metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m55-m56

Crystal structure of di­aqua­(μ2-tri­ethyl­ene­tetra­minehexa­acetato)­dizinc tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 January 2015; accepted 30 January 2015; online 7 February 2015)

The reaction of ZnO and tri­ethyl­ene­tetra­minehexaacetic acid (H6TTHA) in aqueous solution after refluxing yields the binuclear title compound, [Zn2(C18H26N4O12)(H2O)2]·4H2O. There is a centre of symmetry in the [Zn2(H2TTHA)(H2O)2] mol­ecule in the crystalline state. Both ZnII ions are octahedrally surrounded and bound by an N2O3 donor set from the H2TTHA4− anion and a water mol­ecule; the N atoms are cis and the water mol­ecule is trans to an N atom. The Zn⋯Zn separation is 7.562 (1) Å. An intra­molecular C—H⋯O inter­action is observed and both carboxyl­ate H atoms are disordered over two adjacent sites. In the crystal, the components are linked by O—H⋯O and C—H⋯O hydrogen bonds generating a three-dimensonal network.

1. Related literature

For general background to the complexes of tri­ethyl­ene­tetra­minehexaacetic acid, see: Long et al. (2003[Long, L.-S., Ren, Y.-P., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m456-m458.]); Lu & Zhu (2014[Lu, L.-P. & Zhu, M.-L. (2014). Antioxid. Redox Sign. 20, 2210-2224.]); Mondry & Starynowicz (1998[Mondry, A. & Starynowicz, P. (1998). J. Chem. Soc. Dalton Trans. pp. 859-864.]); Ouyang et al. (2007[Ouyang, Y., Zhang, W., Xu, N., Xu, G.-F., Liao, D.-Z., Yoshimura, K., Yan, S.-P. & Cheng, P. (2007). Inorg. Chem. 46, 8454-8456.]); Sethi et al. (2012[Sethi, N. K., Whitwood, A. C. & Bruce, D. W. (2012). Polyhedron, 33, 378-387.]); Shi et al. (2006[Shi, W., Chen, X.-Y., Zhao, B., Yu, A., Song, H.-B., Cheng, P., Wang, H.-G., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 3949-3957.]); Song et al. (2003[Song, L.-J., Zhang, J., Tang, Z.-R., Wang, W.-G. & Ju, Z.-F. (2003). Acta Cryst. E59, m867-m869.]); Thompson et al. (1998[Thompson, J. A., Scott, B. L. & Sauer, N. N. (1998). Acta Cryst. C54, 734-736.]); Wang et al. (2003[Wang, J., Liu, Z.-R., Zhang, X.-D., Jia, W.-G. & Li, H.-F. (2003). J. Mol. Struct. 644, 29-36.]); Wullens et al. (1996[Wullens, H., Devillers, M., Tinant, B. & Declercq, J.-P. (1996). J. Chem. Soc. Dalton Trans. pp. 2023-2029.]). For related structures, see: Carlson et al. (2010[Carlson, Z. A., Harrod, B., Widener, D., Howard, W. & Pang, K. (2010). J. Chem. Crystallogr. 40, 863-866.]); Qian et al. (2013[Qian, Q., Wu, J. & Qian, J. (2013). Acta Cryst. E69, m97.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn2(C18H26N4O12)(H2O)2]·4H2O

  • Mr = 729.26

  • Triclinic, [P \overline 1]

  • a = 7.1330 (14) Å

  • b = 8.7013 (16) Å

  • c = 11.979 (2) Å

  • α = 103.969 (2)°

  • β = 101.052 (2)°

  • γ = 100.882 (3)°

  • V = 686.2 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 298 K

  • 0.28 × 0.22 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.627, Tmax = 0.710

  • 3582 measured reflections

  • 2384 independent reflections

  • 2080 reflections with I > 2σ(I)

  • Rint = 0.057

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 0.99

  • 2384 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O7 2.003 (2)
Zn1—O1 2.063 (2)
Zn1—O3 2.112 (2)
Zn1—O5 2.130 (2)
Zn1—N1 2.150 (2)
Zn1—N2 2.243 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1 0.97 2.54 3.198 (4) 125
C2—H2A⋯O8i 0.97 2.52 3.476 (4) 168
C5—H5B⋯O4ii 0.97 2.48 3.428 (4) 166
O7—H71⋯O1iii 0.82 1.91 2.720 (3) 169
O7—H72⋯O8 0.82 1.83 2.627 (3) 164
O8—H81⋯O2iii 0.82 1.94 2.747 (4) 166
O8—H82⋯O9 0.82 1.96 2.734 (4) 157
O9—H91⋯O5iv 0.82 2.33 3.074 (4) 151
O9—H92⋯O6v 0.82 2.33 3.033 (4) 144
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Introduction top

Tri­ethyl­ene­tetra­mine­hexa­acetic acid(H6TTHA), a multidentate ligand having ten potential coordinating sites (six oxygen atoms and four nitro­gen atoms), can play an important role in the self-assembly of chelating metals. It can be employed as a structure-directing agent to form main group metal complexes(Wullens et al., 1996, Thompson et al., 1998), transition-metal complexes(Song et al., 2003, Long et al., 2003, Qian et al., 2013, Carlson et al., 2010, Sethi et al., 2012), lanthanide complexes(Wang et al., 2003, Mondry & Starynowicz, 1998) and 3d–4f coordination polymers(Ouyang et al., 2007, Shi et al., 2006). To our knowledge, Zn(II) ions strongly inhibits many protein tyrosine phosphatases(Lu & Zhu, 2014). As part of the ongoing study of metal complexes inhibiting protein tyrosine phosphatases, the aim of us is to synthesize new zinc complexes employing polyamino polycarb­oxy­lic acids to form stable and soluble complexes. In this contribution, crystal structure of a binuclear zinc(II) complex of H2TTHA is reported.

Experimental top

Synthesis and crystallization top

All chemicals were of reagent grade, commercially available and used without further purification. A mixture of H6TTHA (0.050 g, 0.10 mmol) and ZnO (0.016 g, 0.20 mmol) in 50 mL of deionized water in a flask was refluxed for 6 h. The clear solution was cooled to room temperature and filtered. The colorless filtrate was set aside at room temperature for three weeks. The title complex crystal was obtained as colourless blocks with yield 45%. Elemental Analysis(%): Cald. C 29.73, H 4.99, N 7.70; found C 29.52, H 5.05, N 7.57. Selected IR(KBr, cm-1): ν(O—H) 3445s, ν(C=O) 1732s, δ(O—H) 897m.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to C of the title complex were placed in geometrically idealized positions with Csp3—H = 0.97Å and with Uiso(H) = 1.2Ueq(C). The carboxyl H4 and H6 atoms are each located close to a crystallographic inversion centre between pairs of symmetry equivalent atoms of O4 and O6. Both H atoms were thus refined as 50% occupied. The O—H distances were constrained to be 0.82 Å and Uiso= 1.5Ueq(O). H atoms attached to O(water) atoms were located from difference Fourier maps; their bond lengths were idealized to 0.82 Å and they were refined using a riding model, with Uiso(H) = 1.5Ueq(O).

Results and discussion top

The molecular structure and the crystal packing are depicted in Figures 1 and 2, respectively. Selected bond lengths and bond angles are listed in Table 1. The Zn(II) ion has a six-coordinate pseudo-o­cta­hedral environment with two N and three O atoms from ligand H2TTHA anion as well as one water molecule. The complete binuclear molecule exists a centre of symmetry locating on the midpoint of bond C9—C9i (Symmetry code i -x, 2-y, 2-z). The distance of both Zn(II) ions in the complex is 7.562 (1) Å. The distance of Zn—O(water) is 2.003 (2) Å, which is the shortest in all coordinate bonds of the title complex, while Zn—O bond lengths are in the range of 2.063 (2) to 2.130 (2) Å, and the Zn—N bond lengths are 2.150 (3) and 2.243 (2) Å, respectively. All the geometrical features compare very well with those in some similar structures, such as [Zn(H2O)6][Zn2(H2O)2(TTHA)].4H2O(Carlson et al., 2010), [Co2(H2TTHA)(H2O)2].4H2O(Qian et al., 2013).

In the structure of the title complex, numerous inter­molecular hydrogen bonds (O—H···O; Table 3) play an important role in stabilizing the structure and linking ions and solvent water molecules. Additional nonclassical C—H···O hydrogen bonds (Table 3) occur in the structure, with C—H···O angles in the range 125–168° and C···O distances between 3.198 (4) and 3.476 (4) Å.

Related literature top

For general background to the complexes of triethylenetetraminehexaacetic acid, see: Long et al. (2003); Lu & Zhu (2014); Mondry & Starynowicz (1998); Ouyang et al. (2007); Sethi et al. (2012); Shi et al. (2006); Song et al. (2003); Thompson et al. (1998); Wang et al. (2003); Wullens et al. (1996). For related structures, see: Carlson et al. (2010); Qian et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex with displacement ellipsoids drawn at the 50% probability level. Dash open line indicates hydrogen bonding interaction.
[Figure 2] Fig. 2. The packing diagram of the title compound, Zn dark green C gray, N blue,H light green, O red.
Diaqua(µ2-triethylenetetraminehexaacetato)dizinc tetrahydrate top
Crystal data top
[Zn2(C18H26N4O12)(H2O)2]·4H2OZ = 1
Mr = 729.26F(000) = 378
Triclinic, P1Dx = 1.765 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1330 (14) ÅCell parameters from 2008 reflections
b = 8.7013 (16) Åθ = 2.6–26.9°
c = 11.979 (2) ŵ = 1.84 mm1
α = 103.969 (2)°T = 298 K
β = 101.052 (2)°Block, colorless
γ = 100.882 (3)°0.28 × 0.22 × 0.20 mm
V = 686.2 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2384 independent reflections
Radiation source: fine-focus sealed tube2080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 78
Tmin = 0.627, Tmax = 0.710k = 1010
3582 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
2384 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Zn2(C18H26N4O12)(H2O)2]·4H2Oγ = 100.882 (3)°
Mr = 729.26V = 686.2 (2) Å3
Triclinic, P1Z = 1
a = 7.1330 (14) ÅMo Kα radiation
b = 8.7013 (16) ŵ = 1.84 mm1
c = 11.979 (2) ÅT = 298 K
α = 103.969 (2)°0.28 × 0.22 × 0.20 mm
β = 101.052 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2384 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2080 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.710Rint = 0.057
3582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.99Δρmax = 0.49 e Å3
2384 reflectionsΔρmin = 0.76 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.27323 (5)0.29051 (4)0.29273 (3)0.02494 (14)
N10.0979 (4)0.0459 (3)0.2561 (2)0.0249 (5)
N20.0131 (4)0.3615 (3)0.3509 (2)0.0257 (5)
O10.3853 (3)0.2527 (2)0.45320 (18)0.0296 (5)
O20.3234 (4)0.0827 (3)0.5614 (2)0.0516 (7)
O30.4168 (3)0.1580 (3)0.17890 (19)0.0331 (5)
O40.3493 (3)0.0649 (3)0.0251 (2)0.0390 (6)
H40.45740.03690.01200.058*0.50
O50.1248 (3)0.3442 (3)0.14014 (18)0.0312 (5)
O60.0748 (4)0.4953 (3)0.0850 (2)0.0437 (6)
H60.03930.48970.02320.065*0.50
O70.4665 (3)0.5080 (2)0.3369 (2)0.0377 (5)
H710.50330.57120.40420.057*
H720.45530.56220.28980.057*
C10.3041 (5)0.1170 (4)0.4670 (3)0.0315 (7)
C20.1742 (5)0.0156 (4)0.3559 (3)0.0332 (7)
H2A0.24990.09260.32940.040*
H2B0.06340.07470.37720.040*
C30.3124 (4)0.0213 (4)0.1162 (3)0.0293 (7)
C40.1217 (5)0.0520 (4)0.1428 (3)0.0300 (7)
H4A0.01140.05830.07890.036*
H4B0.12040.16230.14670.036*
C50.1051 (4)0.0634 (4)0.2504 (3)0.0341 (7)
H5A0.18710.03700.25390.041*
H5B0.15850.08250.17560.041*
C60.1089 (4)0.2049 (4)0.3529 (3)0.0308 (7)
H6A0.24380.21330.34780.037*
H6B0.06020.18350.42750.037*
C70.0878 (5)0.4310 (4)0.2619 (3)0.0383 (8)
H7A0.07910.54490.29960.046*
H7B0.22620.37400.23560.046*
C80.0028 (5)0.4194 (4)0.1545 (3)0.0303 (7)
C90.0821 (4)0.4801 (4)0.4711 (3)0.0293 (7)
H9A0.16060.58080.46570.035*
H9B0.16710.43670.52210.035*
O80.4369 (4)0.7275 (3)0.2220 (2)0.0575 (7)
H810.51960.79180.27980.086*
H820.49630.69240.17310.086*
O90.6210 (6)0.6889 (4)0.0405 (3)0.0923 (12)
H910.65120.68310.02290.138*
H920.66380.62050.06730.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0260 (2)0.0262 (2)0.0228 (2)0.00595 (14)0.00896 (14)0.00540 (14)
N10.0269 (13)0.0268 (12)0.0197 (13)0.0050 (10)0.0083 (10)0.0037 (10)
N20.0287 (14)0.0320 (13)0.0212 (13)0.0122 (11)0.0122 (11)0.0081 (11)
O10.0362 (12)0.0283 (11)0.0223 (11)0.0051 (9)0.0041 (9)0.0079 (9)
O20.0700 (18)0.0531 (15)0.0268 (13)0.0008 (13)0.0058 (12)0.0186 (12)
O30.0289 (12)0.0353 (12)0.0319 (13)0.0060 (10)0.0140 (10)0.0003 (10)
O40.0419 (14)0.0420 (13)0.0306 (13)0.0098 (11)0.0181 (10)0.0007 (11)
O50.0339 (12)0.0416 (12)0.0242 (11)0.0155 (10)0.0122 (9)0.0121 (10)
O60.0534 (16)0.0635 (16)0.0340 (13)0.0340 (13)0.0195 (12)0.0288 (12)
O70.0442 (14)0.0321 (12)0.0300 (13)0.0023 (10)0.0068 (10)0.0075 (10)
C10.0356 (18)0.0370 (17)0.0258 (17)0.0140 (15)0.0111 (14)0.0097 (14)
C20.0449 (19)0.0280 (16)0.0296 (18)0.0088 (14)0.0127 (15)0.0111 (14)
C30.0320 (17)0.0348 (17)0.0245 (17)0.0140 (14)0.0092 (14)0.0086 (14)
C40.0348 (18)0.0285 (15)0.0231 (16)0.0047 (13)0.0093 (13)0.0017 (13)
C50.0263 (17)0.0383 (18)0.0325 (18)0.0018 (14)0.0097 (14)0.0038 (15)
C60.0256 (16)0.0378 (17)0.0302 (18)0.0066 (14)0.0136 (13)0.0074 (14)
C70.043 (2)0.055 (2)0.0338 (19)0.0285 (17)0.0212 (16)0.0214 (17)
C80.0318 (17)0.0341 (17)0.0258 (17)0.0094 (14)0.0080 (13)0.0088 (14)
C90.0277 (16)0.0328 (16)0.0285 (17)0.0088 (14)0.0136 (13)0.0048 (13)
O80.0607 (18)0.0574 (17)0.0524 (17)0.0100 (14)0.0120 (14)0.0173 (14)
O90.115 (3)0.089 (2)0.108 (3)0.047 (2)0.076 (3)0.036 (2)
Geometric parameters (Å, º) top
Zn1—O72.003 (2)C1—C21.530 (4)
Zn1—O12.063 (2)C2—H2A0.9700
Zn1—O32.112 (2)C2—H2B0.9700
Zn1—O52.130 (2)C3—C41.516 (4)
Zn1—N12.150 (2)C4—H4A0.9700
Zn1—N22.243 (2)C4—H4B0.9700
N1—C51.474 (4)C5—C61.523 (4)
N1—C41.477 (4)C5—H5A0.9700
N1—C21.477 (4)C5—H5B0.9700
N2—C61.480 (4)C6—H6A0.9700
N2—C71.483 (4)C6—H6B0.9700
N2—C91.483 (4)C7—C81.514 (4)
O1—C11.277 (4)C7—H7A0.9700
O2—C11.227 (4)C7—H7B0.9700
O3—C31.246 (4)C9—C9i1.523 (5)
O4—C31.270 (4)C9—H9A0.9700
O4—H40.8200C9—H9B0.9700
O5—C81.232 (4)O8—H810.8203
O6—C81.274 (4)O8—H820.8203
O6—H60.8199O9—H910.8207
O7—H710.8199O9—H920.8211
O7—H720.8200
O7—Zn1—O191.79 (8)N1—C2—H2B108.6
O7—Zn1—O397.19 (9)C1—C2—H2B108.6
O1—Zn1—O3102.29 (8)H2A—C2—H2B107.6
O7—Zn1—O588.93 (9)O3—C3—O4124.8 (3)
O1—Zn1—O5171.03 (8)O3—C3—C4120.6 (3)
O3—Zn1—O586.48 (8)O4—C3—C4114.6 (3)
O7—Zn1—N1172.37 (9)N1—C4—C3111.7 (2)
O1—Zn1—N182.46 (8)N1—C4—H4A109.3
O3—Zn1—N179.26 (9)C3—C4—H4A109.3
O5—Zn1—N197.53 (9)N1—C4—H4B109.3
O7—Zn1—N2101.71 (9)C3—C4—H4B109.3
O1—Zn1—N292.61 (9)H4A—C4—H4B107.9
O3—Zn1—N2155.51 (9)N1—C5—C6110.8 (2)
O5—Zn1—N278.50 (8)N1—C5—H5A109.5
N1—Zn1—N283.63 (9)C6—C5—H5A109.5
C5—N1—C4113.2 (2)N1—C5—H5B109.5
C5—N1—C2112.3 (2)C6—C5—H5B109.5
C4—N1—C2111.4 (2)H5A—C5—H5B108.1
C5—N1—Zn1104.87 (18)N2—C6—C5111.6 (2)
C4—N1—Zn1107.68 (17)N2—C6—H6A109.3
C2—N1—Zn1106.79 (18)C5—C6—H6A109.3
C6—N2—C7112.4 (3)N2—C6—H6B109.3
C6—N2—C9111.3 (2)C5—C6—H6B109.3
C7—N2—C9112.1 (2)H6A—C6—H6B108.0
C6—N2—Zn1103.30 (16)N2—C7—C8113.6 (2)
C7—N2—Zn1108.16 (17)N2—C7—H7A108.8
C9—N2—Zn1109.12 (17)C8—C7—H7A108.8
C1—O1—Zn1115.50 (19)N2—C7—H7B108.8
C3—O3—Zn1113.58 (19)C8—C7—H7B108.8
C3—O4—H4118.3H7A—C7—H7B107.7
C8—O5—Zn1116.02 (19)O5—C8—O6125.4 (3)
C8—O6—H6118.2O5—C8—C7121.3 (3)
Zn1—O7—H71123.8O6—C8—C7113.3 (3)
Zn1—O7—H72117.0N2—C9—C9i114.6 (3)
H71—O7—H72108.0N2—C9—H9A108.6
O2—C1—O1125.6 (3)C9i—C9—H9A108.6
O2—C1—C2117.1 (3)N2—C9—H9B108.6
O1—C1—C2117.3 (3)C9i—C9—H9B108.6
N1—C2—C1114.6 (2)H9A—C9—H9B107.6
N1—C2—H2A108.6H81—O8—H82107.0
C1—C2—H2A108.6H91—O9—H92106.8
O1—Zn1—N1—C5111.87 (18)O7—Zn1—O5—C887.6 (2)
O3—Zn1—N1—C5144.02 (19)O3—Zn1—O5—C8175.2 (2)
O5—Zn1—N1—C559.08 (19)N1—Zn1—O5—C896.5 (2)
N2—Zn1—N1—C518.38 (18)N2—Zn1—O5—C814.6 (2)
O1—Zn1—N1—C4127.26 (19)Zn1—O1—C1—O2166.3 (3)
O3—Zn1—N1—C423.16 (18)Zn1—O1—C1—C214.7 (3)
O5—Zn1—N1—C461.78 (19)C5—N1—C2—C197.9 (3)
N2—Zn1—N1—C4139.24 (19)C4—N1—C2—C1133.9 (3)
O1—Zn1—N1—C27.52 (18)Zn1—N1—C2—C116.6 (3)
O3—Zn1—N1—C296.59 (19)O2—C1—C2—N1159.0 (3)
O5—Zn1—N1—C2178.48 (18)O1—C1—C2—N121.9 (4)
N2—Zn1—N1—C2101.02 (19)Zn1—O3—C3—O4164.5 (2)
O7—Zn1—N2—C6164.05 (17)Zn1—O3—C3—C413.1 (4)
O1—Zn1—N2—C671.68 (18)C5—N1—C4—C3138.9 (3)
O3—Zn1—N2—C656.2 (3)C2—N1—C4—C393.3 (3)
O5—Zn1—N2—C6109.49 (18)Zn1—N1—C4—C323.4 (3)
N1—Zn1—N2—C610.43 (18)O3—C3—C4—N17.9 (4)
O7—Zn1—N2—C776.6 (2)O4—C3—C4—N1174.3 (2)
O1—Zn1—N2—C7169.0 (2)C4—N1—C5—C6162.2 (3)
O3—Zn1—N2—C763.1 (3)C2—N1—C5—C670.6 (3)
O5—Zn1—N2—C79.9 (2)Zn1—N1—C5—C645.0 (3)
N1—Zn1—N2—C7108.9 (2)C7—N2—C6—C578.5 (3)
O7—Zn1—N2—C945.53 (19)C9—N2—C6—C5154.9 (3)
O1—Zn1—N2—C946.84 (19)Zn1—N2—C6—C537.9 (3)
O3—Zn1—N2—C9174.73 (19)N1—C5—C6—N259.6 (3)
O5—Zn1—N2—C9131.99 (19)C6—N2—C7—C8107.8 (3)
N1—Zn1—N2—C9128.95 (19)C9—N2—C7—C8126.0 (3)
O7—Zn1—O1—C1178.9 (2)Zn1—N2—C7—C85.6 (3)
O3—Zn1—O1—C181.1 (2)Zn1—O5—C8—O6162.7 (3)
N1—Zn1—O1—C13.9 (2)Zn1—O5—C8—C716.4 (4)
N2—Zn1—O1—C179.3 (2)N2—C7—C8—O56.7 (5)
O7—Zn1—O3—C3166.2 (2)N2—C7—C8—O6172.5 (3)
O1—Zn1—O3—C3100.4 (2)C6—N2—C9—C9i58.1 (4)
O5—Zn1—O3—C377.7 (2)C7—N2—C9—C9i68.7 (4)
N1—Zn1—O3—C320.6 (2)Zn1—N2—C9—C9i171.5 (3)
N2—Zn1—O3—C325.8 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.972.543.198 (4)125
C2—H2A···O8ii0.972.523.476 (4)168
C5—H5B···O4iii0.972.483.428 (4)166
O7—H71···O1iv0.821.912.720 (3)169
O7—H72···O80.821.832.627 (3)164
O8—H81···O2iv0.821.942.747 (4)166
O8—H82···O90.821.962.734 (4)157
O9—H91···O5v0.822.333.074 (4)151
O9—H92···O6vi0.822.333.033 (4)144
Symmetry codes: (ii) x, y1, z; (iii) x, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y, z.
Selected bond lengths (Å) top
Zn1—O72.003 (2)Zn1—O52.130 (2)
Zn1—O12.063 (2)Zn1—N12.150 (2)
Zn1—O32.112 (2)Zn1—N22.243 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.972.543.198 (4)125
C2—H2A···O8i0.972.523.476 (4)168
C5—H5B···O4ii0.972.483.428 (4)166
O7—H71···O1iii0.821.912.720 (3)169
O7—H72···O80.821.832.627 (3)164
O8—H81···O2iii0.821.942.747 (4)166
O8—H82···O90.821.962.734 (4)157
O9—H91···O5iv0.822.333.074 (4)151
O9—H92···O6v0.822.333.033 (4)144
Symmetry codes: (i) x, y1, z; (ii) x, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 21171109), SRFDP (grant No. 20121401110005), the Natural Science Foundation of Shanxi Province of China (grant No. 2011011009–1) and the Research Project supported by Shanxi Scholarship Council of China (grant No. 2013–026).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlson, Z. A., Harrod, B., Widener, D., Howard, W. & Pang, K. (2010). J. Chem. Crystallogr. 40, 863–866.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, L.-S., Ren, Y.-P., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m456–m458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, L.-P. & Zhu, M.-L. (2014). Antioxid. Redox Sign. 20, 2210–2224.  Web of Science CrossRef CAS Google Scholar
First citationMondry, A. & Starynowicz, P. (1998). J. Chem. Soc. Dalton Trans. pp. 859–864.  Web of Science CSD CrossRef Google Scholar
First citationOuyang, Y., Zhang, W., Xu, N., Xu, G.-F., Liao, D.-Z., Yoshimura, K., Yan, S.-P. & Cheng, P. (2007). Inorg. Chem. 46, 8454–8456.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQian, Q., Wu, J. & Qian, J. (2013). Acta Cryst. E69, m97.  CSD CrossRef IUCr Journals Google Scholar
First citationSethi, N. K., Whitwood, A. C. & Bruce, D. W. (2012). Polyhedron, 33, 378–387.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W., Chen, X.-Y., Zhao, B., Yu, A., Song, H.-B., Cheng, P., Wang, H.-G., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 3949–3957.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSong, L.-J., Zhang, J., Tang, Z.-R., Wang, W.-G. & Ju, Z.-F. (2003). Acta Cryst. E59, m867–m869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThompson, J. A., Scott, B. L. & Sauer, N. N. (1998). Acta Cryst. C54, 734–736.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Liu, Z.-R., Zhang, X.-D., Jia, W.-G. & Li, H.-F. (2003). J. Mol. Struct. 644, 29–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationWullens, H., Devillers, M., Tinant, B. & Declercq, J.-P. (1996). J. Chem. Soc. Dalton Trans. pp. 2023–2029.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m55-m56
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds