organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3,6,8-tetra­bromo-9-ethyl-9H-carbazole

aDepartment of Chemistry, National Taras Shevchenko University, 62a Volodymirska st., Kyiv, Ukraine, and bDepartment of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Road 19, LT-50254, Kaunas, Lithuania
*Correspondence e-mail: nikolay_bezugliy@ukr.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 May 2015; accepted 25 May 2015; online 30 May 2015)

In the title compound, C14H9Br4N, the tricyclic ring system is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.017 Å) and the methyl C atom deviates from the mean plane of the ring system by 1.072 (17) Å. In the crystal, Br⋯Br contacts [3.636 (3) and 3.660 (3) Å] slightly shorter than the van der Waals contact distance of 3.70 Å are seen.

1. Related literature

For applications of N-substituted carbazole derivatives in anti­cancer research, see: Caulfield et al. (2002[Caulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1253141.]). For their use in optoelectronic devices, see: Niu et al. (2011[Niu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415-423.]); Miyazaki et al. (2014[Miyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440-11453.]); Grigalevicius et al. (2002[Grigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2002). Mat. Chem. Phys. 77, 281-284.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H9Br4N

  • Mr = 510.85

  • Monoclinic, P 21

  • a = 4.202 (2) Å

  • b = 14.654 (6) Å

  • c = 12.245 (6) Å

  • β = 92.758 (18)°

  • V = 753.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.70 mm−1

  • T = 293 K

  • 0.40 × 0.13 × 0.12 mm

2.2. Data collection

  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.115, Tmax = 0.277

  • 2755 measured reflections

  • 2599 independent reflections

  • 2071 reflections with F2 > 2.0σ(F2)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.130

  • S = 1.01

  • 2600 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 868 Friedel Pairs

  • Absolute structure parameter: 0.05 (4)

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert . Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Synthesis and crystallization top

9-Ethyl-9H-carbazole (0.904 g, 4.63 mmol) was added to the solution of N-bromo­succinimide (NBS) (3.708 g, 20.83 mmol) in 30 ml of DMF. The reaction mixture was heated at 60°C for 24 hours. When the reaction completed (monitored via TLC) the solution was poured into a large amount of water with ice. The precipitate was filtered off and crystallized from the mixture of iso­propanol and DMF (volume ratio about 5:1) to isolate the product as needles. The bulk sample appears yellowish, but individual crystals are colourless. Yield 1.80 g (76 %), m.p. 155–156°C. 1H NMR (700 MHz, CDCl3) δ 7.92 (d, J = 1.8 Hz, 2H), 7.69 (d, J = 1.8 Hz, 2H), 5.10 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.930 Å for aromatic C—H, with 0.969 Å for methyl­ene C—H, 0.957 Å for methyl distances and Uiso(H) = 1.2 Ueq.

Related literature top

For applications of N-substituted carbazole derivatives in anticancer research, see: Caulfield et al. (2002). For their use in optoelectronic devices, see: Niu et al. (2011); Miyazaki et al. (2014); Grigalevicius et al. (2002).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound.
[Figure 3] Fig. 3. C—Br···Br and Br···π intermolecular contacts.
1,3,6,8-Tetrabromo-9-ethyl-9H-carbazole top
Crystal data top
C14H9Br4NF(000) = 480.00
Mr = 510.85Dx = 2.253 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 2306 reflections
a = 4.202 (2) Åθ = 3.2–27.5°
b = 14.654 (6) ŵ = 10.70 mm1
c = 12.245 (6) ÅT = 293 K
β = 92.758 (18)°Chip, colorless
V = 753.1 (6) Å30.40 × 0.13 × 0.12 mm
Z = 2
Data collection top
Rigaku XtaLAB mini
diffractometer
2071 reflections with F2 > 2.0σ(F2)
Detector resolution: 6.827 pixels mm-1Rint = 0.021
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 55
Tmin = 0.115, Tmax = 0.277k = 1818
2755 measured reflectionsl = 154
2599 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2600 reflectionsΔρmax = 0.74 e Å3
172 parametersΔρmin = 0.66 e Å3
1 restraintAbsolute structure: Flack (1983), 868 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (4)
Secondary atom site location: difference Fourier map
Crystal data top
C14H9Br4NV = 753.1 (6) Å3
Mr = 510.85Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.202 (2) ŵ = 10.70 mm1
b = 14.654 (6) ÅT = 293 K
c = 12.245 (6) Å0.40 × 0.13 × 0.12 mm
β = 92.758 (18)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2599 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2071 reflections with F2 > 2.0σ(F2)
Tmin = 0.115, Tmax = 0.277Rint = 0.021
2755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.74 e Å3
S = 1.01Δρmin = 0.66 e Å3
2600 reflectionsAbsolute structure: Flack (1983), 868 Friedel Pairs
172 parametersAbsolute structure parameter: 0.05 (4)
1 restraint
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.0896 (3)0.54414 (9)0.00371 (12)0.0652 (4)
Br20.4335 (4)0.80930 (10)0.24666 (11)0.0710 (4)
Br30.3881 (3)1.05176 (9)0.38945 (12)0.0657 (4)
Br41.0717 (3)0.73324 (10)0.49105 (11)0.0654 (4)
N10.9560 (19)0.7062 (6)0.2062 (8)0.041 (2)
C10.854 (3)0.7148 (7)0.0995 (9)0.037 (3)
C20.893 (3)0.6617 (8)0.0045 (10)0.046 (3)
C30.768 (3)0.6924 (8)0.0998 (10)0.051 (3)
C40.598 (3)0.7757 (8)0.1069 (10)0.048 (3)
C50.556 (3)0.8265 (7)0.0176 (9)0.042 (3)
C60.682 (3)0.7978 (7)0.0871 (9)0.039 (3)
C70.671 (3)0.8383 (7)0.1907 (9)0.039 (3)
C80.533 (3)0.9191 (7)0.2281 (10)0.044 (3)
C90.566 (3)0.9430 (8)0.3353 (9)0.047 (3)
C100.729 (3)0.8854 (8)0.4117 (10)0.048 (3)
C110.869 (3)0.8032 (8)0.3764 (9)0.046 (3)
C120.845 (3)0.7785 (8)0.2676 (9)0.041 (3)
C131.178 (3)0.6333 (8)0.2518 (11)0.051 (3)
C141.008 (3)0.5530 (9)0.2926 (12)0.067 (4)
H30.79950.65810.16230.0616*
H50.44420.88110.02400.0498*
H80.41810.95650.17910.0524*
H100.74440.90150.48520.0581*
H13A1.31660.61390.19510.0616*
H13B1.31040.65900.31110.0616*
H14A0.87670.52700.23420.0802*
H14B0.87680.57120.35080.0802*
H14C1.16010.50840.31930.0802*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0604 (7)0.0431 (7)0.0918 (11)0.0099 (7)0.0024 (7)0.0126 (7)
Br20.0871 (9)0.0752 (10)0.0491 (7)0.0044 (9)0.0140 (7)0.0013 (7)
Br30.0759 (8)0.0475 (7)0.0738 (9)0.0015 (8)0.0042 (7)0.0187 (7)
Br40.0710 (9)0.0678 (9)0.0557 (8)0.0063 (8)0.0143 (7)0.0171 (6)
N10.039 (5)0.037 (5)0.047 (5)0.009 (4)0.002 (4)0.000 (4)
C10.034 (5)0.026 (5)0.051 (6)0.003 (5)0.004 (5)0.004 (5)
C20.031 (5)0.040 (6)0.066 (8)0.010 (5)0.001 (5)0.003 (5)
C30.052 (6)0.048 (7)0.055 (7)0.009 (6)0.007 (5)0.017 (6)
C40.050 (6)0.040 (6)0.054 (7)0.013 (6)0.004 (6)0.006 (5)
C50.049 (6)0.020 (5)0.054 (7)0.003 (5)0.011 (5)0.002 (4)
C60.037 (5)0.033 (6)0.046 (6)0.001 (5)0.005 (4)0.002 (5)
C70.038 (5)0.030 (5)0.048 (6)0.017 (5)0.002 (5)0.002 (4)
C80.049 (6)0.032 (6)0.051 (7)0.007 (5)0.001 (5)0.002 (5)
C90.057 (7)0.048 (6)0.037 (6)0.015 (6)0.002 (5)0.004 (5)
C100.054 (6)0.042 (6)0.049 (7)0.008 (6)0.002 (6)0.007 (5)
C110.047 (6)0.047 (7)0.043 (6)0.012 (6)0.009 (5)0.007 (5)
C120.036 (5)0.041 (6)0.047 (6)0.020 (5)0.002 (5)0.004 (5)
C130.039 (6)0.037 (6)0.076 (9)0.002 (5)0.019 (6)0.007 (6)
C140.066 (7)0.030 (6)0.106 (11)0.004 (7)0.013 (7)0.018 (7)
Geometric parameters (Å, º) top
Br1—C21.912 (11)C7—C121.458 (15)
Br2—C41.880 (12)C8—C91.359 (16)
Br3—C91.894 (12)C9—C101.412 (16)
Br4—C111.906 (11)C10—C111.418 (16)
N1—C11.361 (14)C11—C121.379 (15)
N1—C121.393 (14)C13—C141.476 (17)
N1—C131.507 (14)C3—H30.930
C1—C21.415 (16)C5—H50.930
C1—C61.418 (14)C8—H80.930
C2—C31.429 (17)C10—H100.930
C3—C41.417 (16)C13—H13A0.970
C4—C51.340 (16)C13—H13B0.970
C5—C61.426 (15)C14—H14A0.960
C6—C71.404 (15)C14—H14B0.960
C7—C81.403 (15)C14—H14C0.960
Br2···Br4i3.660 (3)Br3···Br4ii3.636 (3)
C1—N1—C12110.4 (8)Br4—C11—C12125.5 (9)
C1—N1—C13125.6 (9)C10—C11—C12120.3 (10)
C12—N1—C13123.8 (9)N1—C12—C7106.2 (9)
N1—C1—C2134.0 (9)N1—C12—C11135.2 (10)
N1—C1—C6108.5 (9)C7—C12—C11118.5 (10)
C2—C1—C6117.5 (10)N1—C13—C14113.0 (9)
Br1—C2—C1124.5 (8)C2—C3—H3120.413
Br1—C2—C3114.7 (9)C4—C3—H3120.407
C1—C2—C3120.7 (10)C4—C5—H5119.576
C2—C3—C4119.2 (11)C6—C5—H5119.568
Br2—C4—C3116.3 (9)C7—C8—H8119.725
Br2—C4—C5122.8 (9)C9—C8—H8119.729
C3—C4—C5120.9 (11)C9—C10—H10119.964
C4—C5—C6120.9 (10)C11—C10—H10119.962
C1—C6—C5120.9 (10)N1—C13—H13A108.986
C1—C6—C7107.8 (9)N1—C13—H13B108.988
C5—C6—C7131.3 (9)C14—C13—H13A108.984
C6—C7—C8133.2 (10)C14—C13—H13B108.981
C6—C7—C12106.9 (9)H13A—C13—H13B107.779
C8—C7—C12119.9 (10)C13—C14—H14A109.473
C7—C8—C9120.5 (10)C13—C14—H14B109.466
Br3—C9—C8122.1 (9)C13—C14—H14C109.472
Br3—C9—C10117.2 (9)H14A—C14—H14B109.470
C8—C9—C10120.6 (11)H14A—C14—H14C109.470
C9—C10—C11120.1 (11)H14B—C14—H14C109.476
Br4—C11—C10114.2 (8)
C1—N1—C12—C72.6 (10)C3—C4—C5—C60.3 (16)
C1—N1—C12—C11178.7 (10)C4—C5—C6—C10.2 (15)
C12—N1—C1—C2179.2 (9)C4—C5—C6—C7179.9 (9)
C12—N1—C1—C63.2 (10)C1—C6—C7—C8179.3 (9)
C1—N1—C13—C1492.7 (12)C1—C6—C7—C120.9 (10)
C13—N1—C1—C24.9 (16)C5—C6—C7—C80.4 (18)
C13—N1—C1—C6172.6 (8)C5—C6—C7—C12179.4 (9)
C12—N1—C13—C1491.9 (11)C6—C7—C8—C9178.4 (10)
C13—N1—C12—C7173.4 (8)C6—C7—C12—N11.0 (10)
C13—N1—C12—C115.3 (17)C6—C7—C12—C11179.9 (8)
N1—C1—C2—Br16.9 (16)C8—C7—C12—N1178.9 (8)
N1—C1—C2—C3176.1 (9)C8—C7—C12—C110.1 (14)
N1—C1—C6—C5177.7 (8)C12—C7—C8—C91.4 (15)
N1—C1—C6—C72.5 (10)C7—C8—C9—Br3179.4 (8)
C2—C1—C6—C50.3 (13)C7—C8—C9—C102.4 (16)
C2—C1—C6—C7179.4 (8)Br3—C9—C10—C11179.7 (7)
C6—C1—C2—Br1175.7 (7)C8—C9—C10—C112.0 (16)
C6—C1—C2—C31.3 (13)C9—C10—C11—Br4178.9 (9)
Br1—C2—C3—C4175.5 (7)C9—C10—C11—C120.5 (16)
C1—C2—C3—C41.7 (15)Br4—C11—C12—N13.7 (17)
C2—C3—C4—Br2178.4 (8)Br4—C11—C12—C7177.7 (6)
C2—C3—C4—C51.2 (16)C10—C11—C12—N1178.1 (10)
Br2—C4—C5—C6179.4 (6)C10—C11—C12—C70.5 (15)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H9Br4N
Mr510.85
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)4.202 (2), 14.654 (6), 12.245 (6)
β (°) 92.758 (18)
V3)753.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)10.70
Crystal size (mm)0.40 × 0.13 × 0.12
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.115, 0.277
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
2755, 2599, 2071
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.130, 1.01
No. of reflections2600
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.66
Absolute structureFlack (1983), 868 Friedel Pairs
Absolute structure parameter0.05 (4)

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), CrystalClear-SM Expert (Rigaku, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

This research was supported by FP7 REGPOT-2012–2013-1 ICT project CEOSeR under grant agreement No. 316010.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCaulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1253141.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2002). Mat. Chem. Phys. 77, 281–284.  CrossRef Google Scholar
First citationMiyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440–11453.  CrossRef CAS PubMed Google Scholar
First citationNiu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415–423.  CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert . Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds