organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(6-bromo-4-oxo-4H-chromen-3-yl)-2-methyl­amino-3-nitro­pyrano[3,2-c]chromen-5(4H)-one chloro­form monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: raja.13nap@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 July 2015; accepted 2 August 2015; online 6 August 2015)

In the title compound, C22H13BrN2O7·CHCl3, the pyran ring adopts a shallow sofa conformation with the C atom bearing the bromo­chromene system as the flap [deviation = 0.291 (3) Å]. The dihedral angle between the pyran fused-ring system (all atoms; r.m.s. deviation = 0.032 Å) and the bromo­chromene ring system (r.m.s. deviation = 0.027 Å) is 87.56 (9)°. An intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. The Cl atoms of the solvent mol­ecule are disordered over two sets of sites in a 0.515 (6):0.485 (6) ratio. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(12) loops. The packing also features C—H⋯O and very weak ππ [centroid–centroid separation = 3.960 (2) Å] inter­actions, which link the dimers into a three-dimensional network.

1. Related literature

For background to chromene derivatives, see: Ercole et al. (2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]); Geen et al. (1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469-500. New York: Pergamon.]) Khan et al. (2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]); Raj et al. (2010[Raj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]). For a related structure, see: Raja et al. (2015[Raja, R., Suresh, M., Raghunathan, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, 574-577.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H13BrN2O7·CHCl3

  • Mr = 616.62

  • Triclinic, [P \overline 1]

  • a = 9.8816 (2) Å

  • b = 11.9237 (3) Å

  • c = 12.0616 (3) Å

  • α = 80.804 (1)°

  • β = 68.422 (1)°

  • γ = 70.735 (1)°

  • V = 1246.36 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.539, Tmax = 0.632

  • 17277 measured reflections

  • 4389 independent reflections

  • 3672 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.04

  • 4389 reflections

  • 353 parameters

  • 114 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5 0.86 2.00 2.622 (5) 128
N2—H2⋯O5i 0.86 2.37 3.063 (5) 138
C4—H4⋯O7ii 0.93 2.59 3.383 (6) 144
C15—H15⋯O4iii 0.93 2.36 3.221 (4) 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromene derivatives are heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer, etc. (Khan et al., 2010; Raj et al., 2010). Against this background an X-ray diffraction study of the title compound and its structural aspects are presented herein.

The asymmetric unit of the title compound is shown in Fig.1. The six-membered central pyran ring is very similar to a screw boat conformation as evidenced by the puckering parameters q2 = 0.204 (4) Å, θ = 112.7 (11) and φ = 6.7 (12)°, respectively. The atoms C10 and O3 are deviating from the mean plane of C8—C9—C11—C12 by -0.266 and -0.644 Å, respectively. The chromene ring (O2/C1—C9) and (O7/C14—C22) are almost planar and normal to one another with a dihedral angle of 88.20 (2)° between their mean planes. The nitro group is bonded to the pyran ring at CC with the torsion angle C12—C11—N1—O5 0f 3.5 (5)°, indicating a (+) syn-periplanar conformation for this group. The chromene ring attached to the pyran ring at C10 with torsion angle C11—C10—C14—C15 of 117.6 (4)°, indicating a (+) anti-clinal conformation for this group. The title compound exhibits structural similarities with already reported related structure (Raja et al., 2015).

In the crystal structure, the molecules are linked to form an infinite chain along [100], through N2—H···O5 hydrogen bonds, generating graph set motifs R22(12) (Fig.2). In addition, there is a N—H···O intramolecular interaction.

Related literature top

For background to chromene derivatives, see: Ercole et al. (2009); Geen et al. (1996) Khan et al. (2010); Raj et al. (2010). For a related structure, see: Raja et al. (2015).

Experimental top

4-Hydroxycoumarin (0.81 g, 5 mmol), 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (0.78 g, 5 mmol) and NMSM (0.74 g, 5 mmol) were mixed in ethanol at room temperature (3 h) in the presence of TEA (triethylamine 0.1 eq), as a catalyst. Upon completion of the reaction, the mixture was filtered, and washed with ethanol to obtained desired white product in 93% yield. Colourless blocks of the title compound were recrystallised from chloroform solution.

Refinement top

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Structure description top

Chromene derivatives are heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer, etc. (Khan et al., 2010; Raj et al., 2010). Against this background an X-ray diffraction study of the title compound and its structural aspects are presented herein.

The asymmetric unit of the title compound is shown in Fig.1. The six-membered central pyran ring is very similar to a screw boat conformation as evidenced by the puckering parameters q2 = 0.204 (4) Å, θ = 112.7 (11) and φ = 6.7 (12)°, respectively. The atoms C10 and O3 are deviating from the mean plane of C8—C9—C11—C12 by -0.266 and -0.644 Å, respectively. The chromene ring (O2/C1—C9) and (O7/C14—C22) are almost planar and normal to one another with a dihedral angle of 88.20 (2)° between their mean planes. The nitro group is bonded to the pyran ring at CC with the torsion angle C12—C11—N1—O5 0f 3.5 (5)°, indicating a (+) syn-periplanar conformation for this group. The chromene ring attached to the pyran ring at C10 with torsion angle C11—C10—C14—C15 of 117.6 (4)°, indicating a (+) anti-clinal conformation for this group. The title compound exhibits structural similarities with already reported related structure (Raja et al., 2015).

In the crystal structure, the molecules are linked to form an infinite chain along [100], through N2—H···O5 hydrogen bonds, generating graph set motifs R22(12) (Fig.2). In addition, there is a N—H···O intramolecular interaction.

For background to chromene derivatives, see: Ercole et al. (2009); Geen et al. (1996) Khan et al. (2010); Raj et al. (2010). For a related structure, see: Raja et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with displacement ellipsoids drawn at 30% probability level. The intramolecular hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.
[Figure 2] Fig. 2. Packing diagram showing the chain motif R22(12) along the [100] direction.
4-(6-Bromo-4-oxo-4H-chromen-3-yl)-2-methylamino-3-nitropyrano[3,2-c]chromen-5(4H)-one chloroform monosolvate top
Crystal data top
C22H13BrN2O7·CHCl3Z = 2
Mr = 616.62F(000) = 616
Triclinic, P1Dx = 1.643 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8816 (2) ÅCell parameters from 3672 reflections
b = 11.9237 (3) Åθ = 1.8–25.0°
c = 12.0616 (3) ŵ = 2.02 mm1
α = 80.804 (1)°T = 293 K
β = 68.422 (1)°Colourless, block
γ = 70.735 (1)°0.35 × 0.30 × 0.25 mm
V = 1246.36 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4389 independent reflections
Radiation source: fine-focus sealed tube3672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and φ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1110
Tmin = 0.539, Tmax = 0.632k = 1414
17277 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0626P)2 + 1.1978P]
where P = (Fo2 + 2Fc2)/3
4389 reflections(Δ/σ)max < 0.001
353 parametersΔρmax = 0.63 e Å3
114 restraintsΔρmin = 0.53 e Å3
Crystal data top
C22H13BrN2O7·CHCl3γ = 70.735 (1)°
Mr = 616.62V = 1246.36 (5) Å3
Triclinic, P1Z = 2
a = 9.8816 (2) ÅMo Kα radiation
b = 11.9237 (3) ŵ = 2.02 mm1
c = 12.0616 (3) ÅT = 293 K
α = 80.804 (1)°0.35 × 0.30 × 0.25 mm
β = 68.422 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3672 reflections with I > 2σ(I)
Tmin = 0.539, Tmax = 0.632Rint = 0.019
17277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043114 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.63 e Å3
4389 reflectionsΔρmin = 0.53 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6175 (4)0.6474 (3)0.0736 (4)0.0442 (9)
C20.5491 (5)0.6922 (3)0.1038 (3)0.0447 (9)
C30.5920 (6)0.7284 (4)0.2223 (4)0.0592 (11)
H30.68530.74360.26010.071*
C40.4958 (6)0.7418 (5)0.2839 (4)0.0678 (13)
H40.52370.76670.36400.081*
C50.3578 (6)0.7189 (5)0.2288 (4)0.0675 (13)
H50.29360.72830.27210.081*
C60.3140 (5)0.6820 (4)0.1098 (4)0.0545 (11)
H60.22110.66600.07320.065*
C70.4101 (4)0.6691 (3)0.0449 (3)0.0402 (8)
C80.3759 (4)0.6353 (3)0.0800 (3)0.0351 (8)
C90.4701 (4)0.6296 (3)0.1389 (3)0.0355 (8)
C100.4260 (4)0.6090 (3)0.2719 (3)0.0341 (8)
H100.51320.55290.29100.041*
C110.2968 (4)0.5549 (3)0.3146 (3)0.0362 (8)
C120.2024 (4)0.5667 (3)0.2490 (3)0.0395 (8)
C130.0189 (6)0.5523 (5)0.2111 (5)0.0758 (16)
H13A0.10490.52410.25630.114*
H13B0.03930.50760.14050.114*
H13C0.05380.63490.18880.114*
C140.3830 (4)0.7256 (3)0.3303 (3)0.0344 (8)
C150.4574 (4)0.7360 (3)0.3991 (3)0.0415 (8)
H150.53650.67040.40800.050*
C160.3129 (4)0.9334 (3)0.4428 (3)0.0406 (8)
C170.2842 (5)1.0337 (4)0.5026 (4)0.0530 (10)
H170.33971.03190.55090.064*
C180.1736 (5)1.1350 (4)0.4898 (4)0.0528 (10)
H180.15291.20260.52960.063*
C190.0923 (4)1.1360 (3)0.4165 (3)0.0423 (9)
C200.1176 (4)1.0372 (3)0.3593 (3)0.0396 (8)
H200.06071.03910.31200.047*
C210.2297 (4)0.9331 (3)0.3724 (3)0.0362 (8)
C220.2577 (4)0.8247 (3)0.3136 (3)0.0368 (8)
N10.2703 (4)0.4975 (3)0.4251 (3)0.0405 (7)
N20.0763 (4)0.5375 (3)0.2832 (3)0.0519 (9)
H20.04710.50690.35430.062*
O10.7135 (3)0.6371 (3)0.1160 (3)0.0648 (9)
O20.6502 (3)0.6786 (3)0.0456 (2)0.0533 (7)
O30.2394 (3)0.6112 (2)0.1340 (2)0.0408 (6)
O40.3527 (3)0.4944 (2)0.4837 (2)0.0506 (7)
O50.1646 (3)0.4491 (3)0.4673 (3)0.0514 (7)
O60.1798 (3)0.8194 (2)0.2569 (3)0.0525 (7)
O70.4263 (3)0.8351 (2)0.4569 (2)0.0498 (7)
Br10.05894 (5)1.27713 (4)0.39770 (4)0.05830 (19)
C230.7698 (6)0.9052 (8)0.0829 (5)0.146 (3)
H23A0.77770.82830.05800.175*0.515 (6)
H23B0.75920.82590.11220.175*0.485 (6)
Cl10.9143 (5)0.8826 (4)0.1496 (4)0.1075 (15)0.515 (6)
Cl20.5958 (5)0.9568 (5)0.1863 (5)0.140 (2)0.515 (6)
Cl30.8013 (6)0.9975 (5)0.0393 (3)0.131 (2)0.515 (6)
Cl1'0.8251 (14)0.9193 (11)0.1864 (7)0.260 (6)0.485 (6)
Cl2'0.5804 (9)0.9669 (10)0.0975 (13)0.317 (8)0.485 (6)
Cl3'0.8819 (8)0.8620 (7)0.0529 (4)0.174 (3)0.485 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.044 (2)0.046 (2)0.0120 (17)0.0174 (18)0.0013 (17)
C20.052 (2)0.040 (2)0.042 (2)0.0108 (18)0.0176 (18)0.0028 (16)
C30.067 (3)0.062 (3)0.044 (2)0.019 (2)0.014 (2)0.001 (2)
C40.087 (4)0.071 (3)0.044 (3)0.020 (3)0.027 (3)0.003 (2)
C50.086 (4)0.074 (3)0.055 (3)0.018 (3)0.046 (3)0.001 (2)
C60.065 (3)0.058 (3)0.052 (3)0.017 (2)0.034 (2)0.001 (2)
C70.051 (2)0.0308 (18)0.041 (2)0.0077 (16)0.0213 (18)0.0040 (15)
C80.0380 (19)0.0290 (17)0.041 (2)0.0087 (15)0.0175 (16)0.0025 (14)
C90.0356 (19)0.0303 (17)0.042 (2)0.0076 (15)0.0170 (16)0.0012 (14)
C100.0339 (18)0.0322 (17)0.0410 (19)0.0075 (14)0.0215 (15)0.0021 (14)
C110.0377 (19)0.0330 (18)0.041 (2)0.0105 (15)0.0187 (16)0.0043 (15)
C120.041 (2)0.0343 (18)0.049 (2)0.0137 (16)0.0212 (17)0.0053 (16)
C130.066 (3)0.096 (4)0.094 (4)0.045 (3)0.055 (3)0.032 (3)
C140.0360 (19)0.0353 (18)0.0355 (18)0.0116 (15)0.0174 (15)0.0042 (14)
C150.045 (2)0.0393 (19)0.045 (2)0.0096 (17)0.0255 (18)0.0016 (16)
C160.045 (2)0.043 (2)0.038 (2)0.0138 (17)0.0176 (17)0.0001 (16)
C170.061 (3)0.058 (3)0.051 (2)0.018 (2)0.028 (2)0.010 (2)
C180.061 (3)0.046 (2)0.053 (2)0.019 (2)0.014 (2)0.0124 (19)
C190.041 (2)0.0357 (19)0.044 (2)0.0124 (16)0.0075 (17)0.0007 (16)
C200.039 (2)0.039 (2)0.041 (2)0.0134 (16)0.0146 (16)0.0035 (16)
C210.0376 (19)0.0354 (18)0.0376 (19)0.0126 (15)0.0144 (16)0.0011 (15)
C220.039 (2)0.0373 (19)0.0399 (19)0.0118 (16)0.0210 (16)0.0021 (15)
N10.0407 (18)0.0347 (16)0.0451 (18)0.0081 (14)0.0186 (15)0.0046 (13)
N20.048 (2)0.062 (2)0.059 (2)0.0286 (17)0.0291 (17)0.0172 (17)
O10.0446 (17)0.098 (3)0.0627 (19)0.0300 (17)0.0268 (15)0.0082 (17)
O20.0475 (16)0.0693 (19)0.0447 (16)0.0225 (14)0.0151 (13)0.0028 (14)
O30.0430 (15)0.0440 (14)0.0461 (15)0.0173 (12)0.0265 (12)0.0064 (11)
O40.0554 (17)0.0539 (17)0.0505 (16)0.0164 (14)0.0336 (14)0.0148 (13)
O50.0497 (16)0.0521 (16)0.0548 (17)0.0239 (14)0.0188 (13)0.0133 (13)
O60.0569 (17)0.0432 (15)0.0710 (19)0.0030 (13)0.0450 (16)0.0083 (13)
O70.0592 (18)0.0485 (16)0.0545 (17)0.0080 (13)0.0388 (14)0.0067 (13)
Br10.0560 (3)0.0359 (2)0.0753 (3)0.00750 (19)0.0191 (2)0.00208 (19)
C230.127 (7)0.178 (8)0.117 (6)0.035 (6)0.027 (5)0.024 (6)
Cl10.125 (3)0.100 (3)0.118 (4)0.038 (2)0.061 (3)0.005 (2)
Cl20.107 (3)0.123 (4)0.134 (4)0.031 (3)0.019 (3)0.002 (3)
Cl30.157 (4)0.152 (5)0.084 (2)0.078 (3)0.028 (2)0.028 (2)
Cl1'0.426 (17)0.233 (10)0.126 (5)0.091 (11)0.083 (8)0.056 (6)
Cl2'0.257 (11)0.154 (7)0.425 (19)0.054 (7)0.078 (12)0.041 (11)
Cl3'0.214 (7)0.215 (8)0.098 (3)0.102 (6)0.032 (4)0.009 (4)
Geometric parameters (Å, º) top
C1—O11.199 (5)C14—C151.337 (5)
C1—O21.370 (5)C14—C221.453 (5)
C1—C91.446 (5)C15—O71.358 (5)
C2—C31.374 (6)C15—H150.9300
C2—O21.374 (5)C16—O71.367 (5)
C2—C71.391 (6)C16—C211.383 (5)
C3—C41.365 (7)C16—C171.390 (6)
C3—H30.9300C17—C181.368 (6)
C4—C51.377 (7)C17—H170.9300
C4—H40.9300C18—C191.392 (6)
C5—C61.381 (7)C18—H180.9300
C5—H50.9300C19—C201.366 (5)
C6—C71.397 (5)C19—Br11.893 (4)
C6—H60.9300C20—C211.397 (5)
C7—C81.437 (5)C20—H200.9300
C8—C91.344 (5)C21—C221.470 (5)
C8—O31.369 (4)C22—O61.223 (4)
C9—C101.501 (5)N1—O41.248 (4)
C10—C111.505 (5)N1—O51.264 (4)
C10—C141.521 (5)N2—H20.8600
C10—H100.9800C23—Cl1'1.587 (7)
C11—N11.372 (5)C23—Cl3'1.653 (6)
C11—C121.391 (5)C23—Cl31.688 (7)
C12—N21.307 (5)C23—Cl21.691 (6)
C12—O31.364 (4)C23—Cl2'1.721 (7)
C13—N21.454 (5)C23—Cl11.812 (6)
C13—H13A0.9600C23—H23A0.9800
C13—H13B0.9600C23—H23B0.9800
C13—H13C0.9600
O1—C1—O2117.3 (4)C18—C17—H17120.3
O1—C1—C9124.9 (4)C16—C17—H17120.3
O2—C1—C9117.8 (3)C17—C18—C19119.4 (4)
C3—C2—O2117.1 (4)C17—C18—H18120.3
C3—C2—C7121.8 (4)C19—C18—H18120.3
O2—C2—C7121.1 (3)C20—C19—C18121.6 (4)
C4—C3—C2119.0 (5)C20—C19—Br1119.3 (3)
C4—C3—H3120.5C18—C19—Br1119.1 (3)
C2—C3—H3120.5C19—C20—C21119.5 (3)
C3—C4—C5120.9 (4)C19—C20—H20120.3
C3—C4—H4119.6C21—C20—H20120.3
C5—C4—H4119.6C16—C21—C20118.8 (3)
C4—C5—C6120.5 (4)C16—C21—C22120.5 (3)
C4—C5—H5119.8C20—C21—C22120.7 (3)
C6—C5—H5119.8O6—C22—C14123.5 (3)
C5—C6—C7119.6 (4)O6—C22—C21122.1 (3)
C5—C6—H6120.2C14—C22—C21114.4 (3)
C7—C6—H6120.2O4—N1—O5120.4 (3)
C2—C7—C6118.3 (4)O4—N1—C11118.6 (3)
C2—C7—C8116.7 (3)O5—N1—C11120.9 (3)
C6—C7—C8125.0 (4)C12—N2—C13125.5 (4)
C9—C8—O3122.9 (3)C12—N2—H2117.3
C9—C8—C7122.3 (3)C13—N2—H2117.3
O3—C8—C7114.8 (3)C1—O2—C2122.3 (3)
C8—C9—C1119.5 (3)C12—O3—C8119.7 (3)
C8—C9—C10122.2 (3)C15—O7—C16118.5 (3)
C1—C9—C10118.3 (3)Cl1'—C23—Cl3'125.6 (5)
C9—C10—C11108.5 (3)Cl1'—C23—Cl3117.6 (7)
C9—C10—C14109.8 (3)Cl3'—C23—Cl355.4 (3)
C11—C10—C14112.0 (3)Cl1'—C23—Cl282.4 (5)
C9—C10—H10108.8Cl3'—C23—Cl2151.9 (5)
C11—C10—H10108.8Cl3—C23—Cl2112.8 (5)
C14—C10—H10108.8Cl1'—C23—Cl2'118.9 (5)
N1—C11—C12120.7 (3)Cl3'—C23—Cl2'114.1 (5)
N1—C11—C10117.0 (3)Cl3—C23—Cl2'85.0 (6)
C12—C11—C10122.3 (3)Cl2—C23—Cl2'38.2 (5)
N2—C12—O3112.1 (3)Cl1'—C23—Cl127.2 (4)
N2—C12—C11127.7 (3)Cl3'—C23—Cl199.0 (4)
O3—C12—C11120.3 (3)Cl3—C23—Cl1109.5 (5)
N2—C13—H13A109.5Cl2—C23—Cl1109.1 (4)
N2—C13—H13B109.5Cl2'—C23—Cl1146.1 (5)
H13A—C13—H13B109.5Cl1'—C23—H23A123.7
N2—C13—H13C109.5Cl3'—C23—H23A60.5
H13A—C13—H13C109.5Cl3—C23—H23A108.4
H13B—C13—H13C109.5Cl2—C23—H23A108.4
C15—C14—C22120.1 (3)Cl2'—C23—H23A94.7
C15—C14—C10120.2 (3)Cl1—C23—H23A108.4
C22—C14—C10119.6 (3)Cl1'—C23—H23B93.9
C14—C15—O7124.9 (3)Cl3'—C23—H23B93.9
C14—C15—H15117.6Cl3—C23—H23B144.5
O7—C15—H15117.6Cl2—C23—H23B85.5
O7—C16—C21121.5 (3)Cl2'—C23—H23B93.9
O7—C16—C17117.2 (3)Cl1—C23—H23B90.9
C21—C16—C17121.4 (4)H23A—C23—H23B36.2
C18—C17—C16119.4 (4)
O2—C2—C3—C4179.3 (4)C10—C14—C15—O7178.8 (3)
C7—C2—C3—C40.1 (7)O7—C16—C17—C18178.9 (4)
C2—C3—C4—C50.4 (7)C21—C16—C17—C181.4 (6)
C3—C4—C5—C60.1 (8)C16—C17—C18—C190.3 (7)
C4—C5—C6—C70.6 (7)C17—C18—C19—C201.7 (6)
C3—C2—C7—C60.7 (6)C17—C18—C19—Br1179.2 (3)
O2—C2—C7—C6178.5 (3)C18—C19—C20—C211.3 (6)
C3—C2—C7—C8178.1 (4)Br1—C19—C20—C21179.6 (3)
O2—C2—C7—C82.6 (5)O7—C16—C21—C20178.6 (3)
C5—C6—C7—C21.0 (6)C17—C16—C21—C201.7 (6)
C5—C6—C7—C8177.8 (4)O7—C16—C21—C222.1 (5)
C2—C7—C8—C91.9 (5)C17—C16—C21—C22177.5 (4)
C6—C7—C8—C9176.9 (4)C19—C20—C21—C160.4 (5)
C2—C7—C8—O3178.9 (3)C19—C20—C21—C22178.9 (3)
C6—C7—C8—O32.3 (5)C15—C14—C22—O6176.2 (4)
O3—C8—C9—C1175.2 (3)C10—C14—C22—O62.2 (6)
C7—C8—C9—C15.7 (5)C15—C14—C22—C213.0 (5)
O3—C8—C9—C106.7 (5)C10—C14—C22—C21178.7 (3)
C7—C8—C9—C10172.4 (3)C16—C21—C22—O6175.4 (4)
O1—C1—C9—C8175.3 (4)C20—C21—C22—O63.9 (6)
O2—C1—C9—C84.9 (5)C16—C21—C22—C143.8 (5)
O1—C1—C9—C106.6 (6)C20—C21—C22—C14176.9 (3)
O2—C1—C9—C10173.2 (3)C12—C11—N1—O4176.3 (3)
C8—C9—C10—C1119.9 (4)C10—C11—N1—O40.6 (5)
C1—C9—C10—C11162.0 (3)C12—C11—N1—O53.5 (5)
C8—C9—C10—C14102.7 (4)C10—C11—N1—O5179.6 (3)
C1—C9—C10—C1475.4 (4)O3—C12—N2—C131.6 (6)
C9—C10—C11—N1161.2 (3)C11—C12—N2—C13179.6 (4)
C14—C10—C11—N177.5 (4)O1—C1—O2—C2179.6 (4)
C9—C10—C11—C1222.0 (5)C9—C1—O2—C20.5 (5)
C14—C10—C11—C1299.3 (4)C3—C2—O2—C1177.5 (4)
N1—C11—C12—N26.3 (6)C7—C2—O2—C13.2 (6)
C10—C11—C12—N2170.4 (4)N2—C12—O3—C8173.6 (3)
N1—C11—C12—O3172.3 (3)C11—C12—O3—C85.3 (5)
C10—C11—C12—O311.0 (5)C9—C8—O3—C127.5 (5)
C9—C10—C14—C15121.8 (4)C7—C8—O3—C12173.3 (3)
C11—C10—C14—C15117.6 (4)C14—C15—O7—C161.5 (6)
C9—C10—C14—C2259.9 (4)C21—C16—O7—C150.6 (5)
C11—C10—C14—C2260.7 (4)C17—C16—O7—C15179.7 (4)
C22—C14—C15—O70.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.862.002.622 (5)128
N2—H2···O5i0.862.373.063 (5)138
C4—H4···O7ii0.932.593.383 (6)144
C15—H15···O4iii0.932.363.221 (4)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.862.002.622 (5)128
N2—H2···O5i0.862.373.063 (5)138
C4—H4···O7ii0.932.593.383 (6)144
C15—H15···O4iii0.932.363.221 (4)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors the thank Department of Chemistry, IIT, Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.  Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaja, R., Suresh, M., Raghunathan, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, 574–577.  CSD CrossRef IUCr Journals Google Scholar
First citationRaj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds