organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o242-o243

Crystal structure of 2-((1E)-{2-[bis­­(2-methyl­benzyl­sulfan­yl)methyl­­idene]hydrazin-1-yl­­idene}meth­yl)-6-meth­­oxy­phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: thahira@upm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 March 2015; accepted 11 March 2015; online 18 March 2015)

In the title compound, C25H26N2O2S2, the central CN2S2 atoms are almost coplanar (r.m.s. deviation = 0.0058 Å). One phenyl ring clearly lies to one side of the central plane, while the other is oriented in the plane but splayed. Despite the different relative orientations, the phenyl rings form similar dihedral angles of 64.90 (3) and 70.06 (3)° with the central plane, and 63.28 (4)° with each other. The benzene ring is twisted with respect to the central plane, forming a dihedral angle of 13.17 (7)°. The S2C=N, N—N and N—N=C bond lengths of 1.2919 (19), 1.4037 (17) and 1.2892 (19) Å, respectively, suggest limited conjugation over these atoms; the configuration about the N—N=C bond is E. An intra­molecular O—H⋯N hydrogen bond is noted. In the crystal, phen­yl–meth­oxy C—H⋯O and phen­yl–phenyl C—H⋯π inter­actions lead to supra­molecular double chains parallel to the b axis. These are connected into a layer via meth­yl–phenyl C—H⋯π inter­actions, and layers stack along the a axis, being connected by weak ππ inter­actions between phenyl rings [inter-centroid distance = 3.9915 (9) Å] so that a three-dimensional architecture ensues.

1. Related literature

For background to the coordination chemistry of di­thio­carbazate derivatives, see: Tarafder et al. (2002[Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H-K. (2002). Polyhedron, 21, 2683-2690.]); Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.], 2011[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., Watkin, D. J. & How, F. N. F. (2011). J. Chem. Crystallogr. 41, 491-495.]); Omar et al. (2014[Omar, S. A., Ravoof, T. B. S. A., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119-126.]). For related synthesis, see: Ali & Tarafder (1977[Ali, M. A. & Tarafder, M. T. (1977). J. Inorg. Nucl. Chem. 39, 1785-1791.]); Tarafder et al. (2002[Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H-K. (2002). Polyhedron, 21, 2683-2690.]); Manan et al. (2012[Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173-179.]). For a related structure but with the S atoms connected by an ethyl­ene bridge, and with a terminal furan-2-yl ring, i.e. N-1,3-di­thio­lan-2-yl­idene-N′-[(E)-furan-2-yl­methyl­idene]hydrazone, see: Liu et al. (2008[Liu, Y.-H., Li, Z.-G., Yang, L.-J. & Liu, X. L. (2008). J. Chem. Crystallogr. 38, 867-871.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H26N2O2S2

  • Mr = 450.60

  • Monoclinic, P 21 /c

  • a = 19.7865 (7) Å

  • b = 6.8600 (2) Å

  • c = 16.1805 (5) Å

  • β = 94.880 (3)°

  • V = 2188.31 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.41 mm−1

  • T = 100 K

  • 0.25 × 0.11 × 0.08 mm

2.2. Data collection

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.715, Tmax = 1.000

  • 40860 measured reflections

  • 4248 independent reflections

  • 3956 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.04

  • 4248 reflections

  • 286 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.84 (2) 1.87 (2) 2.6331 (16) 151 (2)
C5—H5⋯O2i 0.95 2.44 3.3868 (18) 176
C7—H7⋯Cg1i 0.95 2.68 3.5046 (15) 146
C9—H9BCg1ii 0.98 2.72 3.5482 (17) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For background to the coordination chemistry of dithiocarbazate derivatives, see: Tarafder et al. (2002); Ravoof et al. (2010, 2011); Omar et al. (2014). For related synthesis, see: Ali & Tarafder (1977); Tarafder et al. (2002); Manan et al. (2012). For a related structure but with the S atoms connected by an ethylene bridge, and with a terminal furan-2-yl ring, i.e. N-1,3-dithiolan-2-ylidene-N'-[(E)-furan-2-ylmethylidene]hydrazone, see: Liu et al. (2008).

Experimental top

The synthesis of S-2-methylbenzyldithiocarbazate (S2MBDTC) was accomplished as reported previously (Ravoof et al., 2011). The title compound was synthesized following an established literature procedure (Ravoof et al., 2011). S2MBDTC (2.12.g, 0.01 mol) was dissolved in hot acetonitrile (150 ml). This was added to an equimolar solution of 2-hydroxy-3-methoxybenzaldehyde (1.52 g, 0.01 mol) in ethanol (20 ml). The mixture was heated and stirred for 30 min and then allowed to stand for a few hours. The yellow crystals formed were filtered off and recrystallized from acetonitrile. Pale-yellow plates were obtained after 1 week by keeping the solution at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C). The O—H H atom was refined with O—H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Structure description top

For background to the coordination chemistry of dithiocarbazate derivatives, see: Tarafder et al. (2002); Ravoof et al. (2010, 2011); Omar et al. (2014). For related synthesis, see: Ali & Tarafder (1977); Tarafder et al. (2002); Manan et al. (2012). For a related structure but with the S atoms connected by an ethylene bridge, and with a terminal furan-2-yl ring, i.e. N-1,3-dithiolan-2-ylidene-N'-[(E)-furan-2-ylmethylidene]hydrazone, see: Liu et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents in projection down the b axis. The C—H···O, C—H···π and ππ interactions are shown as orange, purple and pink dashed lines, respectively.
2-((1E)-{2-[Bis(2-methylbenzylsulfanyl)methylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol top
Crystal data top
C25H26N2O2S2F(000) = 952
Mr = 450.60Dx = 1.368 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 19.7865 (7) ÅCell parameters from 17455 reflections
b = 6.8600 (2) Åθ = 3.4–71.3°
c = 16.1805 (5) ŵ = 2.41 mm1
β = 94.880 (3)°T = 100 K
V = 2188.31 (12) Å3Plate, pale-yellow
Z = 40.25 × 0.11 × 0.08 mm
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
4248 independent reflections
Radiation source: fine-focus sealed tube3956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.1952 pixels mm-1θmax = 71.4°, θmin = 4.5°
ω scansh = 2424
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 88
Tmin = 0.715, Tmax = 1.000l = 1919
40860 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.9765P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4248 reflectionsΔρmax = 0.41 e Å3
286 parametersΔρmin = 0.24 e Å3
Crystal data top
C25H26N2O2S2V = 2188.31 (12) Å3
Mr = 450.60Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.7865 (7) ŵ = 2.41 mm1
b = 6.8600 (2) ÅT = 100 K
c = 16.1805 (5) Å0.25 × 0.11 × 0.08 mm
β = 94.880 (3)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
4248 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3956 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.033
40860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
4248 reflectionsΔρmin = 0.24 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31760 (2)0.15598 (5)0.33906 (2)0.01851 (11)
S20.22443 (2)0.01673 (5)0.46350 (2)0.01756 (11)
O10.29427 (6)0.56093 (16)0.18572 (7)0.0234 (2)
H1O0.2807 (10)0.492 (3)0.2236 (10)0.035*
O20.32372 (5)0.83198 (15)0.08026 (7)0.0220 (2)
N10.19930 (6)0.32696 (18)0.36803 (7)0.0176 (3)
N20.22172 (6)0.44896 (18)0.30629 (7)0.0173 (3)
C10.24117 (7)0.1860 (2)0.38658 (8)0.0159 (3)
C20.36133 (8)0.0340 (2)0.40266 (10)0.0219 (3)
H2A0.36530.00690.46150.026*
H2B0.33450.15590.39810.026*
C30.43130 (7)0.0713 (2)0.37492 (9)0.0184 (3)
C40.48507 (8)0.0607 (2)0.39319 (9)0.0179 (3)
C50.54953 (8)0.0092 (2)0.37141 (9)0.0191 (3)
H50.58620.09710.38290.023*
C60.56105 (8)0.1674 (2)0.33335 (9)0.0205 (3)
H60.60550.20020.32000.025*
C70.50798 (8)0.2964 (2)0.31473 (9)0.0214 (3)
H70.51570.41750.28860.026*
C80.44318 (8)0.2458 (2)0.33495 (9)0.0210 (3)
H80.40640.33220.32120.025*
C90.47480 (8)0.2536 (2)0.43450 (10)0.0229 (3)
H9A0.51780.32540.44000.034*
H9B0.45920.23150.48960.034*
H9C0.44070.32960.40080.034*
C100.14184 (7)0.0968 (2)0.49331 (9)0.0180 (3)
H10A0.13650.05060.55030.022*
H10B0.14110.24110.49430.022*
C110.08218 (7)0.0259 (2)0.43695 (9)0.0180 (3)
C120.06032 (7)0.1688 (2)0.43911 (9)0.0189 (3)
C130.00459 (8)0.2245 (2)0.38554 (9)0.0228 (3)
H130.01070.35580.38610.027*
C140.02900 (8)0.0927 (3)0.33158 (10)0.0249 (3)
H140.06640.13440.29520.030*
C150.00799 (8)0.1002 (2)0.33070 (9)0.0232 (3)
H150.03140.19170.29470.028*
C160.04763 (8)0.1581 (2)0.38300 (9)0.0201 (3)
H160.06240.28970.38210.024*
C170.09534 (8)0.3151 (2)0.49745 (9)0.0227 (3)
H17A0.06920.43660.49550.034*
H17B0.09870.26310.55400.034*
H17C0.14100.34090.48080.034*
C180.18647 (7)0.6061 (2)0.29468 (9)0.0171 (3)
H180.14900.62740.32670.020*
C190.20239 (7)0.7516 (2)0.23404 (8)0.0168 (3)
C200.25580 (7)0.7241 (2)0.18293 (9)0.0178 (3)
C210.27077 (7)0.8714 (2)0.12674 (9)0.0179 (3)
C220.23361 (8)1.0427 (2)0.12261 (9)0.0193 (3)
H220.24431.14290.08530.023*
C230.18044 (8)1.0686 (2)0.17308 (9)0.0203 (3)
H230.15491.18600.16940.024*
C240.16474 (7)0.9262 (2)0.22791 (9)0.0190 (3)
H240.12840.94530.26180.023*
C250.33745 (8)0.9728 (2)0.01891 (10)0.0223 (3)
H25A0.29760.98700.02090.034*
H25B0.37620.92960.01030.034*
H25C0.34801.09850.04580.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01353 (19)0.0233 (2)0.01915 (19)0.00182 (13)0.00389 (13)0.00516 (13)
S20.01378 (19)0.02052 (19)0.01875 (19)0.00014 (13)0.00349 (13)0.00367 (13)
O10.0240 (6)0.0197 (5)0.0281 (6)0.0072 (4)0.0118 (5)0.0080 (5)
O20.0203 (5)0.0228 (5)0.0240 (5)0.0052 (4)0.0079 (4)0.0076 (4)
N10.0168 (6)0.0180 (6)0.0184 (6)0.0019 (5)0.0030 (5)0.0006 (5)
N20.0157 (6)0.0186 (6)0.0179 (6)0.0006 (5)0.0030 (5)0.0015 (5)
C10.0133 (7)0.0191 (7)0.0155 (6)0.0036 (5)0.0018 (5)0.0015 (5)
C20.0162 (7)0.0242 (8)0.0257 (8)0.0031 (6)0.0036 (6)0.0093 (6)
C30.0150 (7)0.0232 (7)0.0171 (7)0.0017 (6)0.0018 (5)0.0063 (6)
C40.0190 (7)0.0200 (7)0.0149 (6)0.0005 (6)0.0020 (5)0.0033 (5)
C50.0165 (7)0.0234 (8)0.0174 (7)0.0019 (6)0.0016 (6)0.0038 (6)
C60.0163 (7)0.0281 (8)0.0178 (7)0.0037 (6)0.0047 (6)0.0039 (6)
C70.0246 (8)0.0217 (7)0.0182 (7)0.0026 (6)0.0034 (6)0.0007 (6)
C80.0193 (7)0.0222 (7)0.0210 (7)0.0030 (6)0.0002 (6)0.0020 (6)
C90.0223 (8)0.0225 (8)0.0239 (7)0.0012 (6)0.0015 (6)0.0004 (6)
C100.0144 (7)0.0224 (7)0.0180 (7)0.0001 (6)0.0057 (5)0.0016 (6)
C110.0137 (7)0.0234 (7)0.0178 (7)0.0010 (6)0.0069 (5)0.0021 (6)
C120.0173 (7)0.0230 (7)0.0175 (7)0.0016 (6)0.0077 (6)0.0006 (6)
C130.0202 (8)0.0249 (8)0.0243 (8)0.0039 (6)0.0076 (6)0.0024 (6)
C140.0150 (7)0.0377 (9)0.0223 (7)0.0048 (7)0.0032 (6)0.0017 (7)
C150.0171 (7)0.0309 (8)0.0223 (7)0.0046 (6)0.0051 (6)0.0053 (6)
C160.0178 (7)0.0208 (7)0.0228 (7)0.0008 (6)0.0075 (6)0.0007 (6)
C170.0238 (8)0.0217 (7)0.0233 (7)0.0002 (6)0.0054 (6)0.0020 (6)
C180.0131 (7)0.0213 (7)0.0168 (7)0.0009 (5)0.0017 (5)0.0029 (6)
C190.0152 (7)0.0183 (7)0.0164 (7)0.0007 (5)0.0004 (5)0.0020 (5)
C200.0150 (7)0.0178 (7)0.0202 (7)0.0022 (5)0.0001 (5)0.0006 (6)
C210.0156 (7)0.0206 (7)0.0174 (7)0.0007 (6)0.0004 (5)0.0004 (6)
C220.0198 (7)0.0190 (7)0.0185 (7)0.0007 (6)0.0012 (6)0.0031 (6)
C230.0198 (7)0.0182 (7)0.0224 (7)0.0050 (6)0.0022 (6)0.0015 (6)
C240.0148 (7)0.0227 (8)0.0192 (7)0.0025 (6)0.0010 (5)0.0037 (6)
C250.0237 (8)0.0219 (8)0.0221 (7)0.0005 (6)0.0056 (6)0.0048 (6)
Geometric parameters (Å, º) top
S1—C11.7658 (14)C10—H10B0.9900
S1—C21.8317 (15)C11—C161.396 (2)
S2—C11.7543 (14)C11—C121.405 (2)
S2—C101.8271 (14)C12—C131.397 (2)
O1—C201.3519 (18)C12—C171.506 (2)
O1—H1O0.835 (9)C13—C141.387 (2)
O2—C211.3676 (18)C13—H130.9500
O2—C251.4279 (18)C14—C151.387 (2)
N1—C11.2919 (19)C14—H140.9500
N1—N21.4037 (17)C15—C161.388 (2)
N2—C181.2892 (19)C15—H150.9500
C2—C31.513 (2)C16—H160.9500
C2—H2A0.9900C17—H17A0.9800
C2—H2B0.9900C17—H17B0.9800
C3—C81.390 (2)C17—H17C0.9800
C3—C41.409 (2)C18—C191.453 (2)
C4—C51.397 (2)C18—H180.9500
C4—C91.504 (2)C19—C201.409 (2)
C5—C61.387 (2)C19—C241.409 (2)
C5—H50.9500C20—C211.408 (2)
C6—C71.387 (2)C21—C221.385 (2)
C6—H60.9500C22—C231.397 (2)
C7—C81.394 (2)C22—H220.9500
C7—H70.9500C23—C241.373 (2)
C8—H80.9500C23—H230.9500
C9—H9A0.9800C24—H240.9500
C9—H9B0.9800C25—H25A0.9800
C9—H9C0.9800C25—H25B0.9800
C10—C111.509 (2)C25—H25C0.9800
C10—H10A0.9900
C1—S1—C2102.68 (7)C13—C12—C11118.25 (14)
C1—S2—C10102.44 (7)C13—C12—C17120.22 (14)
C20—O1—H1O105.9 (14)C11—C12—C17121.53 (14)
C21—O2—C25116.65 (11)C14—C13—C12121.52 (15)
C1—N1—N2112.11 (12)C14—C13—H13119.2
C18—N2—N1113.74 (12)C12—C13—H13119.2
N1—C1—S2120.28 (11)C13—C14—C15120.04 (14)
N1—C1—S1122.83 (11)C13—C14—H14120.0
S2—C1—S1116.88 (8)C15—C14—H14120.0
C3—C2—S1110.74 (10)C14—C15—C16119.30 (14)
C3—C2—H2A109.5C14—C15—H15120.3
S1—C2—H2A109.5C16—C15—H15120.3
C3—C2—H2B109.5C15—C16—C11121.05 (14)
S1—C2—H2B109.5C15—C16—H16119.5
H2A—C2—H2B108.1C11—C16—H16119.5
C8—C3—C4119.77 (13)C12—C17—H17A109.5
C8—C3—C2118.61 (13)C12—C17—H17B109.5
C4—C3—C2121.50 (14)H17A—C17—H17B109.5
C5—C4—C3118.28 (14)C12—C17—H17C109.5
C5—C4—C9119.68 (13)H17A—C17—H17C109.5
C3—C4—C9122.04 (13)H17B—C17—H17C109.5
C6—C5—C4121.39 (14)N2—C18—C19121.81 (13)
C6—C5—H5119.3N2—C18—H18119.1
C4—C5—H5119.3C19—C18—H18119.1
C7—C6—C5120.27 (14)C20—C19—C24119.42 (13)
C7—C6—H6119.9C20—C19—C18121.40 (13)
C5—C6—H6119.9C24—C19—C18119.16 (13)
C6—C7—C8119.00 (14)O1—C20—C21117.85 (13)
C6—C7—H7120.5O1—C20—C19122.66 (13)
C8—C7—H7120.5C21—C20—C19119.49 (13)
C3—C8—C7121.26 (14)O2—C21—C22124.72 (13)
C3—C8—H8119.4O2—C21—C20115.23 (13)
C7—C8—H8119.4C22—C21—C20120.03 (13)
C4—C9—H9A109.5C21—C22—C23120.19 (14)
C4—C9—H9B109.5C21—C22—H22119.9
H9A—C9—H9B109.5C23—C22—H22119.9
C4—C9—H9C109.5C24—C23—C22120.68 (14)
H9A—C9—H9C109.5C24—C23—H23119.7
H9B—C9—H9C109.5C22—C23—H23119.7
C11—C10—S2114.51 (10)C23—C24—C19120.18 (13)
C11—C10—H10A108.6C23—C24—H24119.9
S2—C10—H10A108.6C19—C24—H24119.9
C11—C10—H10B108.6O2—C25—H25A109.5
S2—C10—H10B108.6O2—C25—H25B109.5
H10A—C10—H10B107.6H25A—C25—H25B109.5
C16—C11—C12119.83 (14)O2—C25—H25C109.5
C16—C11—C10118.98 (14)H25A—C25—H25C109.5
C12—C11—C10121.18 (13)H25B—C25—H25C109.5
C1—N1—N2—C18170.55 (13)C10—C11—C12—C170.1 (2)
N2—N1—C1—S2179.01 (10)C11—C12—C13—C140.3 (2)
N2—N1—C1—S10.46 (17)C17—C12—C13—C14179.51 (14)
C10—S2—C1—N12.58 (13)C12—C13—C14—C150.8 (2)
C10—S2—C1—S1178.79 (8)C13—C14—C15—C161.3 (2)
C2—S1—C1—N1169.89 (12)C14—C15—C16—C110.7 (2)
C2—S1—C1—S28.71 (10)C12—C11—C16—C150.4 (2)
C1—S1—C2—C3176.06 (11)C10—C11—C16—C15179.26 (13)
S1—C2—C3—C8109.37 (14)N1—N2—C18—C19179.27 (12)
S1—C2—C3—C474.54 (16)N2—C18—C19—C202.3 (2)
C8—C3—C4—C51.1 (2)N2—C18—C19—C24175.95 (13)
C2—C3—C4—C5174.96 (13)C24—C19—C20—O1179.65 (13)
C8—C3—C4—C9178.52 (13)C18—C19—C20—O11.4 (2)
C2—C3—C4—C95.4 (2)C24—C19—C20—C210.1 (2)
C3—C4—C5—C60.5 (2)C18—C19—C20—C21178.11 (13)
C9—C4—C5—C6179.90 (13)C25—O2—C21—C225.1 (2)
C4—C5—C6—C71.1 (2)C25—O2—C21—C20176.10 (13)
C5—C6—C7—C80.1 (2)O1—C20—C21—O20.0 (2)
C4—C3—C8—C72.1 (2)C19—C20—C21—O2179.55 (12)
C2—C3—C8—C7174.06 (13)O1—C20—C21—C22178.84 (13)
C6—C7—C8—C31.5 (2)C19—C20—C21—C220.7 (2)
C1—S2—C10—C1182.27 (12)O2—C21—C22—C23179.84 (14)
S2—C10—C11—C16106.83 (14)C20—C21—C22—C231.1 (2)
S2—C10—C11—C1274.37 (15)C21—C22—C23—C240.7 (2)
C16—C11—C12—C130.9 (2)C22—C23—C24—C190.2 (2)
C10—C11—C12—C13179.73 (13)C20—C19—C24—C230.6 (2)
C16—C11—C12—C17178.88 (13)C18—C19—C24—C23177.71 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.84 (2)1.87 (2)2.6331 (16)151 (2)
C5—H5···O2i0.952.443.3868 (18)176
C7—H7···Cg1i0.952.683.5046 (15)146
C9—H9B···Cg1ii0.982.723.5482 (17)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.836 (18)1.872 (18)2.6331 (16)151 (2)
C5—H5···O2i0.952.443.3868 (18)176
C7—H7···Cg1i0.952.683.5046 (15)146
C9—H9B···Cg1ii0.982.723.5482 (17)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

We thank the Department of Chemistry, Universiti Putra Malaysia for facilities. This research was funded by Universiti Putra Malaysia (UPM) and the Malaysian Government under the Geran UPM Scheme (RUGS No. IBT/2013/9419400), the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–02-13–1344FR) and the ScienceFund under the Ministry of Science, Technology and Innovation (MOSTI 06–01-04-SF1810). ENMY wishes to thank UPM for the award of a Graduate Research Fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, M. A. & Tarafder, M. T. (1977). J. Inorg. Nucl. Chem. 39, 1785–1791.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y.-H., Li, Z.-G., Yang, L.-J. & Liu, X. L. (2008). J. Chem. Crystallogr. 38, 867–871.  CSD CrossRef CAS Google Scholar
First citationManan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173–179.  Web of Science CSD CrossRef Google Scholar
First citationOmar, S. A., Ravoof, T. B. S. A., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., Watkin, D. J. & How, F. N. F. (2011). J. Chem. Crystallogr. 41, 491–495.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H-K. (2002). Polyhedron, 21, 2683–2690.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o242-o243
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds