metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m190-m191

Bis(2,2′-bi­pyridyl-κ2N,N′)chloridonickel(II) nitrate trihydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria, and bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria
*Correspondence e-mail: a_beghidja@yahoo.fr, setifi_zouaoui@yahoo.fr

(Received 20 April 2014; accepted 22 April 2014; online 26 April 2014)

In the title hydrated salt, [NiCl(C10H8N2)2](NO3)·3H2O, the Ni2+ ion is coordinated by two 2,2′-bipyridyl (2,2′-bpy) ligands and a chloride ion in a trigonal–bipyramidal geometry. The chloride ion occupies an equatorial site and the dihedral angle between the 2,2′-bpy ring systems is 72.02 (6)°. In the crystal, the components are linked by C—H⋯O and O—H⋯O hydrogen bonds and aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.635 (2) Å], generating a three-dimensional network.

Related literature

For the isotypic copper complex, see: Harrison et al. (1981[Harrison, W. D., Kennedy, D. M., Power, M., Sheahan, R. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1556-1564.]); Liu et al. (2004[Liu, H., Liu, C. & Zhong, B. (2004). Chem. J. Internet. 6, 44.]). For related structures, see: Martens et al. (1996[Martens, C. F., Schenning, A. P. H. J., Feiters, M. C., Beurskens, G., Smits, J. M. M., Beurskens, P. T., Smeets, W. J. J., Spek, A. L. & Nolte, R. J. M. (1996). Supramol. Chem. 8, 31-44.]); Gao & Li (2009[Gao, Z. & Li, F. (2009). Acta Cryst. E65, m1664.])

[Scheme 1]

Experimental

Crystal data
  • [NiCl(C10H8N2)2](NO3)·3H2O

  • Mr = 522.57

  • Monoclinic, P 21 /n

  • a = 8.2341 (2) Å

  • b = 21.1920 (5) Å

  • c = 13.1284 (4) Å

  • β = 99.722 (1)°

  • V = 2257.97 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 21125 measured reflections

  • 5177 independent reflections

  • 3811 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.01

  • 5177 reflections

  • 298 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—Cl1 2.3035 (9)
Ni1—N1 1.989 (2)
Ni1—N2 2.088 (2)
Ni1—N3 2.107 (2)
Ni1—N4 1.983 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O3Wi 0.81 2.29 2.876 (6) 129
O1W—H2W⋯O2ii 0.83 2.18 2.934 (7) 151
O2W—H3W⋯O2ii 0.84 1.90 2.723 (7) 166
O2W—H4W⋯Cl1i 0.83 2.47 3.245 (4) 155
O3W—H5W⋯O2Wiii 0.85 1.88 2.699 (6) 161
O3W—H6W⋯O1iv 0.83 2.03 2.839 (7) 165
C14—H14⋯O2W 0.93 2.56 3.424 (5) 155
C18—H18⋯O1W 0.93 2.39 3.257 (6) 156
Symmetry codes: (i) -x, -y, -z; (ii) x, y, z-1; (iii) -x+1, -y, -z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1995[Dowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The molecular structure of the title complex is shown in (Fig.1), The title compound is isostructural with the copper analogue (Harrison et al., 1981; Liu et al., 2004), crystalize in the monoclinic space group P21/n. The Ni(II) atom is five-coordinate and displays a distorted trigonal-bipyramidal coordination geometry with four N atoms from the two chelating 2,2'-bipyridine molecules and one chloride ion. The basal plane defined by the atoms (N1 N3 Cl1). The apical positions are occupied by the N2 and N4 atoms [N2—Ni1—N4 = 175.09 (10)°]. The Ni—N bond lenghts (table 1) are in normal range [Ni1—N1 = 2.086 (3), Ni1—N2 = 1.984 (3), Ni1—N3 = 2.108 (3), Ni1—N4 = 1.983 (3), Ni1—Cl1 = 2.3032 (10)]. In the crystal structure, the components are linked by weak C—H···O and medium O—H···O hydrogen bonds. Water molecules are further hydrogen-bond-interacting with the nitrate anion to complete a two-dimensional water-nitrate framework parallel to (101)which can be described by the graph set R97(24) (Fig. 2). Thus, the discrete [Ni(bpy)2Cl]+ was linked to each other through pi-pi stacking to form two-dimensional supramolecular coordinated polymer parallel to the ac plane with centroid–centroiddistances of Cg(1)—Cg(2) = 3.660 (2) Å, Cg(2)—Cg(2i) = 3.635 (2) Å and Cg(3)—Cg(4) = 3.693 (2) Å. (Cg(1) is the centroid of N4—C20 2,2'-bpy ring, Cg(2) is the centroid of N3—C15 2,2'-bpy ring, Cg(3) is the centroid of N2—C10 2,2'-bpy ring, Cg(4) is the centroid of N1—C5 2,2'-bpy ring) (Fig.3). These layers are connected to each other via a weak O—H···Cl and C—H···O hydrogen bond to form a three-dimensional network(Fig.4).

Related literature top

For the isotypic copper complex, see: Harrison et al. (1981); Liu et al. (2004). For related structures, see: Martens et al. (1996); Gao & Li (2009)

Experimental top

Compound (1) was obtained from the reaction of MSA 'mercaptosuccinic acid' (0.15 g, 1 mmol) in pyridine and an ethanolic solution of Ni(NO3)2.6H2O (0.290 g, 1 mmole) After several minutes of stirring an ethanol solution containing 2,2'-Bipyridine hydrochloride (0.114 g, 0.5 mmol) was add. The solution was kept for several weeks at room temperature. Green crystals suitable for X-ray analysis were obtained (yield: 0.1 g, 10% on the basis of Ni(NO3)2.6H2O).

Refinement top

Water hydrogen atoms were tentatively found in the difference density Fourier map and were refined with an isotropic displacement parameter 1.5 that of the adjacent oxygen atom. The O—H distances were restrained to be 0.9 Å within a standard deviation of 0.01 with Uiso(H) = 1.5 Ueq(O) and the H···H contacts were restraint to 1.40 Å with a standard deviation of 0.02. A l l other Hydrogen atoms were placed in calculated positions with C —H distances of 0.93–0.96 Å for aromatic H atoms with Uiso(H) =1.2 Ueq(C). Maximum and minimum residual electron densities were 0.47 e Å-3 (0.79 Å from Ni1) and -0.47 e Å-3 (0.70 Å from H3w), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. The two-dimensional water-nitrate framework parallel to ac plane, and the aggregation of R9 7(24)[Symmetry codes: (i) -x, -y, -z; (ii) x, y, z - 1; (iii) -x + 1, -y, -z]
[Figure 3] Fig. 3. Part of the crystal structures, showing the [pi]-[pi] stacking interaction [Symmetry codes: (i) 1 - x, -y, -z]
[Figure 4] Fig. 4. Packing diagram of the supramolecular edifice showing hydrogen bonds as dashed lines
Bis(2,2'-bipyridyl-κ2N,N')chloridonickel(II) nitrate trihydrate top
Crystal data top
[NiCl(C10H8N2)2](NO3)·3H2OZ = 4
Mr = 522.57F(000) = 1080
Monoclinic, P21/nDx = 1.537 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.2341 (2) ŵ = 1.03 mm1
b = 21.1920 (5) ÅT = 296 K
c = 13.1284 (4) ÅBlock, green
β = 99.722 (1)°0.15 × 0.13 × 0.10 mm
V = 2257.97 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3811 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
Detector resolution: 18.4 pixels mm-1h = 1010
ϕ and ω scansk = 2527
21125 measured reflectionsl = 1617
5177 independent reflections
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127 W = 1/[Σ2(FO2) + (0.0647P)2 + 1.1593P] WHERE P = (FO2 + 2FC2)/3
S = 1.01(Δ/σ)max < 0.001
5177 reflectionsΔρmax = 0.47 e Å3
298 parametersΔρmin = 0.47 e Å3
Crystal data top
[NiCl(C10H8N2)2](NO3)·3H2OV = 2257.97 (10) Å3
Mr = 522.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2341 (2) ŵ = 1.03 mm1
b = 21.1920 (5) ÅT = 296 K
c = 13.1284 (4) Å0.15 × 0.13 × 0.10 mm
β = 99.722 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3811 reflections with I > 2σ(I)
21125 measured reflectionsRint = 0.034
5177 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0449 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.01Δρmax = 0.47 e Å3
5177 reflectionsΔρmin = 0.47 e Å3
298 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26205 (4)0.01955 (2)0.25456 (2)0.0416 (1)
Cl10.04397 (10)0.00729 (4)0.33507 (6)0.0607 (3)
N10.4089 (3)0.04491 (11)0.33240 (17)0.0468 (7)
N20.4655 (3)0.07571 (11)0.31172 (16)0.0446 (7)
N30.2831 (3)0.01045 (10)0.10432 (18)0.0448 (7)
N40.1319 (3)0.08621 (11)0.17169 (18)0.0470 (7)
C10.3683 (4)0.10552 (14)0.3398 (3)0.0574 (10)
C20.4723 (4)0.14864 (15)0.3945 (3)0.0626 (11)
C30.6237 (4)0.12862 (16)0.4447 (3)0.0660 (11)
C40.6663 (4)0.06611 (15)0.4387 (2)0.0573 (10)
C50.5564 (3)0.02455 (13)0.3819 (2)0.0430 (8)
C60.5881 (3)0.04365 (13)0.37109 (19)0.0422 (8)
C70.7311 (4)0.07368 (16)0.4171 (2)0.0547 (10)
C80.7489 (4)0.13756 (17)0.4001 (3)0.0663 (11)
C90.6260 (4)0.16938 (16)0.3385 (3)0.0664 (11)
C100.4856 (4)0.13736 (14)0.2963 (2)0.0559 (10)
C110.3647 (4)0.06032 (14)0.0758 (2)0.0531 (10)
C120.3716 (4)0.07369 (17)0.0257 (3)0.0623 (11)
C130.2912 (4)0.03406 (19)0.1010 (3)0.0668 (13)
C140.2078 (4)0.01749 (16)0.0732 (2)0.0591 (10)
C150.2067 (3)0.02868 (13)0.0305 (2)0.0455 (8)
C160.1201 (3)0.08294 (13)0.0683 (2)0.0452 (8)
C170.0298 (4)0.12715 (15)0.0049 (2)0.0578 (10)
C180.0500 (4)0.17463 (15)0.0485 (3)0.0649 (11)
C190.0382 (4)0.17781 (15)0.1538 (3)0.0641 (11)
C200.0545 (4)0.13259 (14)0.2133 (3)0.0570 (10)
O10.1473 (7)0.2935 (3)0.5504 (4)0.181 (3)
O20.0983 (7)0.2268 (2)0.6708 (5)0.165 (3)
O30.0639 (6)0.2366 (3)0.5677 (5)0.186 (3)
N50.0656 (6)0.2527 (2)0.5946 (4)0.1009 (19)
O1W0.2649 (5)0.2447 (3)0.1506 (3)0.167 (2)
O2W0.1269 (6)0.1387 (2)0.2468 (3)0.157 (2)
O3W0.5892 (5)0.1931 (2)0.1556 (4)0.162 (2)
H10.265400.119000.306500.0690*
H20.441100.190700.397700.0750*
H30.696600.157000.482300.0790*
H40.768000.051800.472400.0690*
H70.813900.051300.458800.0660*
H80.844000.158600.430400.0790*
H90.637000.212100.325200.0800*
H100.401200.159500.255400.0670*
H110.418900.086900.126800.0640*
H120.429100.108700.043200.0750*
H130.293500.042200.170300.0800*
H140.153000.044500.123400.0710*
H170.023000.124800.066400.0690*
H180.111700.204400.006600.0780*
H190.091300.209600.184300.0770*
H200.063400.134500.284800.0680*
H1W0.354300.253100.136300.2350*
H2W0.252700.235600.210400.2350*
H3W0.062200.169100.262900.2350*
H4W0.102100.107200.283700.2350*
H5W0.665900.168100.180800.2350*
H6W0.588700.199800.093200.2350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0427 (2)0.0381 (2)0.0418 (2)0.0038 (1)0.0004 (1)0.0021 (1)
Cl10.0508 (4)0.0743 (5)0.0580 (4)0.0074 (3)0.0119 (3)0.0144 (4)
N10.0505 (13)0.0427 (12)0.0468 (12)0.0062 (10)0.0067 (10)0.0002 (10)
N20.0460 (12)0.0459 (12)0.0410 (11)0.0002 (10)0.0044 (9)0.0014 (9)
N30.0418 (12)0.0455 (13)0.0458 (12)0.0053 (9)0.0034 (9)0.0034 (10)
N40.0462 (13)0.0441 (12)0.0485 (13)0.0001 (10)0.0019 (10)0.0024 (10)
C10.0612 (19)0.0449 (16)0.0656 (19)0.0035 (13)0.0096 (15)0.0001 (14)
C20.076 (2)0.0447 (16)0.070 (2)0.0145 (15)0.0208 (17)0.0037 (15)
C30.077 (2)0.059 (2)0.0617 (19)0.0286 (17)0.0113 (17)0.0113 (15)
C40.0539 (17)0.0634 (19)0.0536 (17)0.0163 (14)0.0061 (13)0.0010 (14)
C50.0443 (14)0.0495 (15)0.0363 (12)0.0094 (11)0.0099 (11)0.0016 (11)
C60.0406 (13)0.0539 (15)0.0327 (12)0.0038 (11)0.0083 (10)0.0033 (11)
C70.0436 (15)0.068 (2)0.0514 (16)0.0049 (14)0.0052 (12)0.0070 (14)
C80.0527 (18)0.073 (2)0.072 (2)0.0155 (16)0.0070 (16)0.0124 (17)
C90.072 (2)0.0550 (19)0.072 (2)0.0128 (16)0.0115 (17)0.0027 (16)
C100.0607 (18)0.0476 (16)0.0570 (17)0.0035 (13)0.0030 (14)0.0079 (13)
C110.0480 (16)0.0535 (17)0.0575 (17)0.0036 (13)0.0078 (13)0.0086 (14)
C120.0540 (18)0.069 (2)0.067 (2)0.0095 (15)0.0193 (15)0.0218 (17)
C130.063 (2)0.092 (3)0.0486 (17)0.0199 (19)0.0191 (15)0.0150 (17)
C140.0549 (18)0.077 (2)0.0447 (16)0.0145 (15)0.0068 (13)0.0020 (15)
C150.0365 (13)0.0523 (16)0.0466 (14)0.0130 (11)0.0042 (11)0.0011 (12)
C160.0377 (13)0.0459 (14)0.0499 (15)0.0113 (11)0.0011 (11)0.0054 (12)
C170.0538 (17)0.0575 (18)0.0575 (18)0.0092 (15)0.0042 (14)0.0145 (15)
C180.0596 (19)0.0498 (18)0.079 (2)0.0016 (15)0.0061 (16)0.0185 (16)
C190.0599 (19)0.0436 (17)0.086 (2)0.0032 (14)0.0045 (17)0.0029 (16)
C200.0610 (18)0.0479 (16)0.0606 (18)0.0047 (14)0.0061 (14)0.0020 (14)
O10.171 (5)0.191 (5)0.180 (5)0.090 (4)0.028 (4)0.022 (4)
O20.230 (6)0.105 (3)0.178 (5)0.065 (3)0.087 (4)0.028 (3)
O30.123 (3)0.203 (5)0.252 (6)0.055 (4)0.089 (4)0.031 (4)
N50.120 (4)0.076 (3)0.105 (3)0.009 (3)0.014 (3)0.019 (2)
O1W0.158 (4)0.194 (4)0.132 (3)0.037 (4)0.025 (3)0.056 (3)
O2W0.233 (5)0.123 (3)0.113 (3)0.002 (3)0.028 (3)0.009 (2)
O3W0.147 (4)0.169 (4)0.174 (4)0.038 (3)0.039 (3)0.020 (3)
Geometric parameters (Å, º) top
Ni1—Cl12.3035 (9)C7—C81.384 (5)
Ni1—N11.989 (2)C8—C91.363 (5)
Ni1—N22.088 (2)C9—C101.374 (5)
Ni1—N32.107 (2)C11—C121.373 (5)
Ni1—N41.983 (2)C12—C131.378 (5)
O1—N51.185 (8)C13—C141.372 (5)
O2—N51.211 (8)C14—C151.384 (4)
O3—N51.227 (7)C15—C161.482 (4)
O1W—H2W0.8300C16—C171.384 (4)
O1W—H1W0.8100C17—C181.378 (5)
O2W—H4W0.8300C18—C191.371 (5)
O2W—H3W0.8400C19—C201.382 (5)
O3W—H5W0.8500C1—H10.9300
O3W—H6W0.8300C2—H20.9300
N1—C51.348 (4)C3—H30.9300
N1—C11.335 (4)C4—H40.9300
N2—C61.350 (3)C7—H70.9300
N2—C101.337 (4)C8—H80.9300
N3—C111.339 (4)C9—H90.9300
N3—C151.348 (3)C10—H100.9300
N4—C201.337 (4)C11—H110.9300
N4—C161.346 (3)C12—H120.9300
C1—C21.370 (5)C13—H130.9300
C2—C31.375 (5)C14—H140.9300
C3—C41.376 (5)C17—H170.9300
C4—C51.387 (4)C18—H180.9300
C5—C61.480 (4)C19—H190.9300
C6—C71.384 (4)C20—H200.9300
Cl1—Ni1—N192.75 (7)C12—C13—C14119.7 (3)
Cl1—Ni1—N2128.03 (6)C13—C14—C15119.0 (3)
Cl1—Ni1—N3123.28 (7)C14—C15—C16123.1 (3)
Cl1—Ni1—N492.10 (8)N3—C15—C16115.4 (2)
N1—Ni1—N279.96 (9)N3—C15—C14121.5 (3)
N1—Ni1—N397.75 (9)N4—C16—C15114.9 (2)
N1—Ni1—N4175.13 (10)N4—C16—C17120.8 (2)
N2—Ni1—N3108.69 (9)C15—C16—C17124.3 (2)
N2—Ni1—N496.75 (10)C16—C17—C18119.3 (3)
N3—Ni1—N479.84 (9)C17—C18—C19119.8 (3)
H1W—O1W—H2W122.00C18—C19—C20118.3 (3)
H3W—O2W—H4W113.00N4—C20—C19122.3 (3)
H5W—O3W—H6W112.00N1—C1—H1119.00
Ni1—N1—C5116.62 (18)C2—C1—H1119.00
Ni1—N1—C1124.1 (2)C1—C2—H2121.00
C1—N1—C5119.3 (3)C3—C2—H2121.00
Ni1—N2—C6113.39 (18)C4—C3—H3120.00
Ni1—N2—C10128.0 (2)C2—C3—H3120.00
C6—N2—C10118.7 (2)C3—C4—H4120.00
C11—N3—C15118.7 (2)C5—C4—H4120.00
Ni1—N3—C11128.63 (18)C8—C7—H7120.00
Ni1—N3—C15112.66 (17)C6—C7—H7121.00
Ni1—N4—C16117.18 (19)C7—C8—H8120.00
Ni1—N4—C20123.4 (2)C9—C8—H8120.00
C16—N4—C20119.4 (3)C8—C9—H9120.00
O2—N5—O3115.9 (5)C10—C9—H9120.00
O1—N5—O2123.3 (6)C9—C10—H10119.00
O1—N5—O3120.7 (6)N2—C10—H10119.00
N1—C1—C2122.6 (3)N3—C11—H11119.00
C1—C2—C3118.8 (3)C12—C11—H11119.00
C2—C3—C4119.3 (3)C11—C12—H12121.00
C3—C4—C5119.5 (3)C13—C12—H12121.00
C4—C5—C6124.2 (2)C14—C13—H13120.00
N1—C5—C6115.2 (2)C12—C13—H13120.00
N1—C5—C4120.6 (3)C13—C14—H14120.00
C5—C6—C7123.9 (2)C15—C14—H14121.00
N2—C6—C5114.8 (2)C16—C17—H17120.00
N2—C6—C7121.2 (3)C18—C17—H17120.00
C6—C7—C8119.0 (3)C19—C18—H18120.00
C7—C8—C9119.5 (3)C17—C18—H18120.00
C8—C9—C10119.0 (3)C18—C19—H19121.00
N2—C10—C9122.6 (3)C20—C19—H19121.00
N3—C11—C12122.6 (3)C19—C20—H20119.00
C11—C12—C13118.5 (3)N4—C20—H20119.00
Cl1—Ni1—N1—C150.9 (3)Ni1—N3—C11—C12178.4 (2)
Cl1—Ni1—N1—C5127.61 (19)C15—N3—C11—C121.0 (5)
N2—Ni1—N1—C1179.0 (3)Ni1—N3—C15—C14179.4 (2)
N2—Ni1—N1—C50.54 (19)Ni1—N3—C15—C161.8 (3)
N3—Ni1—N1—C173.3 (3)C11—N3—C15—C141.6 (4)
N3—Ni1—N1—C5108.3 (2)C11—N3—C15—C16179.6 (3)
Cl1—Ni1—N2—C684.54 (19)Ni1—N4—C16—C150.4 (3)
Cl1—Ni1—N2—C1095.4 (2)Ni1—N4—C16—C17179.2 (2)
N1—Ni1—N2—C61.07 (18)C20—N4—C16—C15178.3 (3)
N1—Ni1—N2—C10179.0 (2)C20—N4—C16—C170.4 (4)
N3—Ni1—N2—C695.92 (18)Ni1—N4—C20—C19178.7 (2)
N3—Ni1—N2—C1084.2 (2)C16—N4—C20—C190.0 (5)
N4—Ni1—N2—C6177.45 (18)N1—C1—C2—C30.7 (6)
N4—Ni1—N2—C102.7 (2)C1—C2—C3—C40.1 (5)
Cl1—Ni1—N3—C1195.1 (3)C2—C3—C4—C50.3 (5)
Cl1—Ni1—N3—C1587.41 (19)C3—C4—C5—N10.2 (4)
N1—Ni1—N3—C113.4 (3)C3—C4—C5—C6179.2 (3)
N1—Ni1—N3—C15174.12 (19)N1—C5—C6—N21.0 (3)
N2—Ni1—N3—C1185.4 (3)N1—C5—C6—C7179.1 (3)
N2—Ni1—N3—C1592.2 (2)C4—C5—C6—N2179.5 (3)
N4—Ni1—N3—C11179.1 (3)C4—C5—C6—C70.4 (4)
N4—Ni1—N3—C151.59 (19)N2—C6—C7—C81.1 (4)
Cl1—Ni1—N4—C16124.5 (2)C5—C6—C7—C8178.8 (3)
Cl1—Ni1—N4—C2054.2 (2)C6—C7—C8—C90.2 (5)
N2—Ni1—N4—C16106.8 (2)C7—C8—C9—C101.3 (5)
N2—Ni1—N4—C2074.5 (2)C8—C9—C10—N21.2 (5)
N3—Ni1—N4—C161.1 (2)N3—C11—C12—C130.0 (5)
N3—Ni1—N4—C20177.6 (3)C11—C12—C13—C140.4 (5)
Ni1—N1—C1—C2179.7 (3)C12—C13—C14—C150.2 (5)
C5—N1—C1—C21.3 (5)C13—C14—C15—N31.2 (5)
Ni1—N1—C5—C4179.6 (2)C13—C14—C15—C16179.9 (3)
Ni1—N1—C5—C60.0 (3)N3—C15—C16—N41.0 (3)
C1—N1—C5—C41.0 (4)N3—C15—C16—C17177.7 (3)
C1—N1—C5—C6178.5 (3)C14—C15—C16—N4179.8 (3)
Ni1—N2—C6—C51.4 (3)C14—C15—C16—C171.1 (4)
Ni1—N2—C6—C7178.7 (2)N4—C16—C17—C180.6 (4)
C10—N2—C6—C5178.7 (2)C15—C16—C17—C18178.0 (3)
C10—N2—C6—C71.2 (4)C16—C17—C18—C190.5 (5)
Ni1—N2—C10—C9179.9 (2)C17—C18—C19—C200.1 (5)
C6—N2—C10—C90.0 (4)C18—C19—C20—N40.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3Wi0.812.292.876 (6)129
O1W—H2W···O2ii0.832.182.934 (7)151
O2W—H3W···O2ii0.841.902.723 (7)166
O2W—H4W···Cl1i0.832.473.245 (4)155
O3W—H5W···O2Wiii0.851.882.699 (6)161
O3W—H6W···O1iv0.832.032.839 (7)165
C14—H14···O2W0.932.563.424 (5)155
C18—H18···O1W0.932.393.257 (6)156
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x+1, y, z; (iv) x+1/2, y1/2, z+1/2.
Selected bond lengths (Å) top
Ni1—Cl12.3035 (9)Ni1—N32.107 (2)
Ni1—N11.989 (2)Ni1—N41.983 (2)
Ni1—N22.088 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3Wi0.812.292.876 (6)129
O1W—H2W···O2ii0.832.182.934 (7)151
O2W—H3W···O2ii0.841.902.723 (7)166
O2W—H4W···Cl1i0.832.473.245 (4)155
O3W—H5W···O2Wiii0.851.882.699 (6)161
O3W—H6W···O1iv0.832.032.839 (7)165
C14—H14···O2W0.932.563.424 (5)155
C18—H18···O1W0.932.393.257 (6)156
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x+1, y, z; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the MESRS (Algeria) for financial support. MB thanks the DG–RSDT and ANDRU (Direction Générale de la Recherche Scientifique et du Dévelopement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Algeria) through the PNR project.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Z. & Li, F. (2009). Acta Cryst. E65, m1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. D., Kennedy, D. M., Power, M., Sheahan, R. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1556–1564.  CSD CrossRef Web of Science Google Scholar
First citationLiu, H., Liu, C. & Zhong, B. (2004). Chem. J. Internet. 6, 44.  Google Scholar
First citationMartens, C. F., Schenning, A. P. H. J., Feiters, M. C., Beurskens, G., Smits, J. M. M., Beurskens, P. T., Smeets, W. J. J., Spek, A. L. & Nolte, R. J. M. (1996). Supramol. Chem. 8, 31–44.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m190-m191
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds