organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-meth­­oxy-N-phenyl­benzamide

aDepartment of Chemistry, Changzhi University, Changzhi 046011, People's Republic of China, bDepartment of Biological Science and Technology, Changzhi University, Changzhi 046011, People's Republic of China, and cDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 July 2014; accepted 15 July 2014; online 1 August 2014)

In the title mol­ecule, C14H13NO2, the dihedral angle between the planes of the benzene rings is 65.18 (4)°. The central amide group has about the same degree of twist with respect to both ring planes, as indicated by the dihedral angles of 34.70 (8) and 30.62 (8)° between its plane and that of the phenyl and 4-meth­oxy­benzene rings, respectively. The C atom of the meth­oxy group is close to being coplanar with its attached ring [deviation = −0.112 (2) Å]. In the crystal, mol­ecules are linked by inter-amide N—H⋯O hydrogen bonds, which generate C(4) chains propagating in the [100] direction. Adajcent mol­ecules in the chain are related by translational symmetry.

1. Related literature

The background to this work has been described in earlier papers; see: Ren et al. (2010[Ren, Y., Zuo, Y., Xiang, Y. & Zhu, R. (2010). Acta Cryst. E66, o3158.]); Zhu et al. (2011[Zhu, R., Ren, Y. & Li, W. (2011). Acta Cryst. E67, o3204.]). For related structures, see: Raza et al. (2010[Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.]); Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H13NO2

  • Mr = 227.25

  • Triclinic, [P \overline 1]

  • a = 5.308 (3) Å

  • b = 7.709 (4) Å

  • c = 14.109 (7) Å

  • α = 96.911 (8)°

  • β = 99.210 (8)°

  • γ = 90.511 (9)°

  • V = 565.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT snd SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.982

  • 3188 measured reflections

  • 2005 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.013

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.03

  • 2005 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.31 3.110 (2) 154
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT snd SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT snd SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

The background to this work has been described in earlier papers; see: Ren et al. (2010); Zhu et al. (2011). For related structures, see: Raza et al. (2010); Gowda et al. (2003).

Experimental top

To a 100 ml round flask fitted with a condenser was added aniline (0.93 g, 10 mmol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. 4-methoxybenzoyl chloride (1.70 g, 10 mmol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a white powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl alcohol solution produced colourless prisms of the title compound.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H)= 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with the donor-acceptor distances of hydrogen bonds drawn as dashed lines. H atoms are not shown.
4-Methoxy-N-phenylbenzamide top
Crystal data top
C14H13NO2V = 565.5 (5) Å3
Mr = 227.25Z = 2
Triclinic, P1F(000) = 240
Hall symbol: -P 1Dx = 1.335 Mg m3
a = 5.308 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.709 (4) Åθ = 1.5–25.1°
c = 14.109 (7) ŵ = 0.09 mm1
α = 96.911 (8)°T = 296 K
β = 99.210 (8)°Prism, colorless
γ = 90.511 (9)°0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2005 independent reflections
Radiation source: fine-focus sealed tube1605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 56
Tmin = 0.974, Tmax = 0.982k = 89
3188 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.045P)2 + 0.1154P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2005 reflectionsΔρmax = 0.16 e Å3
156 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (5)
Crystal data top
C14H13NO2γ = 90.511 (9)°
Mr = 227.25V = 565.5 (5) Å3
Triclinic, P1Z = 2
a = 5.308 (3) ÅMo Kα radiation
b = 7.709 (4) ŵ = 0.09 mm1
c = 14.109 (7) ÅT = 296 K
α = 96.911 (8)°0.30 × 0.20 × 0.20 mm
β = 99.210 (8)°
Data collection top
Bruker SMART CCD
diffractometer
2005 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1605 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.013
3188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2005 reflectionsΔρmin = 0.13 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2321 (2)0.27538 (17)0.57341 (8)0.0387 (3)
H10.07480.27530.54650.046*
O10.63875 (19)0.25639 (17)0.54382 (8)0.0542 (4)
O20.0921 (2)0.14685 (16)0.11034 (7)0.0520 (3)
C10.2818 (3)0.29568 (19)0.67586 (10)0.0340 (3)
C20.4919 (3)0.3893 (2)0.72863 (11)0.0427 (4)
H20.60850.44090.69710.051*
C30.5279 (3)0.4060 (2)0.82849 (12)0.0504 (4)
H30.66930.46930.86380.060*
C40.3582 (3)0.3307 (2)0.87637 (11)0.0483 (4)
H40.38490.34140.94360.058*
C50.1478 (3)0.2391 (2)0.82331 (11)0.0468 (4)
H50.03060.18890.85510.056*
C60.1091 (3)0.2210 (2)0.72366 (11)0.0401 (4)
H60.03330.15850.68860.048*
C70.4093 (3)0.2561 (2)0.51365 (11)0.0373 (4)
C80.3083 (3)0.22995 (19)0.40820 (10)0.0345 (3)
C90.4522 (3)0.1323 (2)0.34765 (11)0.0390 (4)
H90.60420.08500.37420.047*
C100.3727 (3)0.1051 (2)0.24959 (11)0.0415 (4)
H100.46760.03650.21030.050*
C110.1516 (3)0.1795 (2)0.20900 (10)0.0377 (4)
C120.0070 (3)0.2788 (2)0.26739 (11)0.0395 (4)
H120.14120.32970.24030.047*
C130.0852 (3)0.3014 (2)0.36659 (10)0.0378 (4)
H130.01390.36580.40600.045*
C140.1445 (4)0.2052 (3)0.06486 (12)0.0631 (5)
H14A0.28040.16230.09400.095*
H14B0.17070.16200.00280.095*
H14C0.14250.33070.07260.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0288 (6)0.0535 (8)0.0333 (7)0.0023 (5)0.0034 (5)0.0053 (6)
O10.0299 (6)0.0892 (10)0.0424 (7)0.0060 (6)0.0046 (5)0.0050 (6)
O20.0563 (7)0.0653 (8)0.0327 (6)0.0104 (6)0.0067 (5)0.0000 (5)
C10.0313 (7)0.0364 (8)0.0342 (8)0.0065 (6)0.0052 (6)0.0035 (6)
C20.0360 (8)0.0479 (10)0.0434 (9)0.0027 (7)0.0083 (7)0.0002 (7)
C30.0418 (9)0.0583 (11)0.0453 (10)0.0005 (8)0.0001 (7)0.0073 (8)
C40.0520 (10)0.0587 (11)0.0325 (8)0.0115 (8)0.0045 (7)0.0016 (7)
C50.0471 (9)0.0546 (11)0.0418 (9)0.0046 (8)0.0140 (7)0.0088 (8)
C60.0333 (8)0.0477 (9)0.0387 (8)0.0004 (7)0.0055 (6)0.0036 (7)
C70.0309 (8)0.0416 (9)0.0399 (8)0.0030 (6)0.0059 (6)0.0066 (7)
C80.0314 (7)0.0370 (8)0.0358 (8)0.0006 (6)0.0072 (6)0.0051 (6)
C90.0313 (8)0.0427 (9)0.0437 (9)0.0050 (6)0.0072 (6)0.0059 (7)
C100.0400 (8)0.0446 (9)0.0411 (9)0.0060 (7)0.0142 (7)0.0004 (7)
C110.0403 (8)0.0390 (9)0.0343 (8)0.0009 (7)0.0087 (6)0.0033 (6)
C120.0348 (8)0.0451 (9)0.0379 (8)0.0062 (7)0.0035 (6)0.0052 (7)
C130.0357 (8)0.0408 (9)0.0372 (8)0.0062 (6)0.0094 (6)0.0010 (7)
C140.0676 (12)0.0819 (14)0.0369 (9)0.0150 (10)0.0004 (8)0.0059 (9)
Geometric parameters (Å, º) top
N1—C71.3580 (19)C6—H60.9300
N1—C11.4164 (19)C7—C81.487 (2)
N1—H10.8600C8—C131.385 (2)
O1—C71.2242 (18)C8—C91.394 (2)
O2—C111.3689 (18)C9—C101.370 (2)
O2—C141.419 (2)C9—H90.9300
C1—C21.382 (2)C10—C111.382 (2)
C1—C61.381 (2)C10—H100.9300
C2—C31.381 (2)C11—C121.384 (2)
C2—H20.9300C12—C131.384 (2)
C3—C41.373 (2)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.378 (2)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.378 (2)C14—H14C0.9600
C5—H50.9300
C7—N1—C1126.16 (12)C13—C8—C9118.33 (14)
C7—N1—H1116.9C13—C8—C7123.93 (13)
C1—N1—H1116.9C9—C8—C7117.71 (13)
C11—O2—C14118.22 (13)C10—C9—C8120.86 (14)
C2—C1—C6119.58 (14)C10—C9—H9119.6
C2—C1—N1122.48 (13)C8—C9—H9119.6
C6—C1—N1117.92 (13)C9—C10—C11120.12 (14)
C1—C2—C3119.65 (15)C9—C10—H10119.9
C1—C2—H2120.2C11—C10—H10119.9
C3—C2—H2120.2O2—C11—C10115.38 (13)
C4—C3—C2121.03 (16)O2—C11—C12124.49 (14)
C4—C3—H3119.5C10—C11—C12120.13 (14)
C2—C3—H3119.5C13—C12—C11119.30 (14)
C3—C4—C5119.01 (15)C13—C12—H12120.4
C3—C4—H4120.5C11—C12—H12120.4
C5—C4—H4120.5C12—C13—C8121.22 (14)
C4—C5—C6120.70 (15)C12—C13—H13119.4
C4—C5—H5119.6C8—C13—H13119.4
C6—C5—H5119.6O2—C14—H14A109.5
C5—C6—C1120.02 (15)O2—C14—H14B109.5
C5—C6—H6120.0H14A—C14—H14B109.5
C1—C6—H6120.0O2—C14—H14C109.5
O1—C7—N1122.62 (14)H14A—C14—H14C109.5
O1—C7—C8121.34 (13)H14B—C14—H14C109.5
N1—C7—C8116.02 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.313.110 (2)154
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.313.110 (2)154
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of China (grant No. 21201024), the Natural Science Foundation of Shanxi province (grant No. 2012021009-1) and the College Student's Innovation Traning Project in Shanxi Province (grant No. 2013319).

References

First citationBruker (2007). SMART, SAINT snd SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, Y., Zuo, Y., Xiang, Y. & Zhu, R. (2010). Acta Cryst. E66, o3158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, R., Ren, Y. & Li, W. (2011). Acta Cryst. E67, o3204.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds