research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two forms of (naphthalen-1-yl)boronic acid

CROSSMARK_Color_square_no_text.svg

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 July 2016; accepted 2 August 2016; online 12 August 2016)

Two polymorphs of the title compound, C10H9BO2, were prepared by recystallization from different solvents at room temperature. Both forms demonstrate nearly identical mol­ecular structures with all naphthalene group atoms located in one plane and all boronic acid atoms in another: the dihedral angles between these planes are 39.88 (5) and 40.15 (5)° for the two asymmetric mol­ecules of the ortho­rhom­bic form and 40.60 (3)° for the single asymmetric mol­ecule in the monoclinic form. In each extended structure, mol­ecules form dimers, connected via two O—H⋯O hydrogen bonds. The dimers are connected by further O—H⋯O hydrogen bonds, forming layered networks in the (001) plane and the (100) plane in the ortho­rhom­bic and monoclinic forms, respectively. The resulting layers are practically identical in both forms. However, these layers are shifted along the [010] axis in the two forms, resulting in a slightly more effective packing for monoclinic structure (packing index = 0.692) compared to the ortho­rhom­bic form (0.688).

1. Chemical context

Naphthalene boronic acids (α- and β-) were first synthesized by Michaelis (1894[Michaelis, A. (1894). Ber. Dtsch. Chem. Ges. 27, 244-262.]) along with other aryl­boronic acid by reaction of di­aryl­mercury with boron trichloride with subsequent hydrolysis. A more practical procedure (König & Scharrnbeck, 1930[König, W. & Scharrnbeck, W. (1930). J. Prakt. Chem. 128, 153-170.]) included the reaction of naphthyl­magnesium bromide with tri-(isobut­yl)borate. In both cases, the existence of two different forms of title compound was suggested, one forming plate-like crystals and another one forming needles.

[Scheme 1]

These compounds were originally investigated because of their potential in biochemistry (König & Scharrnbeck, 1930[König, W. & Scharrnbeck, W. (1930). J. Prakt. Chem. 128, 153-170.]; Gao et al., 2003[Gao, X., Zhang, Y. & Wang, B. (2003). Org. Lett. 5, 4615-4618.]; Hall, 2011[Hall, D. G. (2011). Editor. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. New York: Wiley-VCH.]) and later as reactants in the Suzuki reaction (Hall, 2011[Hall, D. G. (2011). Editor. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. New York: Wiley-VCH.]). 1-Naphthalene boronic acid is now commercially available and was the source for this study.

2. Synthesis and crystallization

A sample of 1-naphthalene boronic acid was purchased from Aldrich. Its FTIR spectrum coincided with that reported by the manufacturer. Under the microscope, a number of relatively large (up to 0.5 mm) crystals were visible, some of them suitable for single crystal X-ray data collection (Fig. 1[link]). Experimental data revealed an ortho­rhom­bic structure for the plate-shaped crystals. Recrystallization from hot water yielded very thin plates. This polycrystalline sample showed a powder diffractogram that was slightly different from the raw material and the calculated pattern of the ortho­rhom­bic form. Attempts at slow crystallization from ethanol and toluene solution resulted in larger and better shaped crystals, some of which were ortho­rhom­bic plates and other were visibly non-ortho­rhom­bic needles (Fig. 1[link]). Several such crystals were tested: here we report the best data for both the ortho­rhom­bic and monoclinic forms.

[Figure 1]
Figure 1
Crystals of the different polymorphs in starting material (view area 1 × 2 mm). Plate (left): ortho­rhom­bic. Needle (right): monoclinic.

3. Structural commentary

The mol­ecules of naphthalene boronic acid in both crystal structures (Figs. 2[link] and 3[link]) have the usual bond distances and angles. There is one mol­ecule in the asymmetric unit of the monoclinic structure. In the non-centrosymmetric ortho­rhom­bic structure, the two mol­ecules in the asymmetric unit have very similar structures: they almost coincide (after inversion for one of them) with each other as well, as with the unique mol­ecule from the monoclinic structure (Fig. 4[link]).

[Figure 2]
Figure 2
Numbering scheme of the title compound with 50% probability displacement ellipsoids (ortho­rhom­bic polymorph).
[Figure 3]
Figure 3
Numbering scheme of the title compound with 50% probability displacement ellipsoids (monoclinic polymorph).
[Figure 4]
Figure 4
Overlay of the two polymorph mol­ecules (red & green – ortho­rhom­bic, blue – monoclinic) with appropriate inversion.

In the monoclinic structure, the mean plane of the naphthalene fragment is tilted from plane of boron and two oxygen atoms with an angle of 40.60 (3)°. The boron atom deviates by 0.0449 (16) Å from the mean plane of the naphthalene ring system.

In the ortho­rhom­bic structure, there are two independent mol­ecules. When superimposed, the angle between the mean planes of the naphthalene ring systems is only 0.88 (6)°. Two boron atoms and four oxygen atoms are located at another plane together with adjacent hydrogen atoms. These planes are tilted to a similar extent to the monoclinic structure, with dihedral angles to the mean plane of each naphthalene group of 39.88 (5) and 40.15 (5)° [mean tilt = 39.83 (5)°]. These numbers differ from those for the monoclinic form by less than 1°.

4. Supra­molecular features

In both forms, pairs of mol­ecules are connected through a pair of O—H⋯O hydrogen bonds (Tables 1[link] and 2[link]) into dimers. There is also an intra­molecular C—H⋯O contact. The dimers are further connected via O—H⋯O hydrogen bonds, forming a layered network in plane (001) and in plane (100) in the ortho­rhom­bic and monoclinic forms, respectively (Figs. 5[link] and 6[link]). The resulting layers are practically identical in both forms (compare Figs. 7[link] and 8[link], Figs. 9[link] and 10[link]).

Table 1
Hydrogen-bond geometry (Å, °) for the orthorhombic polymorph[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.81 (4) 1.98 (4) 2.766 (2) 165 (4)
O2—H2⋯O3 0.90 (3) 1.86 (3) 2.750 (3) 171 (3)
O3—H3⋯O4ii 0.96 (4) 1.82 (4) 2.761 (2) 167 (3)
O4—H4⋯O1 0.89 (4) 1.85 (4) 2.739 (3) 175 (3)
C9—H9⋯O2 0.95 2.45 3.092 (3) 124
C19—H19⋯O4 0.95 2.42 3.063 (3) 125
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °) for the monoclinic polymorph[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.897 (18) 1.846 (18) 2.7411 (13) 176.3 (17)
O2—H2⋯O1ii 0.888 (19) 1.891 (19) 2.7607 (11) 166.0 (17)
C9—H9⋯O1 0.98 (1) 2.43 (1) 3.0911 (15) 124 (1)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
Layered network of hydrogen bonds in the ortho­rhom­bic form. View is along the [001] axis, only boronic acid groups are shown.
[Figure 6]
Figure 6
Layered network of hydrogen bonds in the monoclinic form. View is along the [001] axis, only boronic acid groups are shown.
[Figure 7]
Figure 7
Packing of the ortho­rhom­bic form. View is along the [010] axis.
[Figure 8]
Figure 8
Packing of the monoclinic form. View is along the [010] axis.
[Figure 9]
Figure 9
Packing diagram of the ortho­rhom­bic form. View is along the [100] axis. Hirshfeld surface shown for some mol­ecules.
[Figure 10]
Figure 10
Packing diagram of the monoclinic form. View is along the [001] axis. Hirshfeld surface shown for some mol­ecules.

There are no directional inter­molecular inter­actions between adjacent layers and, therefore, no strong inter­actions between them. However, these layers are shifted with respect to the [010] axis (compare Figs. 9[link] and 10[link]), resulting in a slightly more effective packing of the monoclinic structure (packing index = 0.692) (Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) compared to the ortho­rhom­bic structure (packing index = 0.688). This layer-shift is the only visible difference between the two forms.

5. Database survey

There are no naphthalene boronic acid structures deposited in the Cambridge Structural Database (CSD Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The simplest aryl­boronic acid, phenyl­boronic acid, crystallizes in a non-centrosymmetric ortho­rhom­bic space group (refcodes PHBORA and PHBORA01). Instead of a layered network, its mol­ecules form an infinitive chain in the crystal (Cyránski et al., 2008[Cyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472-482.]; Rettig & Trotter, 1977[Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms of hydroxyl groups were refined in an isotropic approximation. Aromatic hydrogen atoms were refined with riding coordinates and Uiso(H) = 1.2 Uiso(C).

Table 3
Experimental details

  Orthorhombic polymorph Monoclinic polymorph
Crystal data
Chemical formula C10H9BO2 C10H9BO2
Mr 171.98 171.98
Crystal system, space group Orthorhombic, Pna21 Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 9.6655 (4), 6.2286 (3), 29.1778 (13) 14.8469 (11), 6.1023 (4), 9.6797 (7)
α, β, γ (°) 90, 90, 90 90, 93.978 (3), 90
V3) 1756.58 (14) 874.87 (11)
Z 8 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.71 0.71
Crystal size (mm) 0.59 × 0.44 × 0.14 0.66 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS Bruker PHOTON-100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015)
Tmin, Tmax 0.671, 0.972 0.759, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 52115, 3764, 3447 25253, 1857, 1576
Rint 0.040 0.038
(sin θ/λ)max−1) 0.636 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.02 0.035, 0.091, 1.04
No. of reflections 3764 1857
No. of parameters 253 133
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.15 0.23, −0.15
Absolute structure Flack x determined using 1548 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.07 (6)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) and CrystalExplorer (Spackman & Jayatilaka, 2009) for (1); OLEX2 (Dolomanov et al., 2009) for (2). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009) for (1); OLEX2 (Dolomanov et al., 2009) for (2).

(1) (Naphthalen-1-yl)boronic acid top
Crystal data top
C10H9BO2Dx = 1.301 Mg m3
Mr = 171.98Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 9127 reflections
a = 9.6655 (4) Åθ = 3.0–78.2°
b = 6.2286 (3) ŵ = 0.71 mm1
c = 29.1778 (13) ÅT = 173 K
V = 1756.58 (14) Å3Plate, colourless
Z = 80.59 × 0.44 × 0.14 mm
F(000) = 720
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
3447 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.040
φ and ω scansθmax = 78.7°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1212
Tmin = 0.671, Tmax = 0.972k = 77
52115 measured reflectionsl = 3636
3764 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2507P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.22 e Å3
3764 reflectionsΔρmin = 0.15 e Å3
253 parametersAbsolute structure: Flack x determined using 1548 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.07 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.24283 (16)0.3150 (3)0.47433 (6)0.0415 (4)
H30.158 (4)0.244 (6)0.4672 (11)0.062*
O40.48065 (16)0.3548 (3)0.46451 (6)0.0398 (4)
H40.467 (4)0.466 (6)0.4831 (12)0.060*
C110.3612 (2)0.0750 (4)0.41412 (9)0.0367 (5)
C120.2783 (3)0.1033 (4)0.42012 (11)0.0472 (6)
H120.222 (2)0.1146 (6)0.4475 (10)0.057*
C130.2731 (3)0.2707 (5)0.38704 (13)0.0581 (8)
H130.220 (2)0.383 (5)0.3918 (2)0.070*
C140.3497 (3)0.2587 (5)0.34829 (12)0.0549 (8)
H140.3444 (4)0.387 (4)0.3237 (8)0.066*
C150.4357 (3)0.0818 (4)0.33976 (10)0.0451 (6)
C160.5152 (3)0.0637 (6)0.29893 (10)0.0566 (8)
H160.5105 (4)0.182 (4)0.2757 (9)0.068*
C170.5970 (3)0.1086 (6)0.29054 (10)0.0555 (8)
H170.653 (2)0.1169 (6)0.2611 (11)0.067*
C180.6038 (3)0.2752 (5)0.32268 (9)0.0485 (7)
H180.666 (2)0.407 (5)0.3163 (2)0.058*
C190.5287 (2)0.2649 (4)0.36254 (8)0.0389 (5)
H190.53500.37990.38380.047*
C200.4422 (2)0.0882 (4)0.37291 (8)0.0358 (5)
B20.3611 (3)0.2548 (5)0.45182 (10)0.0352 (6)
O10.44946 (17)0.6845 (3)0.52575 (6)0.0410 (4)
H10.520 (4)0.747 (6)0.5329 (13)0.061*
O20.21178 (16)0.6447 (3)0.53618 (6)0.0393 (4)
H20.224 (4)0.548 (5)0.5138 (12)0.059*
C10.3326 (2)0.9282 (4)0.58539 (8)0.0337 (5)
C20.4169 (2)1.1032 (4)0.57782 (10)0.0417 (6)
H2A0.47121.10760.55070.050*
C30.4253 (3)1.2758 (4)0.60894 (11)0.0484 (7)
H3A0.48421.39410.60250.058*
C40.3491 (3)1.2734 (4)0.64824 (11)0.0460 (6)
H4A0.35521.39010.66910.055*
C50.2613 (2)1.0981 (4)0.65810 (9)0.0386 (5)
C60.1826 (3)1.0920 (5)0.69941 (9)0.0462 (6)
H60.18761.20920.72020.055*
C70.1010 (3)0.9220 (5)0.70950 (9)0.0482 (6)
H70.04990.92010.73730.058*
C80.0916 (3)0.7484 (5)0.67893 (9)0.0437 (6)
H80.03430.62940.68620.052*
C90.1647 (2)0.7492 (4)0.63858 (8)0.0361 (5)
H90.15670.63080.61820.043*
C100.2520 (2)0.9235 (4)0.62674 (8)0.0328 (5)
B10.3317 (3)0.7451 (5)0.54832 (9)0.0347 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0220 (7)0.0608 (11)0.0418 (9)0.0033 (8)0.0009 (6)0.0085 (8)
O40.0227 (7)0.0537 (10)0.0430 (10)0.0004 (8)0.0010 (6)0.0104 (8)
C110.0239 (10)0.0383 (12)0.0479 (13)0.0028 (9)0.0073 (9)0.0001 (11)
C120.0329 (11)0.0453 (14)0.0633 (17)0.0010 (11)0.0080 (12)0.0086 (12)
C130.0457 (15)0.0360 (13)0.093 (3)0.0063 (12)0.0258 (16)0.0035 (14)
C140.0487 (16)0.0426 (14)0.073 (2)0.0077 (12)0.0200 (14)0.0160 (14)
C150.0370 (12)0.0442 (14)0.0541 (16)0.0115 (10)0.0158 (11)0.0128 (12)
C160.0511 (16)0.0719 (19)0.0469 (16)0.0244 (15)0.0136 (12)0.0248 (15)
C170.0450 (15)0.079 (2)0.0421 (15)0.0145 (15)0.0012 (11)0.0093 (14)
C180.0381 (14)0.0660 (18)0.0414 (14)0.0042 (13)0.0002 (10)0.0029 (12)
C190.0309 (12)0.0461 (13)0.0396 (12)0.0038 (10)0.0037 (10)0.0061 (10)
C200.0270 (9)0.0387 (12)0.0417 (13)0.0079 (9)0.0074 (9)0.0064 (10)
B20.0231 (12)0.0454 (14)0.0371 (13)0.0006 (11)0.0011 (10)0.0038 (11)
O10.0234 (7)0.0568 (11)0.0427 (10)0.0046 (8)0.0025 (6)0.0069 (8)
O20.0212 (7)0.0542 (10)0.0424 (9)0.0002 (7)0.0011 (6)0.0093 (8)
C10.0242 (9)0.0371 (11)0.0399 (12)0.0030 (9)0.0045 (8)0.0034 (10)
C20.0284 (11)0.0433 (13)0.0533 (15)0.0009 (10)0.0037 (10)0.0086 (11)
C30.0369 (14)0.0342 (12)0.0741 (19)0.0046 (11)0.0109 (13)0.0058 (12)
C40.0382 (14)0.0351 (12)0.0647 (18)0.0031 (11)0.0148 (11)0.0056 (12)
C50.0313 (11)0.0391 (12)0.0453 (14)0.0080 (10)0.0107 (9)0.0030 (10)
C60.0454 (14)0.0501 (14)0.0430 (14)0.0113 (12)0.0084 (11)0.0114 (11)
C70.0440 (14)0.0630 (16)0.0377 (13)0.0078 (13)0.0009 (10)0.0025 (12)
C80.0379 (13)0.0500 (14)0.0433 (13)0.0023 (12)0.0010 (10)0.0045 (10)
C90.0303 (11)0.0386 (11)0.0395 (12)0.0016 (9)0.0025 (9)0.0011 (9)
C100.0248 (9)0.0345 (11)0.0392 (12)0.0050 (9)0.0070 (8)0.0009 (9)
B10.0228 (12)0.0439 (13)0.0374 (13)0.0014 (10)0.0004 (9)0.0007 (11)
Geometric parameters (Å, º) top
O3—H30.95 (4)O1—H10.81 (4)
O3—B21.371 (3)O1—B11.368 (3)
O4—H40.89 (4)O2—H20.90 (3)
O4—B21.363 (3)O2—B11.364 (3)
C11—C121.381 (4)C1—C21.379 (4)
C11—C201.438 (3)C1—C101.436 (3)
C11—B21.570 (4)C1—B11.572 (4)
C12—H120.97 (3)C2—H2A0.9500
C12—C131.422 (5)C2—C31.410 (4)
C13—H130.88 (4)C3—H3A0.9500
C13—C141.353 (5)C3—C41.363 (4)
C14—H141.07 (4)C4—H4A0.9500
C14—C151.403 (4)C4—C51.413 (4)
C15—C161.422 (4)C5—C61.426 (4)
C15—C201.435 (3)C5—C101.424 (3)
C16—H161.00 (4)C6—H60.9500
C16—C171.355 (5)C6—C71.353 (4)
C17—H171.02 (4)C7—H70.9500
C17—C181.400 (4)C7—C81.405 (4)
C18—H181.03 (4)C8—H80.9500
C18—C191.373 (3)C8—C91.373 (4)
C19—H190.9500C9—H90.9500
C19—C201.415 (3)C9—C101.417 (3)
B2—O3—H3119 (2)B1—O1—H1116 (3)
B2—O4—H4113 (2)B1—O2—H2113 (2)
C12—C11—C20117.9 (2)C2—C1—C10118.1 (2)
C12—C11—B2119.0 (2)C2—C1—B1117.8 (2)
C20—C11—B2123.1 (2)C10—C1—B1124.1 (2)
C11—C12—H12119.2C1—C2—H2A118.9
C11—C12—C13121.6 (3)C1—C2—C3122.3 (3)
C13—C12—H12119.2C3—C2—H2A118.9
C12—C13—H13119.7C2—C3—H3A119.9
C14—C13—C12120.5 (3)C4—C3—C2120.1 (2)
C14—C13—H13119.7C4—C3—H3A119.9
C13—C14—H14119.5C3—C4—H4A119.9
C13—C14—C15121.0 (3)C3—C4—C5120.3 (3)
C15—C14—H14119.5C5—C4—H4A119.9
C14—C15—C16122.1 (3)C4—C5—C6120.9 (2)
C14—C15—C20119.1 (3)C4—C5—C10119.8 (2)
C16—C15—C20118.8 (3)C10—C5—C6119.3 (2)
C15—C16—H16119.0C5—C6—H6119.5
C17—C16—C15122.0 (3)C7—C6—C5121.1 (2)
C17—C16—H16119.0C7—C6—H6119.5
C16—C17—H17120.2C6—C7—H7119.9
C16—C17—C18119.6 (3)C6—C7—C8120.1 (3)
C18—C17—H17120.2C8—C7—H7119.9
C17—C18—H18119.7C7—C8—H8119.7
C19—C18—C17120.5 (3)C9—C8—C7120.6 (3)
C19—C18—H18119.7C9—C8—H8119.7
C18—C19—H19119.0C8—C9—H9119.4
C18—C19—C20122.0 (2)C8—C9—C10121.2 (2)
C20—C19—H19119.0C10—C9—H9119.4
C15—C20—C11119.8 (2)C5—C10—C1119.3 (2)
C19—C20—C11123.0 (2)C9—C10—C1122.9 (2)
C19—C20—C15117.1 (2)C9—C10—C5117.8 (2)
O3—B2—C11122.1 (2)O1—B1—C1121.8 (2)
O4—B2—O3116.9 (2)O2—B1—O1117.1 (2)
O4—B2—C11121.1 (2)O2—B1—C1121.0 (2)
C11—C12—C13—C140.4 (4)C1—C2—C3—C40.3 (4)
C12—C11—C20—C150.3 (3)C2—C1—C10—C50.2 (3)
C12—C11—C20—C19178.6 (2)C2—C1—C10—C9178.3 (2)
C12—C11—B2—O338.2 (3)C2—C1—B1—O137.5 (3)
C12—C11—B2—O4140.1 (2)C2—C1—B1—O2140.3 (2)
C12—C13—C14—C150.0 (4)C2—C3—C4—C50.0 (4)
C13—C14—C15—C16178.8 (3)C3—C4—C5—C6179.0 (2)
C13—C14—C15—C200.2 (4)C3—C4—C5—C100.2 (3)
C14—C15—C16—C17179.2 (3)C4—C5—C6—C7178.4 (2)
C14—C15—C20—C110.0 (3)C4—C5—C10—C10.1 (3)
C14—C15—C20—C19179.1 (2)C4—C5—C10—C9178.7 (2)
C15—C16—C17—C180.3 (4)C5—C6—C7—C80.5 (4)
C16—C15—C20—C11179.0 (2)C6—C5—C10—C1179.2 (2)
C16—C15—C20—C190.0 (3)C6—C5—C10—C90.6 (3)
C16—C17—C18—C190.2 (4)C6—C7—C8—C90.1 (4)
C17—C18—C19—C200.0 (4)C7—C8—C9—C100.4 (4)
C18—C19—C20—C11179.1 (2)C8—C9—C10—C1178.5 (2)
C18—C19—C20—C150.1 (3)C8—C9—C10—C50.0 (3)
C20—C11—C12—C130.5 (3)C10—C1—C2—C30.4 (3)
C20—C11—B2—O3140.8 (2)C10—C1—B1—O1142.0 (2)
C20—C11—B2—O441.0 (3)C10—C1—B1—O240.3 (3)
C20—C15—C16—C170.2 (4)C10—C5—C6—C70.9 (3)
B2—C11—C12—C13179.6 (2)B1—C1—C2—C3179.9 (2)
B2—C11—C20—C15179.3 (2)B1—C1—C10—C5179.7 (2)
B2—C11—C20—C190.3 (3)B1—C1—C10—C91.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.81 (4)1.98 (4)2.766 (2)165 (4)
O2—H2···O30.90 (3)1.86 (3)2.750 (3)171 (3)
O3—H3···O4ii0.96 (4)1.82 (4)2.761 (2)167 (3)
O4—H4···O10.89 (4)1.85 (4)2.739 (3)175 (3)
C9—H9···O20.952.453.092 (3)124
C19—H19···O40.952.423.063 (3)125
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z.
(2) (Naphthalen-1-yl)boronic acid top
Crystal data top
C10H9BO2F(000) = 360
Mr = 171.98Dx = 1.306 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.8469 (11) ÅCell parameters from 9898 reflections
b = 6.1023 (4) Åθ = 3.0–77.0°
c = 9.6797 (7) ŵ = 0.71 mm1
β = 93.978 (3)°T = 173 K
V = 874.87 (11) Å3Prism, colourless
Z = 40.66 × 0.18 × 0.16 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
1576 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.038
φ and ω scansθmax = 77.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1818
Tmin = 0.759, Tmax = 0.951k = 77
25253 measured reflectionsl = 1211
1857 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.2015P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1857 reflectionsΔρmax = 0.23 e Å3
133 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42757 (6)0.14734 (15)0.62491 (7)0.0348 (2)
H10.4697 (12)0.043 (3)0.6194 (17)0.058 (5)*
O20.44930 (6)0.18505 (15)0.39004 (8)0.0361 (2)
H20.4335 (12)0.247 (3)0.309 (2)0.067 (5)*
C10.32826 (8)0.42799 (19)0.49000 (11)0.0301 (3)
C20.34171 (9)0.6083 (2)0.40723 (12)0.0374 (3)
H2A0.3975 (9)0.6190 (3)0.3608 (7)0.045*
C30.27729 (10)0.7770 (2)0.38806 (13)0.0441 (3)
H30.2893 (2)0.903 (2)0.3287 (10)0.053*
C40.19841 (10)0.7660 (2)0.45170 (13)0.0431 (3)
H40.1527 (8)0.887 (2)0.4375 (3)0.052*
C50.18023 (8)0.5861 (2)0.53761 (12)0.0356 (3)
C60.09731 (9)0.5709 (2)0.60194 (14)0.0445 (3)
H60.0525 (8)0.688 (2)0.5877 (3)0.053*
C70.07934 (9)0.3962 (3)0.68300 (14)0.0477 (3)
H70.0219 (10)0.3879 (3)0.7264 (8)0.057*
C80.14332 (9)0.2281 (2)0.70431 (13)0.0411 (3)
H80.1299 (2)0.100 (2)0.7651 (10)0.049*
C90.22382 (8)0.2367 (2)0.64330 (11)0.0327 (3)
H90.2672 (6)0.1175 (18)0.6589 (3)0.039*
C100.24527 (8)0.41549 (18)0.55791 (11)0.0296 (3)
B10.40328 (9)0.2462 (2)0.50178 (12)0.0300 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0376 (5)0.0461 (5)0.0209 (4)0.0093 (4)0.0038 (3)0.0008 (3)
O20.0375 (5)0.0500 (5)0.0212 (4)0.0078 (4)0.0055 (3)0.0041 (4)
C10.0372 (6)0.0315 (6)0.0212 (5)0.0021 (5)0.0008 (4)0.0028 (4)
C20.0476 (7)0.0370 (6)0.0274 (6)0.0065 (5)0.0009 (5)0.0002 (5)
C30.0669 (9)0.0306 (6)0.0333 (6)0.0033 (6)0.0060 (6)0.0046 (5)
C40.0575 (8)0.0333 (6)0.0367 (7)0.0098 (6)0.0093 (6)0.0037 (5)
C50.0429 (7)0.0357 (6)0.0271 (6)0.0062 (5)0.0058 (5)0.0069 (5)
C60.0384 (7)0.0532 (8)0.0413 (7)0.0139 (6)0.0034 (5)0.0098 (6)
C70.0334 (7)0.0664 (9)0.0434 (7)0.0036 (6)0.0047 (5)0.0042 (7)
C80.0368 (6)0.0500 (7)0.0366 (7)0.0038 (6)0.0036 (5)0.0016 (6)
C90.0335 (6)0.0348 (6)0.0293 (6)0.0010 (5)0.0007 (4)0.0010 (5)
C100.0349 (6)0.0311 (6)0.0221 (5)0.0009 (5)0.0022 (4)0.0051 (4)
B10.0308 (6)0.0366 (7)0.0226 (6)0.0031 (5)0.0024 (4)0.0013 (5)
Geometric parameters (Å, º) top
O1—H10.899 (19)C4—C51.4146 (18)
O1—B11.3620 (15)C5—C61.4206 (19)
O2—H20.886 (19)C5—C101.4243 (16)
O2—B11.3706 (14)C6—H60.979 (16)
C1—C21.3839 (16)C6—C71.361 (2)
C1—C101.4382 (16)C7—H70.977 (16)
C1—B11.5705 (18)C7—C81.4036 (19)
C2—H2A0.971 (15)C8—H81.008 (16)
C2—C31.4085 (19)C8—C91.3703 (17)
C3—H30.983 (16)C9—H90.977 (14)
C3—C41.362 (2)C9—C101.4180 (16)
C4—H41.004 (16)
B1—O1—H1114.0 (10)C7—C6—C5120.98 (12)
B1—O2—H2117.8 (11)C7—C6—H6119.5
C2—C1—C10118.00 (11)C6—C7—H7120.0
C2—C1—B1118.27 (11)C6—C7—C8119.95 (12)
C10—C1—B1123.72 (10)C8—C7—H7120.0
C1—C2—H2A118.9C7—C8—H8119.7
C1—C2—C3122.23 (12)C9—C8—C7120.68 (13)
C3—C2—H2A118.9C9—C8—H8119.7
C2—C3—H3119.9C8—C9—H9119.4
C4—C3—C2120.12 (12)C8—C9—C10121.23 (11)
C4—C3—H3119.9C10—C9—H9119.4
C3—C4—H4119.7C5—C10—C1119.49 (11)
C3—C4—C5120.60 (12)C9—C10—C1122.78 (10)
C5—C4—H4119.7C9—C10—C5117.72 (11)
C4—C5—C6121.00 (12)O1—B1—O2116.98 (11)
C4—C5—C10119.56 (12)O1—B1—C1121.32 (10)
C6—C5—C10119.43 (12)O2—B1—C1121.66 (10)
C5—C6—H6119.5
C1—C2—C3—C40.16 (19)C6—C5—C10—C90.34 (16)
C2—C1—C10—C50.31 (15)C6—C7—C8—C90.5 (2)
C2—C1—C10—C9179.01 (10)C7—C8—C9—C100.45 (18)
C2—C1—B1—O1139.56 (12)C8—C9—C10—C1178.73 (11)
C2—C1—B1—O238.24 (16)C8—C9—C10—C50.01 (16)
C2—C3—C4—C50.06 (19)C10—C1—C2—C30.04 (17)
C3—C4—C5—C6178.59 (12)C10—C1—B1—O141.91 (16)
C3—C4—C5—C100.22 (18)C10—C1—B1—O2140.30 (11)
C4—C5—C6—C7179.08 (12)C10—C5—C6—C70.27 (18)
C4—C5—C10—C10.41 (16)B1—C1—C2—C3178.58 (11)
C4—C5—C10—C9179.17 (10)B1—C1—C10—C5178.22 (10)
C5—C6—C7—C80.2 (2)B1—C1—C10—C90.47 (16)
C6—C5—C10—C1178.42 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.897 (18)1.846 (18)2.7411 (13)176.3 (17)
O2—H2···O1ii0.888 (19)1.891 (19)2.7607 (11)166.0 (17)
C9—H9···O10.98 (1)2.43 (1)3.0911 (15)124 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472–482.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, X., Zhang, Y. & Wang, B. (2003). Org. Lett. 5, 4615–4618.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHall, D. G. (2011). Editor. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. New York: Wiley–VCH.  Google Scholar
First citationKitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.  Google Scholar
First citationKönig, W. & Scharrnbeck, W. (1930). J. Prakt. Chem. 128, 153–170.  Google Scholar
First citationMichaelis, A. (1894). Ber. Dtsch. Chem. Ges. 27, 244–262.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds