research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 213-215

Crystal structure of 2-(1,3,7,9-tetra­methyl-2,4,6,8-tetra­oxo-1,2,3,4,6,7,8,9-octa­hydro­pyrido[2,3-d:6,5-d′]dipyrimidin-5-yl)benzamide di­methyl­formamide hemisolvate

aMolecule Structure Research Center of, Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences Republic of Armenia, Azatutyan ave. 26, Yerevan 0014, Armenia
*Correspondence e-mail: armen@msrc.am

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 September 2014; accepted 8 September 2014; online 17 September 2014)

The title compound, C20H18N6O5·0.5C3H7NO, crystallized as a di­methyl­formamide (DMF) solvate. In the main mol­ecule, the dihedral angle between the pyridodi­pyrimidine fused-ring system and the benzamide substituent is 82.26 (11)°. In the crystal, the benzamide mol­ecules are linked by N—H⋯O hydrogen bonds to generate tetra­mers with an approximate square-prismatic shape, which appears to correlate with the tetra­gonal crystal symmetry. The DMF mol­ecule is disordered about a crystallographic twofold axis and accepts a C—H⋯O inter­action from the benzamide mol­ecule.

1. Chemical context

Compounds containing fused pyrimidine rings show diverse and inter­esting biological properties. In particular, the representatives of this family show anti­viral (Hossain et al., 1997[Hossain, N., Rozenski, J., De Clercq, E. & Herdewijn, P. (1997). J. Org. Chem. 62, 2442-2447.]), anti­bacterial (Sabnis & Rangnekar, 1990[Sabnis, R. W. & Rangnekar, D. W. (1990). Indian J. Technol. 28, 54-58.]), anti-AIDS (Joseph & Burke, 1993[Joseph, S. & Burke, J. M. (1993). J. Biol. Chem. 268, 24515-24518.]) and anti­nociceptive (Bookser et al., 2005[Bookser, B. C., Ugarkar, B. G., Matelich, M. C., Lemus, R. H., Alla, M., Tsuchiya, M., Nakane, M., Nagahisa, A., Wiesner, J. B. & Erion, M. D. (2005). J. Med. Chem. 48, 7808-7820.]) activities and may serve as non-nucleoside reverse transcriptase inhibitors as well (De Clercq, 1996[De Clercq, E. (1996). Rev. Med. Virol. 6, 97-117.]). Such a broad spectrum of biological properties for these compounds gives rise to inter­est in their structures and in this paper the structure of the title solvate, (I)[link], is described.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is depicted in Fig. 1[link]. The mol­ecule of (I)[link] contains two almost planar fragments: (i) pyridodi­pyrimidine (r.m.s. deviation = 0.046 Å) and (ii) benzamide (r.m.s. deviation = 0.010 Å). The dihedral angle between them is 82.26 (11)°. The dimethyl formamide solvent mol­ecule is disordered about a crystallographic twofold axis.

[Figure 1]
Figure 1
The mol­ecular structure with thermal displacement ellipsoids drawn at the 50% probability level (H atoms omitted for clarity).

3. Supra­molecular features

Each disordered DMF solvent mol­ecule is connected to an adjacent 2-(1,3,7,9-tetra­methyl-2,4,6,8-tetra­oxo-1,2,3,4,6,7,8,9-octa­hydro­pyrido[2,3-d:6,5-d′]dipyrimidin-5-yl)benzamide mol­ecule, related by twofold axes, via a non-classical C17–H17⋯O51 hydrogen bond (see Fig. 2[link] and Table 1[link]). The hydrogen atoms of the amide group are involved in the formation of inter­molecular N23–H23B⋯O31i and N23–H32A⋯O22ii hydrogen bonds, which link four mol­ecules of the title compound into a four-membered tetra­mer with an almost square-prismatic shape (see Fig. 3[link]). In the extended structure, the inter­actions between these telomeres have solely van der Waals character. It appears that the almost square-prismatic shape of these tetra­mers is responsible for the unusual high symmetry of this structure (space group I[\overline{4}]2d).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N23—H23B⋯O31i 0.88 (3) 2.19 (3) 3.003 (4) 153 (3)
N23—H23A⋯O22ii 0.96 (4) 2.09 (4) 3.017 (4) 164 (3)
C17—H17⋯O51 0.93 2.56 3.313 (10) 138
Symmetry codes: (i) -x+1, -y+1, z; (ii) y, -x+1, -z.
[Figure 2]
Figure 2
Non-classical hydrogen bonding of disordered DMFA solvent molecules with mol­ecules of 2-(1,3,7,9-tetra­methyl-2,4,6,8-tetra­oxo-1,2,3,4,6,7,8,9-octa­hydro­pyrido[2,3-d:6,5-d′]dipyrimidin-5-yl)benzamide related by the twofold axes of the space group.
[Figure 3]
Figure 3
Square-prismatic telomer formed by four 2-(1,3,7,9-tetra­methyl-2,4,6,8-tetra­oxo-1,2,3,4,6,7,8,9-octa­hydro­pyrido[2,3-d:6,5-d′]dipyrimidin-5-yl)<0.02pt>benz­amide mol­ecules via inter­molecular hydrogen bonding.

4. Database survey

In the Cambridge Structural Database, just three comparable structures were found: (i) 5-(4-fluoro­phen­yl)-1,3,7,9-tetra­methyl­pyrido[2,3-d:6,5-d]di­pyrimidine-2,4,6,8(1H,3H,7H,9H)-tetrone (Ghorbani & Bazgir, 2007[Ghorbani, H. & Bazgir, A. (2007). Acta Cryst. E63, o2790.]); (ii) 5-(4-bromo­phen­yl)-1,3,7,9-tetra­methyl­pyrimido[5′,4′:5,6]pyrido[2,3-d]pyrimidine-2,4,6,8(1H,3H,7H,9H)-tetrone (Dabiri et al., 2007[Dabiri, M., Arvin-Nezhad, H., Khavasi, H. R. & Bazgir, A. (2007). Tetrahedron, 63, 1770-1774.]); (iii) 1,3,7,9-tetra­methyl­pyrido[2,3-d:6,5-d′]di­pyrimidine-2,4,6,8-tetrone (Enrique-Miron et al., 1994[Enrique-Miron, C., Quiros-Olozabal, M., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Hueso-Urena, F., Moreno-Carretero, M. N. & Martin-Ramos, J. D. (1994). J. Chem. Crystallogr. 24, 465-468.]). The basic fragment for the title compound and compounds (i) and (ii) is the structure of compound (iii), in which the hydrogen atom of the pyridine ring is replaced by benzamide, fluoro­phenyl and bromo­phenyl respectively. There are no essential differences in the geometrical characteristics of corresponding chemical bonds, but the crystal packing of the mol­ecules differs essentially because of various features of the inter­molecular hydrogen bonding.

5. Synthesis and crystallization

A mixture of 6-amino-1,3-dimethyl-1,2,3,4-tetra­hydro-2,4-pyrimidine­dione 1.55 g (10 mM) and 1,2-benzene­dicarbonyl chloride 2.0 g (10 mM) dissolved in 10 ml DMFA was stirred under reflux for 2 h. The mixture was concentrated under reduced pressure, then 20 ml of iced water was added to it and filtered. The synthesized compound was dissolved in ethanol and crystallized by slow evaporation at room temperature (m.p. = 627–628 K, 55% yield).

6. Refinement

Crystal data, data collection details and structure refinement details are summarized in Table 2[link]. The solvent mol­ecule of di­methyl­formamide is disordered about a crystallographic twofold axis. The coordinates of the H atoms of the phenyl ring and methyl groups were determined geometrically and refined using a riding model with the following restraints: for the phenyl ring, C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C), and for the methyl groups, C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C). Only the coordinates of the H atoms of the amide group, involved in hydrogen bonding, were determined from difference Fourier syntheses and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula 2C20H18N6O5·C3H7NO
Mr 917.90
Crystal system, space group Tetragonal, I[\overline{4}]2d
Temperature (K) 293
a, c (Å) 26.173 (4), 12.434 (3)
V3) 8517 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.16 (radius)
 
Data collection
Diffractometer Enraf–Nonius CAD-4
No. of measured, independent and observed [I > 2σ(I)] reflections 6734, 6216, 3247
Rint 0.015
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.135, 1.01
No. of reflections 6216
No. of parameters 339
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.17
Absolute structure Flack x determined using 1083 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (10)
Computer programs: CAD-4 Software (Enraf–Nonius, 1988[Enraf-Nonius (1988). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]), HELENA (Spek, 1997[Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.]), SHELXS2014 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Compounds containing fused pyrimidine rings show diverse and inter­esting biological properties. In particular, the representatives of this family show anti­viral (Hossain et al., 1997), anti­bacterial (Sabnis & Rangnekar, 1990), anti-AIDS (Joseph & Burke, 1993) and anti­nociceptive (Bookser et al., 2005) activities and may serve as non-nucleoside reverse transcriptase inhibitors as well (De Clercq, 1996). Such a broad spectrum of biological properties for these compounds gives rise to inter­est in their structures and in this paper the structure of the title solvate, (I), is described.

Structural commentary top

The molecular structure of the title compound is depicted in Fig. 1. The molecule of (I) contains two almost planar fragments: (i) pyridodi­pyrimidine (r.m.s. deviation = 0.046 Å) and (ii) benzamide (r.m.s. deviation = 0.010 Å). The dihedral angle between them is 82.26 (11)°. The di­methyl formamide solvent molecule is disordered about a crystallographic twofold axis.

Supra­molecular features top

Each disordered solvent molecule is connected to an adjacent 2-(1,3,7,9-tetra­methyl-2,4,6,8-tetra­oxo-1,2,3,4,6,7,8,9-o­cta­hydro­pyrido[2,3-d:6,5-d']dipyrimidin-5-yl)benzamide molecule, related by twofold axes, via a non-classical C17–H17···O51hydrogen bond (see Fig. 2 and Table 1). The hydrogen atoms of the amide group are involved in the formation of inter­molecular N23–H23B···O31i and N23–H32A···O22ii hydrogen bonds, which link four molecules of the title compound into a four-membered tetra­mer with an almost square-prismatic shape (see Fig. 3). In the extended structure, the inter­actions between these telomeres have solely van der Waals character. It appears that the almost square-prismatic shape of these tetra­mers is responsible for the unusual high symmetry of this structure (space group I42d).

Database survey top

In the Cambridge Structural Database, just three comparable structures were found: (i) 5-(4-fluoro­phenyl)-1,3,7,9-tetra­methyl­pyrido[2,3-d:6,5-d]di­pyrimidine-2,4,6,8(1H,3H,7H,9H)-tetrone (Ghorbani & Bazgir, 2007); (ii) 5-(4-bromo­phenyl)-1,3,7,9-tetra­methyl­pyrimido[5',4':5,6]pyrido[2,3-d]pyrimidine-2,4,6,8(1H,3H,7H,9H)-tetrone (Dabiri et al., 2007); (iii) 1,3,7,9-tetra­methyl­pyrido[2,3-d:6,5-d']di­pyrimidine-2,4,6,8-tetrone (Enrique-Miron et al., 1994). The basic fragment for the title compound and compounds (i) and (ii) is the structure of compound (iii) in which the hydrogen atom of the pyridine ring is replaced by benzamide, fluoro­phenyl and bromo­phenyl respectively. There are no essential differences in the geometrical characteristics of corresponding chemical bonds, but the crystal packing of the molecules differs essentially because of various features of the inter­molecular hydrogen bonding.

Synthesis and crystallization top

To synthesize the title compound, a mixture of 6-amino-1,3-di­methyl-1,2,3,4-tetra­hydro-2,4-pyrimidine­dione 1.55 g (10 mM) and 1,2-benzene­dicarbonyl chloride 2.0 g (10 mM) dissolved in 10 ml DMFA was stirred under reflux for 2 h. The mixture was concentrated under reduced pressure, then 20 ml of iced water was added to it and filtered. The synthesized compound was dissolved in ethanol and crystallized by slow evaporation at room temperature (m.p. = 627–628 K, 55% yield).

Refinement top

Crystal data, data collection details and structure refinement details are summarized in Table 2. The solvent molecule of di­methyl­formamide is disordered about a crystallographic twofold axis. The coordinates of the H atoms of the phenyl ring and methyl groups were determined geometrically and refined using a riding model with the following restraints: for the phenyl ring, C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C), and for the methyl groups, C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C). Only the coordinates of the H atoms of the amide group, involved in hydrogen bonding, were determined from difference Fourier syntheses and refined freely.

Related literature top

For crystal structures of related compounds, see: Ghorbani (2007), Dabiri (2007), Enrique-Miron (1994). For biological activities of fused pyrimidines, see: Hossain (1997), Sabnis (1990), Joseph (1993), Bookser (2005), De Clercq (1996).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1988); cell refinement: SETANG in CAD-4 Software (Enraf–Nonius, 1988); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with thermal displacement ellipsoids drawn at the 50% probability level (H atoms omitted for clarity).
[Figure 2] Fig. 2. Non-classical hydrogen bonding of disordered DMFA with molecules of 2-(1,3,7,9-tetramethyl-2,4,6,8-tetraoxo-1,2,3,4,6,7,8,9-octahydropyrido[2,3-d:6,5-d']dipyrimidin-5-yl)benzamide related by the twofold axes of the space group.
[Figure 3] Fig. 3. Square-prismatic telomer formed by four molecules of 2-(1,3,7,9-tetramethyl-2,4,6,8-tetraoxo-1,2,3,4,6,7,8,9-octahydropyrido[2,3-d:6,5-d']dipyrimidin-5-yl)benzamide via intermolecular hydrogen bonding.
2-(1,3,7,9-Tetramethyl-2,4,6,8-tetraoxo-1,2,3,4,6,7,8,9-octahydropyrido[2,3-d:6,5-d']dipyrimidin-5-yl)benzamide N,N-dimethylformamide hemisolvate top
Crystal data top
2C20H18N6O5·C3H7NODx = 1.432 Mg m3
Mr = 917.90Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 24 reflections
a = 26.173 (4) Åθ = 12.2–17.3°
c = 12.434 (3) ŵ = 0.11 mm1
V = 8517 (3) Å3T = 293 K
Z = 8Spherical, colourless
F(000) = 38400.16 × 0.16 × 0.16 × 0.16 (radius) mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 1.6°
Graphite monochromatorh = 2626
θ/2θ scansk = 3636
6734 measured reflectionsl = 1717
6216 independent reflections1 standard reflections every 60 min
3247 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0536P)2 + 1.2893P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max = 0.006
S = 1.01Δρmax = 0.12 e Å3
6216 reflectionsΔρmin = 0.17 e Å3
339 parametersAbsolute structure: Flack x determined using 1083 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.0 (10)
Crystal data top
2C20H18N6O5·C3H7NOZ = 8
Mr = 917.90Mo Kα radiation
Tetragonal, I42dµ = 0.11 mm1
a = 26.173 (4) ÅT = 293 K
c = 12.434 (3) Å0.16 × 0.16 × 0.16 × 0.16 (radius) mm
V = 8517 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3247 reflections with I > 2σ(I)
6734 measured reflectionsRint = 0.015
6216 independent reflections1 standard reflections every 60 min
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135Δρmax = 0.12 e Å3
S = 1.01Δρmin = 0.17 e Å3
6216 reflectionsAbsolute structure: Flack x determined using 1083 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
339 parametersAbsolute structure parameter: 0.0 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.54916 (10)0.33509 (10)0.1396 (2)0.0533 (7)
C20.54598 (13)0.30369 (12)0.0506 (2)0.0561 (8)
N30.49790 (10)0.29334 (9)0.01248 (19)0.0564 (7)
C40.45404 (12)0.31201 (11)0.0602 (2)0.0491 (7)
N50.41001 (10)0.29570 (9)0.01939 (18)0.0510 (6)
C60.36754 (12)0.31226 (11)0.0642 (2)0.0483 (7)
N70.32283 (10)0.29304 (10)0.0228 (2)0.0572 (7)
C80.27519 (13)0.30566 (13)0.0635 (3)0.0645 (10)
N90.27443 (10)0.33727 (10)0.1518 (2)0.0596 (8)
C100.31609 (11)0.36475 (13)0.1894 (2)0.0539 (8)
C110.36577 (11)0.34801 (11)0.1489 (2)0.0460 (7)
C120.41230 (11)0.36644 (10)0.1882 (2)0.0434 (6)
C130.45766 (11)0.34605 (10)0.1470 (2)0.0442 (7)
C140.50830 (11)0.35936 (11)0.1884 (2)0.0474 (7)
C150.41236 (10)0.40442 (10)0.2778 (2)0.0414 (6)
C160.40476 (11)0.38612 (11)0.3818 (2)0.0487 (7)
H160.40100.35120.39310.058*
C170.40282 (11)0.41874 (12)0.4672 (2)0.0533 (8)
H170.39670.40610.53590.064*
C180.40994 (14)0.47024 (12)0.4523 (2)0.0620 (9)
H180.40940.49240.51070.074*
C190.41787 (13)0.48880 (11)0.3495 (2)0.0569 (8)
H190.42270.52370.33950.068*
C200.41875 (10)0.45666 (10)0.2610 (2)0.0444 (7)
C210.42413 (11)0.47689 (11)0.1484 (2)0.0497 (8)
O220.41550 (10)0.45010 (8)0.06982 (15)0.0680 (6)
N230.43726 (14)0.52520 (11)0.1365 (3)0.0786 (10)
H23A0.4405 (14)0.5378 (14)0.065 (3)0.088 (12)*
H23B0.4487 (13)0.5433 (12)0.191 (2)0.069 (10)*
O240.30973 (8)0.39919 (10)0.2537 (2)0.0722 (7)
C250.22403 (12)0.35043 (16)0.1963 (3)0.0811 (12)
H25A0.20160.32160.18980.122*
H25B0.21010.37890.15730.122*
H25C0.22760.35940.27080.122*
O260.23650 (9)0.28828 (12)0.0252 (2)0.0939 (9)
C270.32474 (15)0.25925 (14)0.0717 (3)0.0736 (11)
H27A0.32950.27940.13540.110*
H27B0.29330.24060.07720.110*
H27C0.35270.23570.06420.110*
C280.49437 (16)0.26283 (14)0.0869 (3)0.0777 (11)
H28A0.49000.22740.06880.116*
H28B0.52510.26700.12810.116*
H28C0.46570.27420.12850.116*
O290.58408 (9)0.28574 (10)0.00875 (19)0.0769 (7)
C300.60084 (12)0.34458 (14)0.1798 (3)0.0697 (10)
H30A0.61830.36730.13170.105*
H30B0.61910.31290.18400.105*
H30C0.59900.35980.24990.105*
O310.51616 (7)0.38890 (9)0.26314 (18)0.0603 (6)
N500.44874 (14)0.25496 (10)0.6322 (12)0.0817 (17)0.5
O510.4092 (3)0.3226 (3)0.6400 (9)0.180 (4)0.5
C520.3997 (5)0.2778 (4)0.6276 (15)0.173 (6)0.5
H520.36810.26220.61750.208*0.5
C530.49626 (16)0.2790 (3)0.6091 (7)0.126 (4)0.5
H53A0.49340.29790.54320.189*0.5
H53B0.52240.25340.60170.189*0.5
H53C0.50510.30180.66660.189*0.5
C550.4465 (5)0.20136 (14)0.6134 (9)0.141 (5)0.5
H55A0.42040.19420.56130.211*0.5
H55B0.43870.18400.67950.211*0.5
H55C0.47890.18970.58680.211*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0482 (14)0.0619 (15)0.0498 (14)0.0064 (12)0.0030 (12)0.0018 (13)
C20.0662 (19)0.0569 (18)0.0453 (16)0.0124 (16)0.0074 (16)0.0080 (15)
N30.0700 (16)0.0575 (14)0.0416 (13)0.0034 (13)0.0066 (14)0.0056 (12)
C40.0633 (18)0.0438 (15)0.0403 (15)0.0031 (14)0.0002 (15)0.0008 (13)
N50.0650 (15)0.0483 (12)0.0397 (12)0.0029 (12)0.0055 (13)0.0051 (11)
C60.0606 (18)0.0444 (15)0.0399 (14)0.0080 (14)0.0108 (14)0.0073 (13)
N70.0667 (16)0.0580 (15)0.0470 (14)0.0150 (13)0.0187 (13)0.0022 (13)
C80.065 (2)0.073 (2)0.0557 (19)0.0204 (17)0.0157 (17)0.0133 (17)
N90.0501 (14)0.0730 (17)0.0556 (16)0.0119 (13)0.0073 (13)0.0102 (14)
C100.0490 (16)0.0661 (19)0.0466 (16)0.0066 (15)0.0070 (14)0.0078 (16)
C110.0494 (16)0.0487 (15)0.0400 (15)0.0037 (13)0.0047 (13)0.0051 (13)
C120.0491 (14)0.0422 (13)0.0389 (13)0.0061 (13)0.0013 (13)0.0039 (12)
C130.0495 (15)0.0412 (14)0.0419 (15)0.0025 (13)0.0004 (13)0.0006 (13)
C140.0473 (15)0.0495 (16)0.0453 (15)0.0001 (13)0.0001 (14)0.0056 (13)
C150.0364 (12)0.0481 (14)0.0398 (13)0.0001 (13)0.0021 (12)0.0024 (12)
C160.0491 (16)0.0520 (15)0.0452 (14)0.0044 (14)0.0024 (14)0.0036 (13)
C170.0516 (16)0.0709 (19)0.0375 (14)0.0023 (16)0.0004 (13)0.0013 (14)
C180.084 (2)0.0601 (18)0.0417 (15)0.0050 (18)0.0008 (18)0.0108 (14)
C190.074 (2)0.0454 (16)0.0518 (16)0.0043 (15)0.0009 (17)0.0045 (14)
C200.0427 (14)0.0495 (15)0.0409 (13)0.0008 (13)0.0007 (13)0.0028 (13)
C210.0517 (17)0.0484 (15)0.0491 (17)0.0007 (13)0.0010 (14)0.0021 (14)
O220.1034 (17)0.0591 (12)0.0416 (11)0.0127 (13)0.0011 (12)0.0043 (10)
N230.134 (3)0.0529 (16)0.0484 (16)0.0154 (17)0.0014 (18)0.0023 (14)
O240.0514 (12)0.0916 (17)0.0736 (15)0.0044 (12)0.0026 (12)0.0222 (14)
C250.0446 (18)0.118 (3)0.080 (3)0.010 (2)0.0022 (18)0.006 (2)
O260.0717 (15)0.128 (2)0.0816 (17)0.0388 (15)0.0298 (14)0.0001 (17)
C270.094 (3)0.071 (2)0.056 (2)0.013 (2)0.0233 (19)0.0092 (18)
C280.099 (3)0.082 (2)0.0515 (19)0.010 (2)0.007 (2)0.0215 (18)
O290.0739 (14)0.0908 (16)0.0659 (14)0.0232 (14)0.0178 (13)0.0051 (13)
C300.0494 (18)0.083 (2)0.076 (2)0.0070 (16)0.0015 (17)0.003 (2)
O310.0492 (12)0.0676 (13)0.0642 (13)0.0020 (10)0.0057 (10)0.0177 (12)
N500.120 (4)0.047 (3)0.078 (4)0.001 (5)0.009 (8)0.005 (3)
O510.164 (7)0.124 (5)0.252 (10)0.065 (5)0.057 (7)0.065 (6)
C520.126 (9)0.101 (7)0.291 (17)0.034 (7)0.034 (11)0.057 (10)
C530.149 (8)0.140 (8)0.089 (6)0.054 (7)0.002 (7)0.026 (7)
C550.193 (12)0.091 (7)0.138 (9)0.033 (8)0.025 (10)0.031 (7)
Geometric parameters (Å, º) top
N1—C21.380 (4)C18—H180.9300
N1—C141.384 (4)C19—C201.385 (4)
N1—C301.463 (4)C19—H190.9300
C2—O291.219 (4)C20—C211.503 (4)
C2—N31.372 (4)C21—O221.224 (3)
N3—C41.382 (4)C21—N231.319 (4)
N3—C281.474 (4)N23—H23A0.96 (4)
C4—N51.330 (4)N23—H23B0.88 (3)
C4—C131.402 (4)C25—H25A0.9600
N5—C61.317 (4)C25—H25B0.9600
C6—N71.374 (4)C25—H25C0.9600
C6—C111.409 (4)C27—H27A0.9600
N7—C81.386 (4)C27—H27B0.9600
N7—C271.471 (4)C27—H27C0.9600
C8—O261.207 (4)C28—H28A0.9600
C8—N91.375 (4)C28—H28B0.9600
N9—C101.388 (4)C28—H28C0.9600
N9—C251.471 (4)C30—H30A0.9600
C10—O241.216 (4)C30—H30B0.9600
C10—C111.462 (4)C30—H30C0.9600
C11—C121.398 (4)N50—C521.417 (13)
C12—C131.399 (4)N50—C531.423 (5)
C12—C151.493 (4)N50—C551.423 (5)
C13—C141.464 (4)O51—C521.207 (14)
O31—C141.226 (3)C52—H520.9300
C15—C161.393 (4)C53—H53A0.9600
C15—C201.393 (4)C53—H53B0.9600
C16—C171.364 (4)C53—H53C0.9600
C16—H160.9300C55—H55A0.9600
C17—C181.373 (4)C55—H55B0.9600
C17—H170.9300C55—H55C0.9600
C18—C191.383 (4)
C2—N1—C14125.3 (3)C18—C19—H19119.2
C2—N1—C30115.5 (3)C20—C19—H19119.2
C14—N1—C30119.1 (3)C19—C20—C15118.3 (3)
O29—C2—N3121.8 (3)C19—C20—C21121.8 (3)
O29—C2—N1121.5 (3)C15—C20—C21119.8 (2)
N3—C2—N1116.7 (3)O22—C21—N23120.5 (3)
C2—N3—C4122.9 (3)O22—C21—C20121.6 (3)
C2—N3—C28117.0 (3)N23—C21—C20117.8 (3)
C4—N3—C28120.0 (3)C21—N23—H23A117 (2)
N5—C4—N3116.2 (3)C21—N23—H23B121 (2)
N5—C4—C13123.8 (3)H23A—N23—H23B120 (3)
N3—C4—C13119.9 (3)N9—C25—H25A109.5
C6—N5—C4117.6 (2)N9—C25—H25B109.5
N5—C6—N7116.1 (3)H25A—C25—H25B109.5
N5—C6—C11124.2 (3)N9—C25—H25C109.5
N7—C6—C11119.7 (3)H25A—C25—H25C109.5
C6—N7—C8122.8 (3)H25B—C25—H25C109.5
C6—N7—C27119.4 (3)N7—C27—H27A109.5
C8—N7—C27117.7 (3)N7—C27—H27B109.5
O26—C8—N9121.9 (3)H27A—C27—H27B109.5
O26—C8—N7121.4 (3)N7—C27—H27C109.5
N9—C8—N7116.6 (3)H27A—C27—H27C109.5
C8—N9—C10124.7 (3)H27B—C27—H27C109.5
C8—N9—C25117.0 (3)N3—C28—H28A109.5
C10—N9—C25117.1 (3)N3—C28—H28B109.5
O24—C10—N9119.9 (3)H28A—C28—H28B109.5
O24—C10—C11124.8 (3)N3—C28—H28C109.5
N9—C10—C11115.3 (3)H28A—C28—H28C109.5
C12—C11—C6117.5 (3)H28B—C28—H28C109.5
C12—C11—C10123.4 (3)N1—C30—H30A109.5
C6—C11—C10119.1 (3)N1—C30—H30B109.5
C11—C12—C13118.6 (2)H30A—C30—H30B109.5
C11—C12—C15119.5 (3)N1—C30—H30C109.5
C13—C12—C15121.8 (3)H30A—C30—H30C109.5
C12—C13—C4117.8 (3)H30B—C30—H30C109.5
C12—C13—C14123.3 (3)C52—N50—C53126.6 (7)
C4—C13—C14118.9 (3)C52—N50—C55111.9 (9)
O31—C14—N1119.5 (3)C53—N50—C55116.0 (8)
O31—C14—C13124.7 (3)O51—C52—N50102.6 (11)
N1—C14—C13115.8 (3)O51—C52—H52128.7
C16—C15—C20119.6 (2)N50—C52—H52128.7
C16—C15—C12117.6 (2)N50—C53—H53A109.5
C20—C15—C12122.8 (2)N50—C53—H53B109.5
C17—C16—C15120.9 (3)H53A—C53—H53B109.5
C17—C16—H16119.6N50—C53—H53C109.5
C15—C16—H16119.6H53A—C53—H53C109.5
C16—C17—C18120.3 (3)H53B—C53—H53C109.5
C16—C17—H17119.9N50—C55—H55A109.5
C18—C17—H17119.9N50—C55—H55B109.5
C17—C18—C19119.3 (3)H55A—C55—H55B109.5
C17—C18—H18120.3N50—C55—H55C109.5
C19—C18—H18120.3H55A—C55—H55C109.5
C18—C19—C20121.6 (3)H55B—C55—H55C109.5
C14—N1—C2—O29176.2 (3)C10—C11—C12—C13177.1 (3)
C30—N1—C2—O290.6 (4)C6—C11—C12—C15180.0 (2)
C14—N1—C2—N34.4 (4)C10—C11—C12—C151.3 (4)
C30—N1—C2—N3178.8 (3)C11—C12—C13—C46.6 (4)
O29—C2—N3—C4178.1 (3)C15—C12—C13—C4177.8 (2)
N1—C2—N3—C41.3 (4)C11—C12—C13—C14174.8 (3)
O29—C2—N3—C284.8 (4)C15—C12—C13—C140.9 (4)
N1—C2—N3—C28175.8 (3)N5—C4—C13—C124.2 (4)
C2—N3—C4—N5175.1 (3)N3—C4—C13—C12176.0 (3)
C28—N3—C4—N57.9 (4)N5—C4—C13—C14177.0 (3)
C2—N3—C4—C134.7 (4)N3—C4—C13—C142.7 (4)
C28—N3—C4—C13172.3 (3)C2—N1—C14—O31175.5 (3)
N3—C4—N5—C6179.1 (3)C30—N1—C14—O311.2 (4)
C13—C4—N5—C60.7 (4)C2—N1—C14—C136.1 (4)
C4—N5—C6—N7177.5 (3)C30—N1—C14—C13177.2 (3)
C4—N5—C6—C113.3 (4)C12—C13—C14—O310.7 (5)
N5—C6—N7—C8178.1 (3)C4—C13—C14—O31179.4 (3)
C11—C6—N7—C82.7 (4)C12—C13—C14—N1179.0 (3)
N5—C6—N7—C274.6 (4)C4—C13—C14—N12.3 (4)
C11—C6—N7—C27174.7 (3)C11—C12—C15—C1679.1 (3)
C6—N7—C8—O26179.8 (3)C13—C12—C15—C1696.6 (3)
C27—N7—C8—O262.4 (5)C11—C12—C15—C2099.8 (3)
C6—N7—C8—N92.6 (4)C13—C12—C15—C2084.6 (4)
C27—N7—C8—N9180.0 (3)C20—C15—C16—C170.9 (4)
O26—C8—N9—C10169.4 (3)C12—C15—C16—C17178.0 (3)
N7—C8—N9—C1013.0 (5)C15—C16—C17—C182.0 (5)
O26—C8—N9—C251.8 (5)C16—C17—C18—C191.5 (5)
N7—C8—N9—C25179.4 (3)C17—C18—C19—C200.1 (5)
C8—N9—C10—O24165.2 (3)C18—C19—C20—C151.2 (5)
C25—N9—C10—O242.4 (4)C18—C19—C20—C21176.2 (3)
C8—N9—C10—C1116.6 (4)C16—C15—C20—C190.7 (4)
C25—N9—C10—C11175.8 (3)C12—C15—C20—C19179.6 (3)
N5—C6—C11—C120.8 (4)C16—C15—C20—C21176.7 (3)
N7—C6—C11—C12180.0 (3)C12—C15—C20—C212.1 (4)
N5—C6—C11—C10177.9 (3)C19—C20—C21—O22166.2 (3)
N7—C6—C11—C101.3 (4)C15—C20—C21—O2211.1 (4)
O24—C10—C11—C126.9 (5)C19—C20—C21—N2312.0 (4)
N9—C10—C11—C12171.3 (3)C15—C20—C21—N23170.6 (3)
O24—C10—C11—C6171.7 (3)C53—N50—C52—O5125 (2)
N9—C10—C11—C610.1 (4)C55—N50—C52—O51176.9 (13)
C6—C11—C12—C134.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23B···O31i0.88 (3)2.19 (3)3.003 (4)153 (3)
N23—H23A···O22ii0.96 (4)2.09 (4)3.017 (4)164 (3)
C17—H17···O510.932.563.313 (10)138
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23B···O31i0.88 (3)2.19 (3)3.003 (4)153 (3)
N23—H23A···O22ii0.96 (4)2.09 (4)3.017 (4)164 (3)
C17—H17···O510.932.563.313 (10)138
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z.

Experimental details

Crystal data
Chemical formula2C20H18N6O5·C3H7NO
Mr917.90
Crystal system, space groupTetragonal, I42d
Temperature (K)293
a, c (Å)26.173 (4), 12.434 (3)
V3)8517 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.16 × 0.16 × 0.16 × 0.16 (radius)
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6734, 6216, 3247
Rint0.015
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.135, 1.01
No. of reflections6216
No. of parameters339
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.17
Absolute structureFlack x determined using 1083 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.0 (10)

Computer programs: , SETANG in CAD-4 Software (Enraf–Nonius, 1988), HELENA (Spek, 1997), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

 

Acknowledgements

The author acknowledges Dr Tamazyan for helpful discussions and the support from the RA State Committee of Science of the Ministry of Education and Science (grant 13-1D292).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBookser, B. C., Ugarkar, B. G., Matelich, M. C., Lemus, R. H., Alla, M., Tsuchiya, M., Nakane, M., Nagahisa, A., Wiesner, J. B. & Erion, M. D. (2005). J. Med. Chem. 48, 7808–7820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDabiri, M., Arvin-Nezhad, H., Khavasi, H. R. & Bazgir, A. (2007). Tetrahedron, 63, 1770–1774.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (1996). Rev. Med. Virol. 6, 97–117.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEnraf–Nonius (1988). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEnrique-Miron, C., Quiros-Olozabal, M., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Hueso-Urena, F., Moreno-Carretero, M. N. & Martin-Ramos, J. D. (1994). J. Chem. Crystallogr. 24, 465–468.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhorbani, H. & Bazgir, A. (2007). Acta Cryst. E63, o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossain, N., Rozenski, J., De Clercq, E. & Herdewijn, P. (1997). J. Org. Chem. 62, 2442–2447.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJoseph, S. & Burke, J. M. (1993). J. Biol. Chem. 268, 24515–24518.  CAS PubMed Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSabnis, R. W. & Rangnekar, D. W. (1990). Indian J. Technol. 28, 54–58.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 213-215
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds