organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o261-o262

Crystal structure of 8-hy­dr­oxy­quinolin­ium 2-carb­oxy-6-nitro­benzoate mono­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu24663@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 March 2015; accepted 20 March 2015; online 25 March 2015)

In the title hydrated salt, C9H8NO+·C8H4NO6·H2O, the deprotonated carboxyl­ate group is almost normal to its attached benzene ring [dihedral angle = 83.56 (8)°], whereas the protonated carboxyl­ate group is close to parallel [dihedral angle = 24.56 (9)°]. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by C—H⋯O and ππ [centroid-to-centroid distances = 3.6408 (9) and 3.6507 (9) Å] inter­actions, which result in a three-dimensional network.

1. Related literature

For the biological activity of quinoline derivatives, see: Font et al. (1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Discov. 14, 259-272.]); Sloboda et al. (1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]). For similar structures, see: Castañeda et al. (2014[Castañeda, R., Antal, S. A., Draguta, S., Timofeeva, T. V. & Khrustalev, V. N. (2014). Acta Cryst. E70, o924-o925.]); Kafka et al. (2012[Kafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3199-o3200.]); Li & Chai (2007[Li, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857-o2859.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H8NO+·C8H4NO6·H2O

  • Mr = 374.30

  • Monoclinic, P 21 /c

  • a = 14.4283 (5) Å

  • b = 13.8196 (5) Å

  • c = 8.0483 (3) Å

  • β = 101.441 (2)°

  • V = 1572.89 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.26 × 0.22 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.977

  • 58922 measured reflections

  • 7431 independent reflections

  • 4272 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.176

  • S = 1.02

  • 7431 reflections

  • 260 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.89 (1) 2.00 (1) 2.8112 (16) 151 (2)
O5—H5A⋯O8ii 0.82 (1) 1.78 (1) 2.5928 (18) 171 (3)
O7—H7⋯O3iii 0.84 (1) 1.82 (1) 2.6482 (15) 168 (2)
O8—H8B⋯O4 0.83 (1) 2.07 (1) 2.8683 (17) 163 (2)
O8—H8A⋯O4ii 0.83 (1) 2.01 (1) 2.8288 (18) 170 (2)
C11—H11⋯O1iv 0.93 2.42 3.295 (2) 156
C12—H12⋯O6i 0.93 2.48 3.343 (2) 155
C16—H16⋯O2v 0.93 2.52 3.413 (2) 160
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

The quinoline nucleus is found in many synthetic and natural products having a wide range of pharmacological activities such as anti-viral (Font et al., 1997), and anti-inflammatory (Sloboda et al., 1991) activities.

Structural commentary top

We herewith report the crystal structure of the title compound (I), (Fig.1). The asymmetric unit of the title compound consists of C9 H8 N O+ cation, C8 H4 N O6- anion and a water molecule. The geometric parameters of the title compound are comparable to the reported structures [Castañeda et al., 2014; Kafka et al., 2012; Li & Chai (2007)]. The benzene ring (C1—C6) of anion makes the dihedral angle of 58.18 (6)° with the quinolinium ring (C9—C12/N2/C13—C17) of cation.

Supra­molecular features top

The molecular structure is stabilized by weak intra­molecular N—H···O and O—H···O hydrogen bonds (Table 1). The crystal structure is formed by weak inter­molecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 & Fig. 2) by linking the adjacent anions and cations by bridging water molecules through O—H···O hydrogen bonds into infinite two-dimensional network along [1 0 0] plane. The crystal structure is further stabilized by weak C—H···π (Table 1) and ππ [Cg1···Cg1i = 3.6507 (9); Cg2···Cg2ii = 3.6507 (9)Å; (i) -x,1-y,1-z; (ii) x,1/2-y,1/2+z; Cg1 and Cg2 are the centroids of the rings (C1—C6) and (N2/C12/C11/C10/C9/C13)] inter­actions.

Synthesis and crystallization top

The title compound was synthesized by taking at 1:1 ratio of 8-hy­droxy­quinoline and of 3-nitro­phthalic acid was dissolved in a mixed solvent of methanol and water. The salt was formed while adding the base instanstaouly. The solution was stirred for about 2 h to get a homogenous solution. The solution was filtered off and kept aside for slow evaporation at room temperature which yields single crystals suitable for X-ray diffraction.

Refinement top

C-bound H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms for O atoms were located from Fourier map and refined with O—H = 0.82 (1)Å and Uiso(H) = 1.5 Ueq(O). H atom for N atom was located from Fourier map and refined freely with N—H = 0.88 (1)Å.

Related literature top

For the biological activity of quinoline derivatives, see: Font et al. (1997); Sloboda et al. (1991). For similar structures, see: Castañeda et al. (2014); Kafka et al. (2012); Li & Chai (2007).

Structure description top

The quinoline nucleus is found in many synthetic and natural products having a wide range of pharmacological activities such as anti-viral (Font et al., 1997), and anti-inflammatory (Sloboda et al., 1991) activities.

We herewith report the crystal structure of the title compound (I), (Fig.1). The asymmetric unit of the title compound consists of C9 H8 N O+ cation, C8 H4 N O6- anion and a water molecule. The geometric parameters of the title compound are comparable to the reported structures [Castañeda et al., 2014; Kafka et al., 2012; Li & Chai (2007)]. The benzene ring (C1—C6) of anion makes the dihedral angle of 58.18 (6)° with the quinolinium ring (C9—C12/N2/C13—C17) of cation.

The molecular structure is stabilized by weak intra­molecular N—H···O and O—H···O hydrogen bonds (Table 1). The crystal structure is formed by weak inter­molecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 & Fig. 2) by linking the adjacent anions and cations by bridging water molecules through O—H···O hydrogen bonds into infinite two-dimensional network along [1 0 0] plane. The crystal structure is further stabilized by weak C—H···π (Table 1) and ππ [Cg1···Cg1i = 3.6507 (9); Cg2···Cg2ii = 3.6507 (9)Å; (i) -x,1-y,1-z; (ii) x,1/2-y,1/2+z; Cg1 and Cg2 are the centroids of the rings (C1—C6) and (N2/C12/C11/C10/C9/C13)] inter­actions.

For the biological activity of quinoline derivatives, see: Font et al. (1997); Sloboda et al. (1991). For similar structures, see: Castañeda et al. (2014); Kafka et al. (2012); Li & Chai (2007).

Synthesis and crystallization top

The title compound was synthesized by taking at 1:1 ratio of 8-hy­droxy­quinoline and of 3-nitro­phthalic acid was dissolved in a mixed solvent of methanol and water. The salt was formed while adding the base instanstaouly. The solution was stirred for about 2 h to get a homogenous solution. The solution was filtered off and kept aside for slow evaporation at room temperature which yields single crystals suitable for X-ray diffraction.

Refinement details top

C-bound H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms for O atoms were located from Fourier map and refined with O—H = 0.82 (1)Å and Uiso(H) = 1.5 Ueq(O). H atom for N atom was located from Fourier map and refined freely with N—H = 0.88 (1)Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
8-Hydroxyquinolinium 2-carboxy-6-nitrobenzoate monohydrate top
Crystal data top
C9H8NO+·C8H4NO6·H2OF(000) = 776
Mr = 374.30Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9900 reflections
a = 14.4283 (5) Åθ = 2.8–33.4°
b = 13.8196 (5) ŵ = 0.13 mm1
c = 8.0483 (3) ÅT = 295 K
β = 101.441 (2)°Block, colourless
V = 1572.89 (10) Å30.26 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7431 independent reflections
Radiation source: fine-focus sealed tube4272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 36.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.968, Tmax = 0.977k = 1922
58922 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.9848P]
where P = (Fo2 + 2Fc2)/3
7431 reflections(Δ/σ)max < 0.001
260 parametersΔρmax = 0.50 e Å3
5 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H8NO+·C8H4NO6·H2OV = 1572.89 (10) Å3
Mr = 374.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4283 (5) ŵ = 0.13 mm1
b = 13.8196 (5) ÅT = 295 K
c = 8.0483 (3) Å0.26 × 0.22 × 0.18 mm
β = 101.441 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7431 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4272 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.034
58922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0605 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.50 e Å3
7431 reflectionsΔρmin = 0.38 e Å3
260 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17265 (9)0.48978 (9)0.55989 (18)0.0237 (2)
C20.13410 (10)0.48988 (10)0.70682 (19)0.0262 (3)
C30.06506 (11)0.42272 (12)0.7270 (2)0.0331 (3)
H30.04030.42380.82520.040*
C40.03290 (11)0.35481 (12)0.6037 (2)0.0370 (4)
H40.01170.30910.62030.044*
C50.06716 (11)0.35508 (12)0.4557 (2)0.0339 (3)
H50.04490.31080.37020.041*
C60.13531 (10)0.42230 (10)0.43632 (19)0.0267 (3)
C70.24827 (10)0.56315 (10)0.53939 (18)0.0249 (3)
C80.16432 (11)0.56359 (11)0.84160 (19)0.0294 (3)
C90.46422 (11)0.34368 (10)0.87844 (19)0.0288 (3)
C100.53122 (13)0.40133 (12)0.8201 (2)0.0377 (4)
H100.52250.46800.81250.045*
C110.60883 (13)0.36137 (14)0.7744 (2)0.0424 (4)
H110.65210.40020.73410.051*
C120.62252 (11)0.26245 (14)0.7886 (2)0.0390 (4)
H120.67520.23460.75750.047*
C130.48139 (9)0.24333 (10)0.89029 (18)0.0247 (3)
C140.41699 (10)0.18003 (10)0.94525 (19)0.0284 (3)
C150.33963 (11)0.21885 (13)0.9934 (2)0.0364 (3)
H150.29780.17851.03460.044*
C160.32192 (13)0.31850 (15)0.9818 (2)0.0432 (4)
H160.26800.34281.01400.052*
C170.38181 (13)0.38061 (12)0.9246 (2)0.0390 (4)
H170.36850.44650.91600.047*
N10.16655 (10)0.42040 (10)0.27386 (18)0.0337 (3)
N20.56126 (9)0.20732 (9)0.84612 (17)0.0305 (3)
H20.5741 (15)0.1450 (8)0.866 (3)0.047 (6)*
O10.22455 (12)0.47889 (11)0.24810 (18)0.0545 (4)
O20.13344 (13)0.35960 (13)0.1701 (2)0.0684 (5)
O30.33312 (7)0.53639 (8)0.57868 (15)0.0318 (2)
O40.22067 (8)0.64521 (8)0.49029 (15)0.0326 (2)
O50.09894 (10)0.57856 (11)0.93152 (18)0.0465 (3)
H5A0.1152 (18)0.6216 (15)1.002 (3)0.070*
O60.23875 (9)0.60562 (10)0.86357 (17)0.0435 (3)
O70.43930 (9)0.08565 (8)0.94455 (17)0.0378 (3)
H70.3990 (13)0.0519 (15)0.981 (3)0.057*
O80.13275 (9)0.78915 (10)0.66412 (16)0.0392 (3)
H8A0.1644 (15)0.8061 (18)0.7569 (18)0.059*
H8B0.1616 (16)0.7423 (13)0.635 (3)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0214 (5)0.0215 (5)0.0289 (6)0.0023 (4)0.0070 (5)0.0021 (5)
C20.0244 (6)0.0266 (6)0.0286 (7)0.0001 (5)0.0074 (5)0.0023 (5)
C30.0308 (7)0.0365 (8)0.0344 (8)0.0042 (6)0.0123 (6)0.0047 (6)
C40.0300 (7)0.0364 (8)0.0457 (9)0.0096 (6)0.0101 (7)0.0028 (7)
C50.0298 (7)0.0321 (7)0.0395 (8)0.0067 (6)0.0064 (6)0.0041 (6)
C60.0244 (6)0.0262 (6)0.0304 (7)0.0012 (5)0.0076 (5)0.0007 (5)
C70.0269 (6)0.0238 (6)0.0262 (6)0.0013 (5)0.0109 (5)0.0016 (5)
C80.0323 (7)0.0301 (7)0.0269 (7)0.0003 (5)0.0084 (5)0.0024 (5)
C90.0337 (7)0.0212 (6)0.0294 (7)0.0003 (5)0.0014 (5)0.0015 (5)
C100.0465 (9)0.0239 (7)0.0395 (8)0.0065 (6)0.0006 (7)0.0066 (6)
C110.0365 (8)0.0441 (9)0.0449 (10)0.0124 (7)0.0041 (7)0.0152 (8)
C120.0267 (7)0.0467 (9)0.0441 (9)0.0008 (6)0.0088 (6)0.0120 (7)
C130.0249 (6)0.0221 (6)0.0264 (6)0.0004 (4)0.0034 (5)0.0023 (5)
C140.0289 (7)0.0256 (6)0.0303 (7)0.0042 (5)0.0052 (5)0.0017 (5)
C150.0316 (7)0.0420 (9)0.0371 (8)0.0043 (6)0.0103 (6)0.0004 (7)
C160.0377 (8)0.0510 (10)0.0427 (9)0.0119 (7)0.0126 (7)0.0041 (8)
C170.0446 (9)0.0305 (7)0.0415 (9)0.0111 (7)0.0072 (7)0.0023 (7)
N10.0339 (7)0.0353 (7)0.0334 (7)0.0031 (5)0.0103 (5)0.0067 (5)
N20.0281 (6)0.0267 (6)0.0368 (7)0.0031 (4)0.0069 (5)0.0071 (5)
O10.0734 (10)0.0545 (8)0.0431 (7)0.0271 (7)0.0301 (7)0.0107 (6)
O20.0782 (11)0.0794 (12)0.0555 (9)0.0402 (9)0.0328 (8)0.0384 (8)
O30.0249 (5)0.0287 (5)0.0439 (6)0.0004 (4)0.0122 (4)0.0032 (4)
O40.0375 (6)0.0241 (5)0.0365 (6)0.0007 (4)0.0084 (5)0.0031 (4)
O50.0434 (7)0.0575 (8)0.0442 (7)0.0089 (6)0.0222 (6)0.0169 (6)
O60.0428 (7)0.0496 (7)0.0410 (7)0.0147 (6)0.0153 (5)0.0122 (6)
O70.0393 (6)0.0232 (5)0.0537 (7)0.0050 (4)0.0161 (5)0.0044 (5)
O80.0429 (7)0.0397 (7)0.0361 (6)0.0043 (5)0.0104 (5)0.0014 (5)
Geometric parameters (Å, º) top
C1—C61.392 (2)C11—C121.383 (3)
C1—C21.4030 (19)C11—H110.9300
C1—C71.5222 (18)C12—N21.318 (2)
C2—C31.394 (2)C12—H120.9300
C2—C81.489 (2)C13—N21.3655 (18)
C3—C41.378 (2)C13—C141.4097 (19)
C3—H30.9300C14—O71.3437 (18)
C4—C51.377 (2)C14—C151.362 (2)
C4—H40.9300C15—C161.400 (3)
C5—C61.384 (2)C15—H150.9300
C5—H50.9300C16—C171.362 (3)
C6—N11.4654 (19)C16—H160.9300
C7—O41.2404 (17)C17—H170.9300
C7—O31.2577 (17)N1—O11.2106 (18)
C8—O61.2028 (19)N1—O21.2137 (19)
C8—O51.3142 (19)N2—H20.889 (9)
C9—C101.403 (2)O5—H5A0.823 (10)
C9—C131.4085 (19)O7—H70.841 (9)
C9—C171.410 (2)O8—H8A0.828 (10)
C10—C111.363 (3)O8—H8B0.829 (10)
C10—H100.9300
C6—C1—C2116.16 (12)C10—C11—C12119.32 (15)
C6—C1—C7123.58 (12)C10—C11—H11120.3
C2—C1—C7120.21 (12)C12—C11—H11120.3
C3—C2—C1120.61 (14)N2—C12—C11120.37 (16)
C3—C2—C8118.90 (13)N2—C12—H12119.8
C1—C2—C8120.46 (12)C11—C12—H12119.8
C4—C3—C2121.06 (14)N2—C13—C9119.16 (13)
C4—C3—H3119.5N2—C13—C14119.89 (13)
C2—C3—H3119.5C9—C13—C14120.94 (13)
C5—C4—C3119.59 (14)O7—C14—C15126.44 (14)
C5—C4—H4120.2O7—C14—C13115.32 (13)
C3—C4—H4120.2C15—C14—C13118.23 (14)
C4—C5—C6118.98 (15)C14—C15—C16121.17 (15)
C4—C5—H5120.5C14—C15—H15119.4
C6—C5—H5120.5C16—C15—H15119.4
C5—C6—C1123.52 (14)C17—C16—C15121.51 (16)
C5—C6—N1116.10 (13)C17—C16—H16119.2
C1—C6—N1120.38 (12)C15—C16—H16119.2
O4—C7—O3125.72 (13)C16—C17—C9119.08 (15)
O4—C7—C1116.86 (12)C16—C17—H17120.5
O3—C7—C1117.37 (12)C9—C17—H17120.5
O6—C8—O5124.10 (15)O1—N1—O2122.38 (15)
O6—C8—C2124.14 (14)O1—N1—C6119.10 (13)
O5—C8—C2111.75 (13)O2—N1—C6118.52 (14)
C10—C9—C13117.26 (14)C12—N2—C13122.68 (14)
C10—C9—C17123.74 (14)C12—N2—H2119.6 (14)
C13—C9—C17119.00 (14)C13—N2—H2117.5 (14)
C11—C10—C9121.17 (15)C8—O5—H5A110.8 (19)
C11—C10—H10119.4C14—O7—H7110.7 (17)
C9—C10—H10119.4H8A—O8—H8B105 (2)
C6—C1—C2—C32.4 (2)C9—C10—C11—C121.1 (3)
C7—C1—C2—C3179.76 (13)C10—C11—C12—N20.1 (3)
C6—C1—C2—C8175.78 (13)C10—C9—C13—N20.3 (2)
C7—C1—C2—C82.0 (2)C17—C9—C13—N2179.84 (14)
C1—C2—C3—C40.0 (2)C10—C9—C13—C14179.04 (14)
C8—C2—C3—C4178.20 (15)C17—C9—C13—C140.8 (2)
C2—C3—C4—C52.1 (3)N2—C13—C14—O72.0 (2)
C3—C4—C5—C61.7 (3)C9—C13—C14—O7177.38 (14)
C4—C5—C6—C10.8 (2)N2—C13—C14—C15177.96 (14)
C4—C5—C6—N1178.24 (15)C9—C13—C14—C152.7 (2)
C2—C1—C6—C52.9 (2)O7—C14—C15—C16177.32 (17)
C7—C1—C6—C5179.40 (14)C13—C14—C15—C162.8 (2)
C2—C1—C6—N1176.16 (13)C14—C15—C16—C171.0 (3)
C7—C1—C6—N11.6 (2)C15—C16—C17—C91.0 (3)
C6—C1—C7—O496.24 (16)C10—C9—C17—C16179.12 (17)
C2—C1—C7—O481.38 (17)C13—C9—C17—C161.0 (2)
C6—C1—C7—O385.96 (18)C5—C6—N1—O1178.42 (16)
C2—C1—C7—O396.42 (16)C1—C6—N1—O10.7 (2)
C3—C2—C8—O6157.79 (16)C5—C6—N1—O22.0 (2)
C1—C2—C8—O624.0 (2)C1—C6—N1—O2178.93 (17)
C3—C2—C8—O523.5 (2)C11—C12—N2—C131.5 (3)
C1—C2—C8—O5154.77 (14)C9—C13—N2—C121.6 (2)
C13—C9—C10—C111.0 (2)C14—C13—N2—C12177.75 (15)
C17—C9—C10—C11178.83 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (1)2.00 (1)2.8112 (16)151 (2)
O5—H5A···O8ii0.82 (1)1.78 (1)2.5928 (18)171 (3)
O7—H7···O3iii0.84 (1)1.82 (1)2.6482 (15)168 (2)
O8—H8B···O40.83 (1)2.07 (1)2.8683 (17)163 (2)
O8—H8A···O4ii0.83 (1)2.01 (1)2.8288 (18)170 (2)
C11—H11···O1iv0.932.423.295 (2)156
C12—H12···O6i0.932.483.343 (2)155
C16—H16···O2v0.932.523.413 (2)160
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.889 (9)2.002 (14)2.8112 (16)151 (2)
O5—H5A···O8ii0.823 (10)1.777 (11)2.5928 (18)171 (3)
O7—H7···O3iii0.841 (9)1.820 (11)2.6482 (15)168 (2)
O8—H8B···O40.829 (10)2.067 (12)2.8683 (17)163 (2)
O8—H8A···O4ii0.828 (10)2.009 (11)2.8288 (18)170 (2)
C11—H11···O1iv0.932.423.295 (2)156
C12—H12···O6i0.932.483.343 (2)155
C16—H16···O2v0.932.523.413 (2)160
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y, z+1.
 

Acknowledgements

The authors thank SAIF, IIT Madras for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastañeda, R., Antal, S. A., Draguta, S., Timofeeva, T. V. & Khrustalev, V. N. (2014). Acta Cryst. E70, o924–o925.  CSD CrossRef IUCr Journals Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Discov. 14, 259–272.  CAS PubMed Google Scholar
First citationKafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3199–o3200.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857–o2859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o261-o262
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds