, 100), 217 (5); HR–MS (ESI) calculated for C17H18ClFeN2S: 373.0229; found: 373.0222.

5.3. Preparation of 8

A solution of 7 (150 mg, 0.29 mmol) and Pd(PPh3)4 (334 mg, 0.13 mmol) in CH2Cl2 (25 ml) was heated under reflux for 5 h. After cooling, the solution was filtered through Celite, evaporated to dryness, and the crude product was recrystallized from CHCl3/pentane, to give bright-yellow powdery crystals [yield 246 mg, 67%; m.p. >503 K (CHCl3)]. [α]D +25.1 (c 1.0, CHCl3); IR (ATR, solid) νmax: 3054, 1708, 1480, 1362 cm−1; 1H NMR (400 MHz, acetone-d6): δ 7.73 (s, 1H), 7.68–7.41 (m, 30H), 5.41 (s, 1H), 4.53 (s, 1H), 4.42 (t, 1H, J = 2.8 Hz), 4.17 (s, 5H), 3.18–3.12 (m, 1H), 3.03–2.97 (m, 1H), 2.36 (t, 2H, J = 7.2 Hz), 1.89 (s, 3H), 1.57 (quin, 2H, J = 7.6 Hz); 13C NMR (100 MHz, acetone-d6) δ 140.6, 134.2, 134.1, 131.7, 131.2, 129.2, 129.1, 128.7, 128.6, 120.5, 95.3, 79.0, 78.3, 71.3, 70.4, 66.1, 65.9, 46.8, 25.9, 22.3, 18.7; 31P NMR (162 MHz, acetone-d6): δ 30.1 (s, 1P), 20.6 (s, 1P), −144.5 [sept, 1P, 1J(31P–19F) = 708 Hz]; ESI–MS [m/z (%)]: 1003 (36), 833 (100), 743 (35), 659 (24), 389 (66), 263 (41); HR–MS (ESI) calculated for C53H48N2ClFeP2PdS: 1003.1086; found: 1003.1126. Analysis calculated for C53H48N2ClF6FeP3PdS·CHCl3: C 55.37, H 4.21%; found: C 55.60, H 4.33%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and included in a riding-model approximation, with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. The flap atom, C3, of the fused pyrrolidine ring system was refined as disordered over two sites, with final occupancies of 0.77 (4) and 0.23 (4).

Table 2
Experimental details

Crystal data
Chemical formula [FePd(C5H5)(C12H13N2S)Cl(C18H15P)2]PF6·2CHCl3
Mr 1388.34
Crystal system, space group Orthorhombic, P212121
Temperature (K) 147
a, b, c (Å) 11.2517 (5), 16.424 (1), 31.1181 (18)
V3) 5750.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.30 × 0.19 × 0.09
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.663, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30535, 13109, 10246
Rint 0.058
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.075, 0.98
No. of reflections 13109
No. of parameters 691
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.61
Absolute structure Flack x determined using 3648 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.011 (13)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(+)-trans-Chlorido{2-[(Rp)-2-(methylsulfanyl)ferrocenyl]-2,5,6,7-tetrahydropyrrolo[1,2-c]imidazol-3-ylidene}bis(triphenylphosphane-κP)palladium(II) hexafluoridophosphate dichloroform disolvate top
Crystal data top
[FePd(C5H5)(C12H13N2S)Cl(C18H15P)2]PF6·2CHCl3Dx = 1.604 Mg m3
Mr = 1388.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5526 reflections
a = 11.2517 (5) Åθ = 2.5–24.4°
b = 16.424 (1) ŵ = 1.07 mm1
c = 31.1181 (18) ÅT = 147 K
V = 5750.6 (5) Å3Plate, orange
Z = 40.30 × 0.19 × 0.09 mm
F(000) = 2800
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
10246 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.058
φ and ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1014
Tmin = 0.663, Tmax = 0.746k = 2120
30535 measured reflectionsl = 4040
13109 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0201P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.53 e Å3
13109 reflectionsΔρmin = 0.61 e Å3
691 parametersAbsolute structure: Flack x determined using 3648 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.011 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.33330 (3)0.96585 (3)0.41241 (2)0.01254 (9)
Fe10.27891 (7)0.73959 (5)0.30082 (3)0.01854 (19)
Cl10.49228 (11)0.95869 (9)0.46005 (4)0.0200 (3)
S10.00261 (13)0.73694 (10)0.34952 (5)0.0287 (4)
P10.19986 (12)0.91810 (10)0.46437 (5)0.0162 (3)
P20.46163 (11)1.02430 (9)0.36165 (4)0.0139 (3)
N10.1746 (4)0.8971 (3)0.34336 (13)0.0138 (9)
N20.1299 (3)1.0203 (3)0.35635 (13)0.0132 (10)
C10.2043 (4)0.9615 (3)0.36879 (15)0.0118 (11)
C20.1067 (5)1.1032 (3)0.37085 (19)0.0197 (13)0.77 (4)
H2A0.18121.13510.37310.024*0.77 (4)
H2B0.06581.10360.39900.024*0.77 (4)
C30.0267 (16)1.1362 (6)0.3354 (5)0.034 (4)0.77 (4)
H3A0.07331.17010.31520.041*0.77 (4)
H3B0.03741.17010.34780.041*0.77 (4)
C40.0263 (5)1.0630 (4)0.3119 (2)0.0287 (16)0.77 (4)
H4A0.10841.05180.32170.034*0.77 (4)
H4B0.02681.07160.28040.034*0.77 (4)
C2A0.1067 (5)1.1032 (3)0.37085 (19)0.0197 (13)0.23 (4)
H2AA0.17151.14050.36200.024*0.23 (4)
H2AB0.09801.10540.40250.024*0.23 (4)
C3A0.011 (3)1.125 (2)0.3482 (13)0.020 (9)*0.23 (4)
H3AA0.07861.12200.36860.023*0.23 (4)
H3AB0.00771.18130.33630.023*0.23 (4)
C4A0.0263 (5)1.0630 (4)0.3119 (2)0.0287 (16)0.23 (4)
H4AA0.10951.04340.31030.034*0.23 (4)
H4AB0.00371.08670.28380.034*0.23 (4)
C50.0553 (5)0.9959 (3)0.32403 (18)0.0168 (13)
C60.0827 (5)0.9181 (4)0.31496 (18)0.0181 (13)
H6A0.04720.88440.29370.022*
C70.1584 (5)0.7435 (3)0.35010 (16)0.0176 (12)
C80.2245 (5)0.8181 (3)0.34678 (17)0.0151 (12)
C90.3460 (5)0.7996 (3)0.35239 (17)0.0189 (13)
H9A0.41290.83960.35180.023*
C100.3571 (5)0.7146 (3)0.35824 (18)0.0211 (14)
H10A0.43330.68430.36230.025*
C110.2422 (5)0.6793 (4)0.35640 (18)0.0222 (13)
H11A0.22310.62010.35920.027*
C120.1885 (6)0.7210 (4)0.24507 (18)0.0298 (15)
H12A0.10010.71800.24220.036*
C130.2576 (6)0.7922 (4)0.24119 (19)0.0294 (16)
H13A0.22710.84830.23530.035*
C140.3781 (6)0.7700 (4)0.24738 (19)0.0319 (16)
H14A0.44800.80770.24680.038*
C150.3817 (6)0.6846 (4)0.25522 (19)0.0298 (16)
H15A0.45490.65170.26080.036*
C160.2648 (5)0.6545 (4)0.25400 (18)0.0258 (15)
H16A0.24020.59640.25790.031*
C170.0134 (6)0.6283 (4)0.3475 (3)0.055 (2)
H17A0.09720.61440.34310.082*
H17B0.01430.60460.37460.082*
H17C0.03410.60660.32370.082*
C180.1928 (5)0.8077 (3)0.46366 (17)0.0187 (13)
C190.0873 (5)0.7635 (4)0.46357 (19)0.0259 (14)
H19A0.01350.79140.46210.031*
C200.0886 (6)0.6799 (4)0.4656 (2)0.0335 (17)
H20A0.01630.65010.46490.040*
C210.1954 (6)0.6397 (4)0.4685 (2)0.0344 (17)
H21A0.19660.58200.47030.041*
C220.3009 (5)0.6824 (4)0.4687 (2)0.0301 (16)
H22A0.37420.65410.47100.036*
C230.3002 (5)0.7663 (4)0.46567 (19)0.0260 (14)
H23A0.37300.79560.46490.031*
C240.2339 (5)0.9427 (3)0.52001 (17)0.0185 (13)
C250.1877 (5)0.8926 (4)0.55286 (19)0.0293 (15)
H25A0.15020.84250.54580.035*
C260.1973 (6)0.9165 (5)0.5950 (2)0.0417 (18)
H26A0.16450.88330.61700.050*
C270.2541 (6)0.9886 (4)0.6059 (2)0.0377 (18)
H27A0.26001.00460.63520.045*
C280.3021 (5)1.0369 (4)0.57395 (18)0.0283 (14)
H28A0.34301.08550.58130.034*
C290.2906 (5)1.0145 (4)0.53135 (19)0.0236 (14)
H29A0.32211.04870.50950.028*
C300.0494 (4)0.9583 (4)0.45903 (16)0.0170 (12)
C310.0073 (5)1.0170 (4)0.48745 (18)0.0243 (14)
H31A0.05561.03380.51090.029*
C320.1039 (5)1.0510 (4)0.4820 (2)0.0292 (16)
H32A0.13171.09070.50180.035*
C330.1751 (5)1.0276 (4)0.44788 (19)0.0293 (14)
H33A0.25131.05130.44400.035*
C340.1343 (5)0.9697 (4)0.41967 (19)0.0321 (15)
H34A0.18250.95360.39610.039*
C350.0237 (5)0.9346 (4)0.42521 (18)0.0222 (14)
H35A0.00260.89390.40570.027*
C360.3880 (5)1.0678 (4)0.31492 (17)0.0168 (13)
C370.3671 (4)1.1508 (4)0.31238 (18)0.0227 (14)
H37A0.39641.18580.33420.027*
C380.3035 (5)1.1832 (4)0.2782 (2)0.0351 (17)
H38A0.28981.24020.27670.042*
C390.2600 (6)1.1325 (5)0.2462 (2)0.0364 (17)
H39A0.21651.15460.22280.044*
C400.2805 (5)1.0496 (4)0.24870 (19)0.0304 (16)
H40A0.25161.01460.22670.036*
C410.3427 (5)1.0176 (4)0.28306 (17)0.0245 (14)
H41A0.35460.96040.28490.029*
C420.5453 (5)1.1094 (3)0.38305 (17)0.0159 (12)
C430.5069 (5)1.1491 (4)0.41998 (18)0.0227 (14)
H43A0.43951.12940.43510.027*
C440.5664 (5)1.2172 (4)0.4348 (2)0.0304 (16)
H44A0.53901.24420.45990.036*
C450.6653 (5)1.2462 (4)0.4134 (2)0.0314 (14)
H45A0.70711.29220.42410.038*
C460.7027 (5)1.2079 (4)0.3764 (2)0.0304 (16)
H46A0.77001.22800.36140.036*
C470.6437 (5)1.1410 (4)0.36124 (18)0.0220 (14)
H47A0.66991.11560.33550.026*
C480.5722 (4)0.9546 (4)0.33932 (17)0.0181 (13)
C490.6155 (5)0.9647 (4)0.29755 (18)0.0257 (13)
H49A0.58631.00770.28010.031*
C500.7003 (5)0.9124 (4)0.2818 (2)0.0320 (16)
H50A0.72950.91960.25340.038*
C510.7431 (5)0.8503 (4)0.3064 (2)0.0285 (15)
H51A0.80210.81480.29520.034*
C520.7008 (5)0.8388 (4)0.3479 (2)0.0259 (15)
H52A0.73010.79530.36500.031*
C530.6160 (5)0.8908 (4)0.36398 (19)0.0223 (14)
H53A0.58700.88290.39230.027*
P30.04207 (14)0.39566 (10)0.31838 (5)0.0232 (4)
F10.0651 (3)0.4502 (2)0.30243 (13)0.0439 (10)
F20.0473 (3)0.3301 (2)0.33670 (13)0.0457 (11)
F30.0451 (3)0.3494 (2)0.27321 (12)0.0430 (10)
F40.1341 (3)0.4618 (3)0.30074 (12)0.0460 (10)
F50.0423 (3)0.4412 (2)0.36370 (11)0.0403 (10)
F60.1518 (3)0.3408 (2)0.33421 (12)0.0435 (10)
Cl20.4768 (3)0.35412 (15)0.35456 (11)0.1039 (10)
Cl30.3769 (2)0.48557 (18)0.40295 (7)0.0862 (8)
Cl40.4627 (2)0.51171 (13)0.31834 (6)0.0663 (6)
C540.3937 (6)0.4421 (4)0.3519 (2)0.0364 (17)
H54A0.31330.42890.34010.044*
Cl50.23776 (16)0.25871 (15)0.45352 (8)0.0708 (7)
Cl60.01617 (14)0.25246 (11)0.44399 (6)0.0420 (4)
Cl70.09639 (14)0.40164 (10)0.47042 (5)0.0331 (4)
C550.1110 (5)0.3136 (4)0.4386 (2)0.0331 (16)
H55A0.11900.33030.40780.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01091 (19)0.0142 (2)0.01251 (18)0.00038 (19)0.00128 (17)0.00038 (18)
Fe10.0189 (4)0.0177 (5)0.0190 (4)0.0020 (4)0.0011 (3)0.0042 (4)
Cl10.0177 (7)0.0258 (8)0.0165 (6)0.0011 (7)0.0054 (5)0.0020 (6)
S10.0185 (8)0.0246 (9)0.0429 (10)0.0025 (7)0.0030 (7)0.0020 (8)
P10.0159 (8)0.0190 (9)0.0138 (7)0.0016 (6)0.0015 (6)0.0000 (6)
P20.0132 (7)0.0133 (8)0.0151 (7)0.0003 (6)0.0004 (5)0.0003 (6)
N10.011 (2)0.014 (2)0.017 (2)0.004 (2)0.004 (2)0.0015 (18)
N20.015 (2)0.010 (3)0.014 (2)0.0006 (19)0.0003 (17)0.0033 (19)
C10.015 (3)0.007 (3)0.013 (2)0.001 (2)0.0049 (19)0.003 (2)
C20.022 (3)0.010 (3)0.028 (3)0.001 (3)0.000 (3)0.004 (2)
C30.042 (8)0.023 (6)0.038 (7)0.008 (5)0.012 (6)0.005 (5)
C40.024 (3)0.024 (4)0.038 (4)0.008 (3)0.010 (3)0.004 (3)
C2A0.022 (3)0.010 (3)0.028 (3)0.001 (3)0.000 (3)0.004 (2)
C4A0.024 (3)0.024 (4)0.038 (4)0.008 (3)0.010 (3)0.004 (3)
C50.014 (3)0.019 (3)0.017 (3)0.001 (2)0.003 (2)0.001 (2)
C60.015 (3)0.021 (3)0.018 (3)0.004 (3)0.004 (2)0.002 (3)
C70.017 (3)0.016 (3)0.021 (3)0.000 (3)0.002 (2)0.002 (2)
C80.014 (3)0.014 (3)0.017 (3)0.005 (2)0.003 (2)0.005 (2)
C90.020 (3)0.017 (3)0.021 (3)0.000 (3)0.004 (3)0.003 (2)
C100.015 (3)0.020 (3)0.028 (3)0.005 (2)0.002 (2)0.002 (3)
C110.027 (3)0.015 (3)0.024 (3)0.003 (3)0.001 (3)0.001 (2)
C120.035 (4)0.037 (4)0.018 (3)0.004 (3)0.009 (3)0.009 (3)
C130.044 (4)0.026 (4)0.018 (3)0.003 (3)0.003 (3)0.000 (3)
C140.032 (4)0.038 (4)0.025 (4)0.003 (3)0.013 (3)0.001 (3)
C150.034 (4)0.031 (4)0.025 (4)0.015 (3)0.005 (3)0.003 (3)
C160.031 (4)0.024 (4)0.022 (3)0.006 (3)0.001 (3)0.012 (3)
C170.032 (4)0.028 (4)0.105 (7)0.013 (3)0.001 (4)0.006 (4)
C180.026 (4)0.017 (3)0.013 (3)0.002 (3)0.004 (2)0.001 (2)
C190.023 (3)0.030 (4)0.025 (3)0.004 (3)0.007 (3)0.005 (3)
C200.041 (4)0.027 (4)0.032 (4)0.013 (3)0.010 (3)0.008 (3)
C210.051 (5)0.014 (4)0.038 (4)0.006 (3)0.004 (3)0.004 (3)
C220.030 (4)0.026 (4)0.034 (4)0.007 (3)0.003 (3)0.002 (3)
C230.025 (3)0.022 (4)0.030 (3)0.000 (3)0.000 (3)0.004 (3)
C240.013 (3)0.023 (4)0.019 (3)0.000 (2)0.001 (2)0.000 (2)
C250.034 (4)0.033 (4)0.021 (3)0.006 (3)0.002 (3)0.001 (3)
C260.052 (5)0.055 (5)0.018 (4)0.010 (4)0.001 (3)0.004 (3)
C270.039 (4)0.055 (5)0.019 (3)0.009 (3)0.008 (3)0.009 (3)
C280.024 (3)0.031 (4)0.029 (3)0.004 (3)0.008 (2)0.011 (3)
C290.018 (3)0.027 (4)0.026 (3)0.001 (3)0.002 (2)0.001 (3)
C300.014 (3)0.020 (3)0.017 (3)0.001 (3)0.002 (2)0.004 (3)
C310.018 (3)0.033 (4)0.022 (3)0.002 (3)0.004 (2)0.002 (3)
C320.023 (3)0.035 (4)0.030 (4)0.011 (3)0.007 (3)0.001 (3)
C330.012 (3)0.039 (4)0.037 (3)0.003 (3)0.003 (3)0.009 (3)
C340.019 (3)0.047 (4)0.031 (4)0.006 (3)0.006 (2)0.004 (4)
C350.016 (3)0.026 (4)0.025 (3)0.006 (3)0.008 (2)0.001 (3)
C360.013 (3)0.023 (4)0.014 (3)0.001 (2)0.002 (2)0.001 (2)
C370.018 (3)0.028 (4)0.022 (3)0.001 (3)0.003 (2)0.004 (3)
C380.034 (4)0.036 (4)0.036 (4)0.009 (3)0.000 (3)0.014 (3)
C390.030 (4)0.052 (5)0.027 (4)0.003 (3)0.009 (3)0.010 (3)
C400.032 (4)0.040 (5)0.019 (3)0.005 (3)0.006 (3)0.001 (3)
C410.023 (3)0.029 (4)0.021 (3)0.004 (3)0.001 (3)0.003 (3)
C420.015 (3)0.011 (3)0.021 (3)0.000 (2)0.007 (2)0.000 (2)
C430.028 (3)0.020 (3)0.020 (3)0.002 (3)0.001 (3)0.002 (3)
C440.040 (4)0.025 (4)0.026 (4)0.002 (3)0.004 (3)0.006 (3)
C450.031 (3)0.022 (3)0.042 (4)0.009 (3)0.018 (4)0.001 (3)
C460.018 (3)0.026 (4)0.047 (4)0.008 (3)0.002 (3)0.009 (3)
C470.018 (3)0.026 (4)0.022 (3)0.005 (3)0.001 (3)0.002 (3)
C480.013 (3)0.017 (3)0.024 (3)0.003 (2)0.001 (2)0.002 (3)
C490.027 (3)0.024 (3)0.026 (3)0.001 (3)0.008 (2)0.005 (3)
C500.026 (4)0.041 (4)0.029 (4)0.004 (3)0.010 (3)0.004 (3)
C510.022 (3)0.029 (4)0.035 (4)0.003 (3)0.003 (3)0.014 (3)
C520.018 (3)0.024 (4)0.036 (4)0.007 (3)0.004 (3)0.006 (3)
C530.017 (3)0.029 (4)0.021 (3)0.005 (3)0.004 (2)0.001 (3)
P30.0225 (8)0.0243 (10)0.0228 (8)0.0017 (7)0.0005 (7)0.0012 (7)
F10.035 (2)0.039 (3)0.057 (3)0.0086 (18)0.0135 (19)0.004 (2)
F20.044 (2)0.032 (2)0.061 (3)0.0056 (19)0.012 (2)0.009 (2)
F30.056 (3)0.045 (3)0.028 (2)0.000 (2)0.0096 (18)0.0111 (19)
F40.041 (2)0.047 (3)0.050 (2)0.013 (2)0.0207 (18)0.002 (2)
F50.055 (2)0.039 (3)0.027 (2)0.0074 (19)0.0021 (18)0.0083 (17)
F60.038 (2)0.046 (3)0.046 (2)0.019 (2)0.0145 (19)0.011 (2)
Cl20.114 (2)0.0344 (14)0.163 (3)0.0246 (14)0.023 (2)0.0040 (17)
Cl30.0986 (18)0.119 (2)0.0407 (13)0.0073 (16)0.0180 (11)0.0052 (13)
Cl40.0958 (16)0.0643 (16)0.0387 (11)0.0165 (13)0.0048 (11)0.0144 (10)
C540.033 (4)0.032 (4)0.044 (4)0.002 (3)0.007 (3)0.001 (3)
Cl50.0399 (11)0.0659 (16)0.107 (2)0.0233 (11)0.0198 (12)0.0372 (14)
Cl60.0407 (10)0.0397 (11)0.0455 (11)0.0087 (9)0.0010 (8)0.0128 (9)
Cl70.0367 (9)0.0280 (10)0.0346 (10)0.0003 (8)0.0027 (8)0.0059 (7)
C550.034 (4)0.041 (4)0.025 (4)0.000 (3)0.001 (3)0.010 (3)
Geometric parameters (Å, º) top
Pd1—C11.988 (5)C20—H20A0.9500
Pd1—Cl12.3261 (13)C21—C221.379 (8)
Pd1—P12.3416 (15)C21—H21A0.9500
Pd1—P22.3454 (14)C22—C231.381 (8)
Fe1—C82.020 (5)C22—H22A0.9500
Fe1—C162.025 (6)C23—H23A0.9500
Fe1—C92.029 (5)C24—C291.386 (8)
Fe1—C102.033 (6)C24—C251.412 (8)
Fe1—C122.034 (6)C25—C261.372 (8)
Fe1—C112.035 (6)C25—H25A0.9500
Fe1—C152.041 (6)C26—C271.387 (9)
Fe1—C72.048 (5)C26—H26A0.9500
Fe1—C132.061 (6)C27—C281.382 (8)
Fe1—C142.064 (6)C27—H27A0.9500
S1—C71.757 (6)C28—C291.381 (8)
S1—C171.795 (7)C28—H28A0.9500
P1—C181.814 (6)C29—H29A0.9500
P1—C241.819 (6)C30—C311.391 (8)
P1—C301.825 (5)C30—C351.391 (7)
P2—C421.813 (5)C31—C321.380 (7)
P2—C361.819 (6)C31—H31A0.9500
P2—C481.828 (6)C32—C331.386 (8)
N1—C11.362 (6)C32—H32A0.9500
N1—C61.403 (6)C33—C341.372 (9)
N1—C81.419 (6)C33—H33A0.9500
N2—C11.335 (6)C34—C351.382 (8)
N2—C51.369 (6)C34—H34A0.9500
N2—C21.459 (7)C35—H35A0.9500
N2—C2A1.459 (7)C36—C411.386 (7)
C2—C31.524 (10)C36—C371.387 (8)
C2—H2A0.9900C37—C381.387 (8)
C2—H2B0.9900C37—H37A0.9500
C3—C41.529 (12)C38—C391.387 (9)
C3—H3A0.9900C38—H38A0.9500
C3—H3B0.9900C39—C401.384 (9)
C4—C51.483 (8)C39—H39A0.9500
C4—H4A0.9900C40—C411.382 (8)
C4—H4B0.9900C40—H40A0.9500
C2A—C3A1.55 (3)C41—H41A0.9500
C2A—H2AA0.9900C42—C431.390 (7)
C2A—H2AB0.9900C42—C471.398 (7)
C3A—C4A1.53 (3)C43—C441.382 (8)
C3A—H3AA0.9900C43—H43A0.9500
C3A—H3AB0.9900C44—C451.381 (8)
C4A—C51.483 (8)C44—H44A0.9500
C4A—H4AA0.9900C45—C461.379 (9)
C4A—H4AB0.9900C45—H45A0.9500
C5—C61.345 (7)C46—C471.367 (8)
C6—H6A0.9500C46—H46A0.9500
C7—C111.427 (8)C47—H47A0.9500
C7—C81.436 (7)C48—C531.390 (8)
C8—C91.412 (7)C48—C491.398 (7)
C9—C101.413 (7)C49—C501.374 (8)
C9—H9A1.0000C49—H49A0.9500
C10—C111.418 (8)C50—C511.364 (8)
C10—H10A1.0000C50—H50A0.9500
C11—H11A1.0000C51—C521.388 (8)
C12—C131.409 (9)C51—H51A0.9500
C12—C161.418 (8)C52—C531.375 (8)
C12—H12A1.0000C52—H52A0.9500
C13—C141.418 (8)C53—H53A0.9500
C13—H13A1.0000P3—F21.579 (4)
C14—C151.425 (9)P3—F11.583 (4)
C14—H14A1.0000P3—F51.596 (4)
C15—C161.406 (8)P3—F31.598 (4)
C15—H15A1.0000P3—F41.599 (4)
C16—H16A1.0000P3—F61.606 (4)
C17—H17A0.9800Cl2—C541.723 (7)
C17—H17B0.9800Cl3—C541.751 (7)
C17—H17C0.9800Cl4—C541.733 (7)
C18—C231.389 (7)C54—H54A1.0000
C18—C191.391 (8)Cl5—C551.750 (6)
C19—C201.375 (8)Cl6—C551.756 (7)
C19—H19A0.9500Cl7—C551.760 (6)
C20—C211.373 (9)C55—H55A1.0000
C1—Pd1—Cl1173.96 (16)Fe1—C13—H13A126.2
C1—Pd1—P189.50 (14)C13—C14—C15107.7 (6)
Cl1—Pd1—P192.08 (5)C13—C14—Fe169.8 (3)
C1—Pd1—P290.25 (14)C15—C14—Fe168.8 (4)
Cl1—Pd1—P288.65 (5)C13—C14—H14A126.2
P1—Pd1—P2175.39 (6)C15—C14—H14A126.2
C8—Fe1—C16157.8 (2)Fe1—C14—H14A126.2
C8—Fe1—C940.8 (2)C16—C15—C14108.4 (5)
C16—Fe1—C9159.0 (2)C16—C15—Fe169.2 (3)
C8—Fe1—C1068.8 (2)C14—C15—Fe170.6 (3)
C16—Fe1—C10121.8 (2)C16—C15—H15A125.8
C9—Fe1—C1040.7 (2)C14—C15—H15A125.8
C8—Fe1—C12123.2 (2)Fe1—C15—H15A125.8
C16—Fe1—C1240.9 (2)C15—C16—C12107.5 (6)
C9—Fe1—C12159.0 (2)C15—C16—Fe170.4 (3)
C10—Fe1—C12159.3 (3)C12—C16—Fe169.9 (3)
C8—Fe1—C1169.3 (2)C15—C16—H16A126.2
C16—Fe1—C11105.1 (3)C12—C16—H16A126.2
C9—Fe1—C1168.9 (2)Fe1—C16—H16A126.2
C10—Fe1—C1140.8 (2)S1—C17—H17A109.5
C12—Fe1—C11123.4 (3)S1—C17—H17B109.5
C8—Fe1—C15161.1 (2)H17A—C17—H17B109.5
C16—Fe1—C1540.4 (2)S1—C17—H17C109.5
C9—Fe1—C15123.6 (2)H17A—C17—H17C109.5
C10—Fe1—C15106.1 (2)H17B—C17—H17C109.5
C12—Fe1—C1567.9 (3)C23—C18—C19119.1 (5)
C11—Fe1—C15119.4 (3)C23—C18—P1116.8 (4)
C8—Fe1—C741.3 (2)C19—C18—P1124.0 (4)
C16—Fe1—C7120.6 (2)C20—C19—C18120.8 (6)
C9—Fe1—C768.8 (2)C20—C19—H19A119.6
C10—Fe1—C768.6 (2)C18—C19—H19A119.6
C12—Fe1—C7108.2 (2)C21—C20—C19119.5 (6)
C11—Fe1—C740.9 (2)C21—C20—H20A120.3
C15—Fe1—C7155.4 (2)C19—C20—H20A120.3
C8—Fe1—C13109.5 (2)C20—C21—C22120.6 (6)
C16—Fe1—C1368.5 (3)C20—C21—H21A119.7
C9—Fe1—C13123.5 (2)C22—C21—H21A119.7
C10—Fe1—C13157.8 (2)C21—C22—C23120.1 (6)
C12—Fe1—C1340.3 (2)C21—C22—H22A119.9
C11—Fe1—C13161.0 (2)C23—C22—H22A119.9
C15—Fe1—C1368.0 (3)C22—C23—C18119.8 (5)
C7—Fe1—C13125.7 (2)C22—C23—H23A120.1
C8—Fe1—C14125.4 (3)C18—C23—H23A120.1
C16—Fe1—C1468.3 (3)C29—C24—C25118.8 (5)
C9—Fe1—C14108.6 (3)C29—C24—P1121.9 (4)
C10—Fe1—C14121.5 (2)C25—C24—P1118.8 (4)
C12—Fe1—C1467.7 (3)C26—C25—C24119.7 (6)
C11—Fe1—C14155.8 (2)C26—C25—H25A120.2
C15—Fe1—C1440.6 (2)C24—C25—H25A120.2
C7—Fe1—C14162.5 (2)C25—C26—C27121.0 (6)
C13—Fe1—C1440.2 (2)C25—C26—H26A119.5
C7—S1—C1799.3 (3)C27—C26—H26A119.5
C18—P1—C24104.1 (3)C28—C27—C26119.5 (6)
C18—P1—C30108.6 (3)C28—C27—H27A120.2
C24—P1—C30101.6 (2)C26—C27—H27A120.2
C18—P1—Pd1110.76 (18)C29—C28—C27120.1 (6)
C24—P1—Pd1116.59 (18)C29—C28—H28A120.0
C30—P1—Pd1114.26 (18)C27—C28—H28A120.0
C42—P2—C36103.2 (3)C28—C29—C24120.9 (6)
C42—P2—C48105.6 (2)C28—C29—H29A119.5
C36—P2—C48104.6 (3)C24—C29—H29A119.5
C42—P2—Pd1112.85 (19)C31—C30—C35118.3 (5)
C36—P2—Pd1114.75 (18)C31—C30—P1120.6 (4)
C48—P2—Pd1114.77 (19)C35—C30—P1121.1 (4)
C1—N1—C6110.8 (4)C32—C31—C30120.7 (5)
C1—N1—C8124.7 (4)C32—C31—H31A119.6
C6—N1—C8124.3 (4)C30—C31—H31A119.6
C1—N2—C5112.7 (4)C31—C32—C33120.3 (6)
C1—N2—C2134.2 (4)C31—C32—H32A119.8
C5—N2—C2113.0 (4)C33—C32—H32A119.8
C1—N2—C2A134.2 (4)C34—C33—C32119.3 (5)
C5—N2—C2A113.0 (4)C34—C33—H33A120.3
N2—C1—N1103.8 (4)C32—C33—H33A120.3
N2—C1—Pd1129.0 (4)C33—C34—C35120.7 (6)
N1—C1—Pd1127.1 (4)C33—C34—H34A119.7
N2—C2—C3102.3 (5)C35—C34—H34A119.7
N2—C2—H2A111.3C34—C35—C30120.7 (6)
C3—C2—H2A111.3C34—C35—H35A119.7
N2—C2—H2B111.3C30—C35—H35A119.7
C3—C2—H2B111.3C41—C36—C37118.8 (5)
H2A—C2—H2B109.2C41—C36—P2120.4 (4)
C2—C3—C4107.3 (7)C37—C36—P2120.6 (4)
C2—C3—H3A110.3C36—C37—C38120.6 (6)
C4—C3—H3A110.3C36—C37—H37A119.7
C2—C3—H3B110.3C38—C37—H37A119.7
C4—C3—H3B110.3C39—C38—C37120.1 (6)
H3A—C3—H3B108.5C39—C38—H38A119.9
C5—C4—C3102.7 (6)C37—C38—H38A119.9
C5—C4—H4A111.2C40—C39—C38119.5 (6)
C3—C4—H4A111.2C40—C39—H39A120.3
C5—C4—H4B111.2C38—C39—H39A120.3
C3—C4—H4B111.2C41—C40—C39120.1 (6)
H4A—C4—H4B109.1C41—C40—H40A119.9
N2—C2A—C3A103.4 (14)C39—C40—H40A119.9
N2—C2A—H2AA111.1C40—C41—C36120.9 (6)
C3A—C2A—H2AA111.1C40—C41—H41A119.6
N2—C2A—H2AB111.1C36—C41—H41A119.6
C3A—C2A—H2AB111.1C43—C42—C47118.3 (5)
H2AA—C2A—H2AB109.0C43—C42—P2120.3 (4)
C4A—C3A—C2A106 (2)C47—C42—P2121.3 (4)
C4A—C3A—H3AA110.6C44—C43—C42120.3 (6)
C2A—C3A—H3AA110.6C44—C43—H43A119.8
C4A—C3A—H3AB110.6C42—C43—H43A119.8
C2A—C3A—H3AB110.6C45—C44—C43120.5 (6)
H3AA—C3A—H3AB108.7C45—C44—H44A119.7
C5—C4A—C3A103.9 (13)C43—C44—H44A119.7
C5—C4A—H4AA111.0C46—C45—C44119.4 (6)
C3A—C4A—H4AA111.0C46—C45—H45A120.3
C5—C4A—H4AB111.0C44—C45—H45A120.3
C3A—C4A—H4AB111.0C47—C46—C45120.5 (6)
H4AA—C4A—H4AB109.0C47—C46—H46A119.7
C6—C5—N2106.9 (5)C45—C46—H46A119.7
C6—C5—C4142.6 (5)C46—C47—C42120.9 (6)
N2—C5—C4110.5 (5)C46—C47—H47A119.5
C6—C5—C4A142.6 (5)C42—C47—H47A119.5
N2—C5—C4A110.5 (5)C53—C48—C49118.7 (5)
C5—C6—N1105.7 (5)C53—C48—P2120.3 (4)
C5—C6—H6A127.2C49—C48—P2121.1 (5)
N1—C6—H6A127.2C50—C49—C48119.9 (6)
C11—C7—C8107.3 (5)C50—C49—H49A120.0
C11—C7—S1127.9 (5)C48—C49—H49A120.0
C8—C7—S1124.6 (4)C51—C50—C49120.9 (6)
C11—C7—Fe169.1 (3)C51—C50—H50A119.5
C8—C7—Fe168.3 (3)C49—C50—H50A119.5
S1—C7—Fe1130.6 (3)C50—C51—C52120.1 (6)
C9—C8—N1126.1 (5)C50—C51—H51A119.9
C9—C8—C7108.0 (5)C52—C51—H51A119.9
N1—C8—C7125.6 (5)C53—C52—C51119.5 (6)
C9—C8—Fe169.9 (3)C53—C52—H52A120.2
N1—C8—Fe1130.6 (4)C51—C52—H52A120.2
C7—C8—Fe170.4 (3)C52—C53—C48120.9 (6)
C8—C9—C10108.3 (5)C52—C53—H53A119.6
C8—C9—Fe169.3 (3)C48—C53—H53A119.6
C10—C9—Fe169.8 (3)F2—P3—F190.8 (2)
C8—C9—H9A125.9F2—P3—F590.1 (2)
C10—C9—H9A125.9F1—P3—F590.8 (2)
Fe1—C9—H9A125.9F2—P3—F390.4 (2)
C9—C10—C11108.5 (5)F1—P3—F390.6 (2)
C9—C10—Fe169.5 (3)F5—P3—F3178.6 (2)
C11—C10—Fe169.7 (3)F2—P3—F4178.8 (2)
C9—C10—H10A125.7F1—P3—F490.1 (2)
C11—C10—H10A125.7F5—P3—F489.1 (2)
Fe1—C10—H10A125.7F3—P3—F490.4 (2)
C10—C11—C7107.8 (5)F2—P3—F689.8 (2)
C10—C11—Fe169.5 (3)F1—P3—F6179.4 (3)
C7—C11—Fe170.0 (3)F5—P3—F689.4 (2)
C10—C11—H11A126.1F3—P3—F689.2 (2)
C7—C11—H11A126.1F4—P3—F689.3 (2)
Fe1—C11—H11A126.1Cl2—C54—Cl4109.8 (4)
C13—C12—C16108.8 (6)Cl2—C54—Cl3110.9 (4)
C13—C12—Fe170.9 (3)Cl4—C54—Cl3109.0 (4)
C16—C12—Fe169.2 (3)Cl2—C54—H54A109.0
C13—C12—H12A125.6Cl4—C54—H54A109.0
C16—C12—H12A125.6Cl3—C54—H54A109.0
Fe1—C12—H12A125.6Cl5—C55—Cl6110.1 (4)
C12—C13—C14107.7 (6)Cl5—C55—Cl7110.5 (3)
C12—C13—Fe168.8 (3)Cl6—C55—Cl7109.9 (3)
C14—C13—Fe170.0 (4)Cl5—C55—H55A108.8
C12—C13—H13A126.2Cl6—C55—H55A108.8
C14—C13—H13A126.2Cl7—C55—H55A108.8
C5—N2—C1—N10.4 (6)C30—P1—C18—C23177.5 (4)
C2—N2—C1—N1176.1 (5)Pd1—P1—C18—C2351.2 (5)
C2A—N2—C1—N1176.1 (5)C24—P1—C18—C19101.6 (5)
C5—N2—C1—Pd1177.4 (4)C30—P1—C18—C196.1 (6)
C2—N2—C1—Pd16.0 (8)Pd1—P1—C18—C19132.3 (4)
C2A—N2—C1—Pd16.0 (8)C23—C18—C19—C200.2 (9)
C6—N1—C1—N20.9 (6)P1—C18—C19—C20176.2 (5)
C8—N1—C1—N2175.5 (4)C18—C19—C20—C211.2 (10)
C6—N1—C1—Pd1177.0 (4)C19—C20—C21—C221.0 (10)
C8—N1—C1—Pd16.6 (7)C20—C21—C22—C230.6 (10)
C1—N2—C2—C3169.7 (10)C21—C22—C23—C182.0 (10)
C5—N2—C2—C313.8 (10)C19—C18—C23—C221.8 (9)
N2—C2—C3—C420.0 (15)P1—C18—C23—C22174.8 (5)
C2—C3—C4—C519.1 (15)C18—P1—C24—C29154.7 (5)
C1—N2—C2A—C3A166.8 (18)C30—P1—C24—C2992.5 (5)
C5—N2—C2A—C3A9.7 (19)Pd1—P1—C24—C2932.4 (5)
N2—C2A—C3A—C4A17 (3)C18—P1—C24—C2533.7 (5)
C2A—C3A—C4A—C518 (3)C30—P1—C24—C2579.2 (5)
C1—N2—C5—C60.3 (6)Pd1—P1—C24—C25156.0 (4)
C2—N2—C5—C6177.6 (5)C29—C24—C25—C261.5 (9)
C2A—N2—C5—C6177.6 (5)P1—C24—C25—C26170.4 (5)
C1—N2—C5—C4179.2 (5)C24—C25—C26—C271.5 (10)
C2—N2—C5—C41.9 (6)C25—C26—C27—C280.2 (10)
C1—N2—C5—C4A179.2 (5)C26—C27—C28—C291.7 (9)
C2A—N2—C5—C4A1.9 (6)C27—C28—C29—C241.6 (9)
C3—C4—C5—C6170.0 (11)C25—C24—C29—C280.0 (8)
C3—C4—C5—N210.9 (11)P1—C24—C29—C28171.7 (4)
C3A—C4A—C5—C6166 (2)C18—P1—C30—C31129.8 (5)
C3A—C4A—C5—N212.7 (19)C24—P1—C30—C3120.5 (5)
N2—C5—C6—N10.8 (6)Pd1—P1—C30—C31106.0 (4)
C4—C5—C6—N1178.3 (7)C18—P1—C30—C3553.8 (5)
C4A—C5—C6—N1178.3 (7)C24—P1—C30—C35163.1 (5)
C1—N1—C6—C51.1 (6)Pd1—P1—C30—C3570.4 (5)
C8—N1—C6—C5175.3 (5)C35—C30—C31—C320.3 (9)
C17—S1—C7—C1111.5 (6)P1—C30—C31—C32176.2 (4)
C17—S1—C7—C8172.7 (5)C30—C31—C32—C330.5 (9)
C17—S1—C7—Fe182.6 (5)C31—C32—C33—C340.5 (9)
C1—N1—C8—C943.9 (8)C32—C33—C34—C350.3 (9)
C6—N1—C8—C9140.2 (6)C33—C34—C35—C301.2 (9)
C1—N1—C8—C7128.4 (6)C31—C30—C35—C341.2 (8)
C6—N1—C8—C747.5 (8)P1—C30—C35—C34175.3 (4)
C1—N1—C8—Fe1137.7 (5)C42—P2—C36—C41161.6 (5)
C6—N1—C8—Fe146.4 (7)C48—P2—C36—C4151.4 (5)
C11—C7—C8—C91.8 (6)Pd1—P2—C36—C4175.2 (5)
S1—C7—C8—C9174.7 (4)C42—P2—C36—C3724.1 (5)
Fe1—C7—C8—C960.0 (4)C48—P2—C36—C37134.3 (4)
C11—C7—C8—N1175.3 (5)Pd1—P2—C36—C3799.1 (4)
S1—C7—C8—N11.2 (8)C41—C36—C37—C381.0 (8)
Fe1—C7—C8—N1126.5 (5)P2—C36—C37—C38175.4 (4)
C11—C7—C8—Fe158.2 (4)C36—C37—C38—C390.2 (9)
S1—C7—C8—Fe1125.2 (4)C37—C38—C39—C400.0 (10)
N1—C8—C9—C10174.7 (5)C38—C39—C40—C410.7 (10)
C7—C8—C9—C101.2 (6)C39—C40—C41—C361.6 (9)
Fe1—C8—C9—C1059.1 (4)C37—C36—C41—C401.7 (8)
N1—C8—C9—Fe1126.2 (5)P2—C36—C41—C40176.1 (4)
C7—C8—C9—Fe160.3 (4)C36—P2—C42—C43105.2 (5)
C8—C9—C10—C110.1 (7)C48—P2—C42—C43145.3 (4)
Fe1—C9—C10—C1158.9 (4)Pd1—P2—C42—C4319.2 (5)
C8—C9—C10—Fe158.8 (4)C36—P2—C42—C4769.5 (5)
C9—C10—C11—C71.0 (7)C48—P2—C42—C4740.0 (5)
Fe1—C10—C11—C759.8 (4)Pd1—P2—C42—C47166.1 (4)
C9—C10—C11—Fe158.8 (4)C47—C42—C43—C441.1 (8)
C8—C7—C11—C101.8 (6)P2—C42—C43—C44175.9 (4)
S1—C7—C11—C10174.6 (4)C42—C43—C44—C450.6 (9)
Fe1—C7—C11—C1059.5 (4)C43—C44—C45—C461.6 (9)
C8—C7—C11—Fe157.7 (4)C44—C45—C46—C470.9 (9)
S1—C7—C11—Fe1125.9 (4)C45—C46—C47—C420.8 (9)
C16—C12—C13—C140.5 (7)C43—C42—C47—C461.8 (8)
Fe1—C12—C13—C1459.5 (4)P2—C42—C47—C46176.6 (4)
C16—C12—C13—Fe159.1 (4)C42—P2—C48—C5394.1 (5)
C12—C13—C14—C150.2 (7)C36—P2—C48—C53157.4 (4)
Fe1—C13—C14—C1558.6 (4)Pd1—P2—C48—C5330.8 (5)
C12—C13—C14—Fe158.8 (4)C42—P2—C48—C4985.2 (5)
C13—C14—C15—C160.2 (7)C36—P2—C48—C4923.3 (5)
Fe1—C14—C15—C1659.0 (4)Pd1—P2—C48—C49149.9 (4)
C13—C14—C15—Fe159.2 (4)C53—C48—C49—C500.5 (8)
C14—C15—C16—C120.4 (7)P2—C48—C49—C50178.8 (5)
Fe1—C15—C16—C1260.3 (4)C48—C49—C50—C510.1 (9)
C14—C15—C16—Fe159.9 (4)C49—C50—C51—C520.3 (9)
C13—C12—C16—C150.6 (7)C50—C51—C52—C530.4 (9)
Fe1—C12—C16—C1560.6 (4)C51—C52—C53—C480.0 (8)
C13—C12—C16—Fe160.1 (4)C49—C48—C53—C520.5 (8)
C24—P1—C18—C2374.8 (5)P2—C48—C53—C52178.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 abd Cg3 are the centroids of the C30–C35, C36–C41 and N1/C1/N2/C5/C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6A···F3i0.952.403.297 (6)158
C40—H40A···F1i0.952.523.327 (7)143
C50—H50A···F4ii0.952.383.275 (7)156
C54—H54A···F41.002.423.342 (7)153
C54—H54A···F61.002.333.237 (7)150
C55—H55A···F51.002.443.228 (7)135
C55—H55A···F61.002.333.311 (7)168
C2—H2B···Cg10.992.883.682 (6)139
C15—H15A···Cg2iii1.002.933.762 (7)141
C35—H35A···Cg30.952.673.148 (6)111
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

CM thanks NSERC Canada for support under the Discovery Grants program, and L. Qiu and R. Simionescu for assistance with spectroscopic data collection.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClavier, M. H. C. (2006). N-Heterocyclic Carbenes in Synthesis, edited by S. P. Nolan, pp. 183–186. Weinheim: Wiley-VCH.  Google Scholar
First citationDebono, N., Labande, A., Manoury, E., Daran, J. C. & Poli, R. (2010). Organometallics, 29, 1879–1882.  CSD CrossRef CAS Google Scholar
First citationFürstner, A., Seidel, G., Kremzow, D. & Lehmann, C. W. (2003). Organometallics, 22, 907–909.  Google Scholar
First citationGischig, S. & Togni, A. (2004). Organometallics, 23, 2479–2487.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJohn, J., Wilson–Konderka, C. & Metallinos, C. (2015). Adv. Synth. Catal. 357, 2071–2081.  CSD CrossRef CAS Google Scholar
First citationKremzow, D., Seidel, G., Lehmann, C. W. & Fürstner, A. (2005). Chem. Eur. J. 11, 1833–1853.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKuwano, R., Sato, K., Kurokawa, T., Karube, D. & Ito, Y. (2000). J. Am. Chem. Soc. 122, 7614–7615.  Web of Science CrossRef CAS Google Scholar
First citationMarquarding, D., Klusacek, H., Gokel, G., Hoffmann, P. & Ugi, I. (1970). J. Am. Chem. Soc. 92, 5389–5393.  CrossRef CAS Web of Science Google Scholar
First citationMetallinos, C., John, J., Nelson, J., Dudding, T. & Belding, L. (2013). Adv. Synth. Catal. 355, 1211–1219.  CSD CrossRef CAS Google Scholar
First citationMetallinos, C., John, J., Zaifman, J. & Emberson, K. (2012). Adv. Synth. Catal. 354, 602–606.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeris, E. (2007). Organomet. Chem. 21, 83–116.  CAS Google Scholar
First citationRiant, O., Samuel, O. & Kagan, H. B. (1993). J. Am. Chem. Soc. 115, 5835–5836.  CrossRef CAS Google Scholar
First citationSchlögl, K. (1967). Top. Stereochem. 1, 39–89.  Google Scholar
First citationSchultz, C., Dreher, S., Ikemoto, N., Williams, J., Grabowski, E., Krska, S., Sun, Y., Dormer, P. & DiMichele, L. (2005). Org. Lett. 7, 3405–3408.  PubMed Google Scholar
First citationSeo, H., Park, H. J., Kim, B. Y., Lee, J. H., Son, S. U. & Chung, Y. K. (2003). Organometallics, 22, 618–620.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpindler, F., Pugin, B. & Blaser, H.-U. (1990). Angew. Chem. Int. Ed. 29, 558–559.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds