organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-bis­­(4-methyl­phen­yl)di­thio­oxamide

aDepartment of Chemical Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy, and bDepartment of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
*Correspondence e-mail: giannettoa@unime.it

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 December 2014; accepted 22 December 2014; online 3 January 2015)

Two half mol­ecules of the title compound, C16H16N2S2, are present in the asymmetric unit and both mol­ecules are completed by crystallographic inversion centers at the mid-points of the central C—C bonds: the lengths of these bonds [1.538 (5) and 1.533 (5) Å] indicate negligible electronic delocalization. The trans-di­thio­oxamide fragment in each mol­ecule is characterized by a pair of intra­molecular N—H⋯S hydrogen bonds. In the crystal, mol­ecules are linked by weak C—H..π inter­actions, generating a three-dimensional network.

1. Related literature

For the mesogenic properties of related compounds, see: Aversa et al. (1997[Aversa, M. C., Bonaccorsi, P., Bruce, D. W., Caruso, F., Giannetto, P., Lanza, S. & Morrone, S. (1997). Inorg. Chim. Acta, 256, 235-241.], 2000[Aversa, M. C., Bonaccorsi, P., Bruce, D. W., Caruso, F., Donnio, B., Giannetto, P., Guillon, D., Lanza, S. & Morrone, S. (2000). Mol. Cryst. Liq. Cryst. 348, 43-64.]). For the general procedure for the preparation of secondary and tertiary di­thio­oxamides, see: Lanza et al. (1993[Lanza, S., Bruno, G., Monsù Scolaro, L., Nicolò, F. & Rosace, G. (1993). Tetrahedron Asymmetry, 4, 2311-2314.], 2000[Lanza, S., Bruno, G., Nicolò, F., Rotondo, A., Scopelliti, R. & Rotondo, E. (2000). Organometallics, 19, 2462-2469.], 2003[Lanza, S., Bruno, G., Nicolò, F., Callipari, G. & Tresoldi, G. (2003). Inorg. Chem. 42, 4545-4552.]); Rosace et al. (1993[Rosace, G., Bruno, G., Monsù Scolaro, L., Nicolò, F., Sergi, S. & Lanza, S. (1993). Inorg. Chim. Acta, 208, 59-65.]). For similar crystal structures, see: Shimanouchi & Sasada (1979[Shimanouchi, H. & Sasada, Y. (1979). Acta Cryst. B35, 1928-1930.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H16N2S2

  • Mr = 300.43

  • Monoclinic, C 2/c

  • a = 33.9423 (7) Å

  • b = 11.3880 (2) Å

  • c = 7.8049 (2) Å

  • β = 99.439 (1)°

  • V = 2976.02 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.657, Tmax = 0.745

  • 45528 measured reflections

  • 2621 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.066

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.152

  • S = 1.11

  • 2621 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.35 2.904 (3) 122
N2—H2⋯S2ii 0.86 2.35 2.901 (3) 122
C7—H7⋯Cg1iii 0.93 2.90 3.587 (3) 132
C11—H11⋯Cg1iv 0.93 2.77 3.524 (3) 139
C14—H14⋯Cg2v 0.93 2.88 3.654 (3) 142
Symmetry codes: (i) -x+2, -y+2, -z; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aryl-substituted secondary dithiooxamides H2N2C2S2R2 (R=-C6H4X, C6H3X2, X =-O-(CH2)n-CH3, 7 <n > 11) have been exploited to prepare platinum(II) complexes which exhibit mesogenic properties (Aversa, et al. 1997; Aversa, et al. 2000). The title compound has been synthesized for a better understanding of the reactivity of the said mesogenic complexes, in the aim to avoid contingent steric hindrance of long chain substituents and the influence on the acid base equilibria of ether moieties. In fact, both the oxygen lone pairs in ether moieties and the exceedingly long alkyl chains of X substituents prevents the formation of ion pairs in the first step of the reaction of secondary dithioxamides with cis-Pt(Me2SO)2Cl2 (Lanza et al., 1993). A detailed analysis of the bond distances reveals a strong double-bond character for both C—S and C—N [1.662 (3) Å and 1.318 (4) Å, respectively], confirming that the important electronic π-delocalization of the N—C—S system does not affect the central C—C bond. In the title compound the central C—C bond distances are 1.538 (5) Å and 1.533 (5) Å respectively for C1—C1' and C9—C9'. Going from a secondary dithiooxamide to a tertiary one we observe a large changing in structural parameters:essentially in the planarity loss of the central fragment and to the significant shortening of central C—C bond. The p-tolyl groups are rotated by -36.4° (5) and -35.4° (5) with respect to the central DTO fragments.

Related literature top

For the mesogenic properties of related compounds, see: Aversa et al. (1997, 2000). For the general procedure for the preparation of secondary and tertiary dithiooxamides, see: Lanza et al. (1993, 2000, 2003); Rosace et al. (1993). For similar crystal structures, see: Shimanouchi & Sasada (1979).

Experimental top

The title compound was obtained from para-toluidine according to a described two-step strategy based on primary amine reaction with oxalyl chloride followed by P2S5 treatment. 1H NMR: δ 12.33 (bs, NH), 7.92 (d, Jortho 8.4 Hz, H2,6), 7.28 (d, H3,5), 2.40 (s, Me). 13CNMR: &delta; 180.56 (CS), 137,75 (C4), 135.80 (C1), 129.64 (C3,5), 122.17 (C2,6), 21.27 (Me)

Refinement top

H atoms on methyl groups were included in the refinement as idealized disordered in two positions, others H atoms were included in the refinement among the riding model method with the X—H bond geometry and the H isotropic displacement parameter depending on the parent atom X.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with displacement ellipsoids plotted at the 50% probability level, while H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed normal the b axis and showing molecular arrangement on the (402) plane.
N,N'-Bis(4-methylphenyl)ethanedithioamide top
Crystal data top
C16H16N2S2F(000) = 1264
Mr = 300.43Dx = 1.341 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 141 reflections
a = 33.9423 (7) Åθ = 4.3–22.0°
b = 11.3880 (2) ŵ = 0.35 mm1
c = 7.8049 (2) ÅT = 293 K
β = 99.439 (1)°Prismatic, orange
V = 2976.02 (11) Å30.15 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2621 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: integration
(SADABS; Bruker, 2012)
h = 4040
Tmin = 0.657, Tmax = 0.745k = 1313
45528 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.078P)2 + 1.595P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2621 reflectionsΔρmax = 1.03 e Å3
181 parametersΔρmin = 0.21 e Å3
Crystal data top
C16H16N2S2V = 2976.02 (11) Å3
Mr = 300.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.9423 (7) ŵ = 0.35 mm1
b = 11.3880 (2) ÅT = 293 K
c = 7.8049 (2) Å0.15 × 0.10 × 0.08 mm
β = 99.439 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2621 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2012)
1626 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.745Rint = 0.066
45528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.11Δρmax = 1.03 e Å3
2621 reflectionsΔρmin = 0.21 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.99746 (3)0.81087 (8)0.00428 (12)0.0493 (3)
N10.94997 (8)0.9912 (2)0.1064 (3)0.0362 (7)
H10.94861.06650.1150.043*
C10.98496 (9)0.9507 (3)0.0303 (4)0.0325 (7)
C20.91413 (10)0.9314 (3)0.1764 (4)0.0319 (8)
C30.91366 (10)0.8248 (3)0.2619 (4)0.0376 (8)
H30.93750.78760.27280.045*
C40.87745 (10)0.7739 (3)0.3311 (4)0.0341 (8)
H40.87730.70220.38830.041*
C50.84155 (10)0.8273 (3)0.3169 (4)0.0329 (8)
C60.84256 (10)0.9343 (3)0.2318 (4)0.0347 (8)
H60.81870.97160.2210.042*
C70.87853 (10)0.9868 (3)0.1626 (4)0.0335 (8)
H70.87871.05910.1070.04*
C80.80238 (11)0.7709 (4)0.3933 (5)0.0527 (11)
H8A0.78070.81970.3710.079*0.5
H8B0.80040.69520.34110.079*0.5
H8C0.80110.76180.51640.079*0.5
H8D0.80740.69810.4480.079*0.5
H8E0.78780.82260.47790.079*0.5
H8F0.7870.7560.30260.079*0.5
S20.74804 (3)0.06064 (8)0.49865 (14)0.0539 (3)
C90.73490 (9)0.2010 (3)0.4708 (4)0.0317 (7)
C100.66362 (9)0.1808 (3)0.3324 (4)0.0298 (7)
C110.62785 (10)0.2328 (3)0.3544 (4)0.0298 (7)
H110.6280.30290.41570.036*
C120.59213 (10)0.1807 (3)0.2856 (4)0.0350 (8)
H120.56830.21580.30160.042*
C130.59114 (10)0.0767 (3)0.1928 (4)0.0349 (8)
C140.62709 (11)0.0269 (3)0.1714 (4)0.0383 (9)
H140.62690.04270.10880.046*
C150.66335 (10)0.0771 (3)0.2398 (4)0.0351 (8)
H150.68720.04170.22390.042*
C160.55213 (12)0.0194 (4)0.1170 (5)0.0542 (11)
H16A0.53040.06560.14460.081*0.5
H16B0.5510.05790.16490.081*0.5
H16C0.55020.0140.00690.081*0.5
H16D0.55730.05120.05720.081*0.5
H16E0.53670.07240.03680.081*0.5
H16F0.53750.00050.20860.081*0.5
N20.69939 (8)0.2412 (2)0.4032 (3)0.0345 (7)
H20.69740.31650.40140.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0357 (5)0.0427 (6)0.0649 (6)0.0054 (4)0.0051 (4)0.0079 (4)
N10.0268 (17)0.0327 (16)0.0462 (16)0.0045 (13)0.0025 (13)0.0003 (12)
C10.0267 (16)0.0429 (18)0.0283 (15)0.0072 (15)0.0052 (12)0.0001 (14)
C20.0230 (17)0.039 (2)0.0318 (16)0.0040 (16)0.0003 (13)0.0034 (15)
C30.0277 (18)0.045 (2)0.0396 (18)0.0023 (17)0.0048 (14)0.0032 (16)
C40.037 (2)0.0299 (19)0.0350 (17)0.0013 (16)0.0028 (15)0.0056 (14)
C50.0317 (19)0.035 (2)0.0302 (16)0.0052 (17)0.0000 (14)0.0018 (15)
C60.0272 (18)0.037 (2)0.0382 (17)0.0032 (16)0.0015 (14)0.0008 (15)
C70.0325 (19)0.0290 (18)0.0372 (17)0.0011 (15)0.0006 (14)0.0003 (14)
C80.034 (2)0.063 (3)0.059 (2)0.017 (2)0.0014 (18)0.013 (2)
S20.0350 (5)0.0349 (5)0.0861 (7)0.0018 (4)0.0067 (5)0.0092 (5)
C90.0255 (16)0.0361 (17)0.0341 (16)0.0004 (14)0.0063 (13)0.0050 (13)
C100.0256 (17)0.0305 (19)0.0322 (15)0.0034 (15)0.0011 (13)0.0031 (14)
C110.0300 (18)0.0228 (17)0.0361 (16)0.0048 (14)0.0041 (14)0.0014 (13)
C120.0229 (17)0.044 (2)0.0376 (17)0.0019 (16)0.0033 (14)0.0002 (15)
C130.0293 (19)0.040 (2)0.0335 (17)0.0041 (17)0.0001 (14)0.0033 (16)
C140.042 (2)0.035 (2)0.0369 (17)0.0029 (17)0.0026 (16)0.0066 (15)
C150.0305 (18)0.034 (2)0.0415 (18)0.0048 (16)0.0071 (14)0.0055 (15)
C160.039 (2)0.061 (3)0.060 (2)0.017 (2)0.0008 (19)0.015 (2)
N20.0249 (16)0.0296 (16)0.0475 (16)0.0021 (12)0.0017 (13)0.0009 (12)
Geometric parameters (Å, º) top
S1—C11.659 (3)S2—C91.664 (3)
N1—C11.321 (4)C9—N21.316 (4)
N1—C21.423 (4)C9—C9ii1.534 (6)
N1—H10.86C10—C151.383 (5)
C1—C1i1.538 (6)C10—C111.387 (4)
C2—C71.383 (5)C10—N21.426 (4)
C2—C31.384 (5)C11—C121.378 (4)
C3—C41.386 (5)C11—H110.93
C3—H30.93C12—C131.385 (5)
C4—C51.383 (5)C12—H120.93
C4—H40.93C13—C141.381 (5)
C5—C61.386 (5)C13—C161.508 (5)
C5—C81.508 (5)C14—C151.383 (5)
C6—C71.387 (4)C14—H140.93
C6—H60.93C15—H150.93
C7—H70.93C16—H16A0.96
C8—H8A0.96C16—H16B0.96
C8—H8B0.96C16—H16C0.96
C8—H8C0.96C16—H16D0.96
C8—H8D0.96C16—H16E0.96
C8—H8E0.96C16—H16F0.96
C8—H8F0.96N2—H20.86
C1—N1—C2130.9 (3)N2—C9—C9ii112.9 (3)
C1—N1—H1114.6N2—C9—S2126.5 (2)
C2—N1—H1114.6C9ii—C9—S2120.6 (3)
N1—C1—C1i112.7 (3)C15—C10—C11119.9 (3)
N1—C1—S1126.6 (2)C15—C10—N2123.1 (3)
C1i—C1—S1120.7 (3)C11—C10—N2116.9 (3)
C7—C2—C3119.8 (3)C12—C11—C10120.0 (3)
C7—C2—N1117.0 (3)C12—C11—H11120
C3—C2—N1123.1 (3)C10—C11—H11120
C2—C3—C4119.6 (3)C11—C12—C13121.1 (3)
C2—C3—H3120.2C11—C12—H12119.4
C4—C3—H3120.2C13—C12—H12119.4
C5—C4—C3121.4 (3)C14—C13—C12117.9 (3)
C5—C4—H4119.3C14—C13—C16120.8 (3)
C3—C4—H4119.3C12—C13—C16121.3 (3)
C4—C5—C6118.2 (3)C13—C14—C15122.1 (3)
C4—C5—C8120.8 (3)C13—C14—H14118.9
C6—C5—C8121.0 (3)C15—C14—H14118.9
C5—C6—C7121.1 (3)C14—C15—C10119.0 (3)
C5—C6—H6119.5C14—C15—H15120.5
C7—C6—H6119.5C10—C15—H15120.5
C2—C7—C6119.9 (3)C13—C16—H16A109.5
C2—C7—H7120.1C13—C16—H16B109.5
C6—C7—H7120.1H16A—C16—H16B109.5
C5—C8—H8A109.5C13—C16—H16C109.5
C5—C8—H8B109.5H16A—C16—H16C109.5
H8A—C8—H8B109.5H16B—C16—H16C109.5
C5—C8—H8C109.5C13—C16—H16D109.5
H8A—C8—H8C109.5H16A—C16—H16D141.1
H8B—C8—H8C109.5H16B—C16—H16D56.3
C5—C8—H8D109.5H16C—C16—H16D56.3
H8A—C8—H8D141.1C13—C16—H16E109.5
H8B—C8—H8D56.3H16A—C16—H16E56.3
H8C—C8—H8D56.3H16B—C16—H16E141.1
C5—C8—H8E109.5H16C—C16—H16E56.3
H8A—C8—H8E56.3H16D—C16—H16E109.5
H8B—C8—H8E141.1C13—C16—H16F109.5
H8C—C8—H8E56.3H16A—C16—H16F56.3
H8D—C8—H8E109.5H16B—C16—H16F56.3
C5—C8—H8F109.5H16C—C16—H16F141.1
H8A—C8—H8F56.3H16D—C16—H16F109.5
H8B—C8—H8F56.3H16E—C16—H16F109.5
H8C—C8—H8F141.1C9—N2—C10130.8 (3)
H8D—C8—H8F109.5C9—N2—H2114.6
H8E—C8—H8F109.5C10—N2—H2114.6
Symmetry codes: (i) x+2, y+2, z; (ii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.352.904 (3)122
N2—H2···S2ii0.862.352.901 (3)122
C7—H7···Cg1iii0.932.903.587 (3)132
C11—H11···Cg1iv0.932.773.524 (3)139
C14—H14···Cg2v0.932.883.654 (3)142
Symmetry codes: (i) x+2, y+2, z; (ii) x+3/2, y+1/2, z+1; (iii) x, y+2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.352.904 (3)122
N2—H2···S2ii0.862.352.901 (3)122
C7—H7···Cg1iii0.932.903.587 (3)132
C11—H11···Cg1iv0.932.773.524 (3)139
C14—H14···Cg2v0.932.883.654 (3)142
Symmetry codes: (i) x+2, y+2, z; (ii) x+3/2, y+1/2, z+1; (iii) x, y+2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y, z1/2.
 

References

First citationAversa, M. C., Bonaccorsi, P., Bruce, D. W., Caruso, F., Donnio, B., Giannetto, P., Guillon, D., Lanza, S. & Morrone, S. (2000). Mol. Cryst. Liq. Cryst. 348, 43–64.  CrossRef Google Scholar
First citationAversa, M. C., Bonaccorsi, P., Bruce, D. W., Caruso, F., Giannetto, P., Lanza, S. & Morrone, S. (1997). Inorg. Chim. Acta, 256, 235–241.  CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLanza, S., Bruno, G., Monsù Scolaro, L., Nicolò, F. & Rosace, G. (1993). Tetrahedron Asymmetry, 4, 2311–2314.  CSD CrossRef CAS Google Scholar
First citationLanza, S., Bruno, G., Nicolò, F., Callipari, G. & Tresoldi, G. (2003). Inorg. Chem. 42, 4545–4552.  CrossRef PubMed CAS Google Scholar
First citationLanza, S., Bruno, G., Nicolò, F., Rotondo, A., Scopelliti, R. & Rotondo, E. (2000). Organometallics, 19, 2462–2469.  CSD CrossRef CAS Google Scholar
First citationRosace, G., Bruno, G., Monsù Scolaro, L., Nicolò, F., Sergi, S. & Lanza, S. (1993). Inorg. Chim. Acta, 208, 59–65.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimanouchi, H. & Sasada, Y. (1979). Acta Cryst. B35, 1928–1930.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds