organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Di­meth­­oxy­phen­yl)-4-(thio­phen-2-yl)-2,3-di­hydro-1,5-benzo­thia­zepine

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and cPost Graduate Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 19 December 2013; accepted 25 December 2013; online 8 January 2014)

In the title compound, C21H19NO2S2, the seven-membered thia­zepine ring adopts a slightly distorted twist boat conformation. The dihedral angle between the benzene rings is 67.4 (2)°. The mean plane of the thio­phene ring is twisted by 59.3 (2) and 87.7 (2)° from the mean planes of the benezene rings. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(20) loops.

Related literature

For the biological activity of benzo­phenone derivatives, see: Cutignano et al. (2003[Cutignano, A., Tramice, A., De Caro, S., Villani, G., Cimino, G. & Fontana, A. (2003). Angew. Chem. Int. Ed. 42, 2633-2633.]); Sanjeeva et al. (2008[Sanjeeva, R. C., Purnachandra, R. G., Nagaraj, A. & Srinivas, A. (2008). Org. Commun. 1, 84-94.]). For a related structure, see: Manjula et al. (2013[Manjula, M., Manjunath, B. C., Renuka, N., Ajay Kumar, K. & Lokanath, N. K. (2013). Acta Cryst. E69, o1608.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO2S2

  • Mr = 381.51

  • Triclinic, [P \overline 1]

  • a = 8.6188 (11) Å

  • b = 9.7463 (15) Å

  • c = 11.9018 (16) Å

  • α = 100.308 (10)°

  • β = 107.921 (9)°

  • γ = 95.163 (11)°

  • V = 924.6 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.73 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.20 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.598, Tmax = 0.611

  • 7560 measured reflections

  • 2999 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.180

  • S = 1.07

  • 2999 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O23i 0.93 2.54 3.457 (5) 169
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006)[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]; software used to prepare material for publication: Mercury.

Supporting information


Comment top

Seven membered ring compounds are receiving significant attention because of the existence of their structural units in some natural products (Cutignano et al., 2003). Heterocycles containing the 1,4-thiazepine ring is one of important moieties in nitrogen and sulfur containing heterocycles and has been widely used as key building block for pharmaceutical agents as well as biologically active compounds. Benzothiazepine and its derivatives show a wide spectrum of pharmacological activities such as antifeedent, coronary vasodilatory, tranquilizer, antidepressant, CNS stimulant, antihypertensive, calcium channel blocker, antiulcer, calcium antagonist and antimicrobial agents (Sanjeeva et al., 2008). The C6—N12 is shorter than an usual C—N single bond [1.294 Å compared to 1.416 Å] and the C10—S9 bond is shorter than an usual C—S single bond [1.760 Å compared to 1.82 Å]. The bond lengths and angles do not show large deviations and are comparable with those reported for a similar structure (Manjula et al., 2013). The atoms C7, C8, C10 and C11 present in the central thiazepine ring forms a basal plane and the S9 atom as the bow, representing the boat conformation of thiazepine ring.

In the title compound, the dihedral angle between the mean planes of the benzene rings is 67.40°. The mean plane of the thiazepine ring is twisted by 36.17° and 77.93° from the mean planes of two benezene rings.

Related literature top

For the biological activity of benzophenone derivatives, see: Cutignano et al. (2003); Sanjeeva et al. (2008). For a related structure, see: Manjula et al. (2013).

Experimental top

A mixture of 2-aminothiophenol (4 mmol) with 3-(3,4-dimethoxyphenyl)-1- (thiophen-2-yl)prop-2-en-1-one (4 mmol) and 3–4 drops of conc. Hydrochloric acid in methanol (10 ml) was heated with stirring at 473 K for 4 h. The reaction was monitored by TLC (hexane/chloroform). After the completion of the reaction, the mixture was extracted in to ether (30 ml), washed successively with cold and dilute hydrochloric acid and water. The solvent was evaporated to dryness, the solid obtained was crystallized from 95° ethyl alcohol solution to get pale yellow needles of the title compound in 90° yield.

Refinement top

All hydrogen atoms were located geometrically with C—H = 0.93–0.97) Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(aromatic C).

Structure description top

Seven membered ring compounds are receiving significant attention because of the existence of their structural units in some natural products (Cutignano et al., 2003). Heterocycles containing the 1,4-thiazepine ring is one of important moieties in nitrogen and sulfur containing heterocycles and has been widely used as key building block for pharmaceutical agents as well as biologically active compounds. Benzothiazepine and its derivatives show a wide spectrum of pharmacological activities such as antifeedent, coronary vasodilatory, tranquilizer, antidepressant, CNS stimulant, antihypertensive, calcium channel blocker, antiulcer, calcium antagonist and antimicrobial agents (Sanjeeva et al., 2008). The C6—N12 is shorter than an usual C—N single bond [1.294 Å compared to 1.416 Å] and the C10—S9 bond is shorter than an usual C—S single bond [1.760 Å compared to 1.82 Å]. The bond lengths and angles do not show large deviations and are comparable with those reported for a similar structure (Manjula et al., 2013). The atoms C7, C8, C10 and C11 present in the central thiazepine ring forms a basal plane and the S9 atom as the bow, representing the boat conformation of thiazepine ring.

In the title compound, the dihedral angle between the mean planes of the benzene rings is 67.40°. The mean plane of the thiazepine ring is twisted by 36.17° and 77.93° from the mean planes of two benezene rings.

For the biological activity of benzophenone derivatives, see: Cutignano et al. (2003); Sanjeeva et al. (2008). For a related structure, see: Manjula et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the crystallographic b axis. Dotted lines represents intermolecular hydrogen bonding.
2-(3,4-Dimethoxyphenyl)-4-(thiophen-2-yl)-2,3-dihydro-1,5-benzothiazepine top
Crystal data top
C21H19NO2S2Z = 2
Mr = 381.51F(000) = 400
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.6188 (11) ÅCell parameters from 2999 reflections
b = 9.7463 (15) Åθ = 4.0–64.8°
c = 11.9018 (16) ŵ = 2.73 mm1
α = 100.308 (10)°T = 296 K
β = 107.921 (9)°Needle, light yellow
γ = 95.163 (11)°0.21 × 0.20 × 0.20 mm
V = 924.6 (2) Å3
Data collection top
Bruker X8 Proteum
diffractometer
2999 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2093 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.051
Detector resolution: 10.7 pixels mm-1θmax = 64.8°, θmin = 4.0°
φ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 119
Tmin = 0.598, Tmax = 0.611l = 713
7560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.07 W = 1/[Σ2(FO2) + (0.0632P)2 + 0.4716P] WHERE P = (FO2 + 2FC2)/3
2999 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C21H19NO2S2γ = 95.163 (11)°
Mr = 381.51V = 924.6 (2) Å3
Triclinic, P1Z = 2
a = 8.6188 (11) ÅCu Kα radiation
b = 9.7463 (15) ŵ = 2.73 mm1
c = 11.9018 (16) ÅT = 296 K
α = 100.308 (10)°0.21 × 0.20 × 0.20 mm
β = 107.921 (9)°
Data collection top
Bruker X8 Proteum
diffractometer
2999 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2093 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.611Rint = 0.051
7560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2999 reflectionsΔρmin = 0.39 e Å3
237 parameters
Special details top

Experimental. m.p. 371 K. 1H NMR (CDCl3): δ 2.1 (d, 2H, C3—H), 3.80 (t, 1H, C2—H), 3.82 (s, 6H, -2OCH3), 6.52 (d, 1H, Ar—H), 6.64 (s, 1H, Ar—H), 7.0 (d, 1H, Ar—H), 7.1 (t, 1H, C5—H 5 m ring), 7.2–7.4 (m, 4H, Ar—H), 7.18 (t, 1H, C4—H 5 m ring), 7.46 (d, 1H, C3—H 5 m ring). Anal. Calcd. for C21H19NO2S2: C 66.11, H 5.02, N 3.67°; found C 66.10, H 4.98, N 3.68°. Mass FAB+ (NBA): 382 (M + 1, 100°).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27208 (13)0.30975 (11)0.03322 (9)0.0585 (4)
S90.44948 (13)0.64057 (13)0.38801 (8)0.0588 (4)
O230.1945 (3)0.6524 (3)0.7567 (2)0.0571 (10)
O250.0298 (4)0.8108 (3)0.7090 (2)0.0627 (10)
N120.3407 (4)0.6027 (3)0.1072 (3)0.0497 (10)
C20.1374 (6)0.1581 (4)0.0805 (4)0.0608 (14)
C30.0140 (6)0.1630 (5)0.0311 (4)0.0632 (16)
C40.0329 (5)0.2921 (4)0.0500 (3)0.0523 (12)
C50.1673 (5)0.3849 (4)0.0577 (3)0.0466 (11)
C60.2239 (5)0.5289 (4)0.1278 (3)0.0449 (11)
C70.1393 (5)0.5875 (4)0.2153 (3)0.0480 (11)
C80.2257 (5)0.5754 (4)0.3433 (3)0.0449 (11)
C100.4599 (5)0.7707 (4)0.3043 (4)0.0535 (12)
C110.4061 (5)0.7396 (4)0.1762 (3)0.0527 (12)
C130.5351 (5)0.9073 (5)0.3660 (4)0.0701 (17)
C140.5566 (7)1.0118 (5)0.3038 (6)0.083 (2)
C150.5020 (7)0.9803 (5)0.1812 (6)0.088 (2)
C160.4288 (6)0.8464 (5)0.1171 (4)0.0670 (17)
C170.1517 (4)0.6436 (4)0.4359 (3)0.0431 (11)
C180.0340 (5)0.7296 (4)0.4125 (3)0.0515 (13)
C190.0315 (5)0.7881 (4)0.5006 (3)0.0556 (16)
C200.0245 (5)0.7594 (4)0.6157 (3)0.0482 (11)
C210.1444 (5)0.6730 (4)0.6401 (3)0.0444 (11)
C220.2054 (4)0.6162 (4)0.5510 (3)0.0413 (11)
C240.3247 (6)0.5738 (5)0.7876 (3)0.0632 (16)
C260.1737 (6)0.8744 (6)0.6826 (4)0.0759 (19)
H20.146100.079700.134400.0730*
H30.072400.089400.048900.0760*
H40.038000.312600.093700.0630*
H7A0.027200.537600.188500.0580*
H7B0.133200.686100.214100.0580*
H80.215000.474400.343100.0540*
H130.571600.929300.450100.0840*
H140.608101.102600.346100.0990*
H150.514401.050600.139700.1060*
H160.393900.826900.033000.0800*
H180.003400.749500.336000.0620*
H190.111900.845800.482600.0660*
H220.285000.557700.568500.0500*
H24A0.291200.479700.738600.0940*
H24B0.352400.570100.871400.0940*
H24C0.419300.618100.773800.0940*
H26A0.150800.962700.661300.1140*
H26B0.208700.890800.752500.1140*
H26C0.259600.813100.616200.1140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0629 (7)0.0656 (7)0.0458 (6)0.0136 (5)0.0226 (5)0.0012 (5)
S90.0514 (6)0.0857 (8)0.0389 (5)0.0170 (5)0.0149 (4)0.0098 (5)
O230.0642 (18)0.090 (2)0.0267 (13)0.0294 (15)0.0199 (12)0.0196 (13)
O250.0651 (18)0.098 (2)0.0329 (14)0.0401 (16)0.0224 (13)0.0092 (14)
N120.0572 (19)0.0571 (19)0.0366 (16)0.0108 (15)0.0210 (15)0.0044 (14)
C20.070 (3)0.056 (2)0.050 (2)0.020 (2)0.013 (2)0.0028 (19)
C30.070 (3)0.055 (2)0.058 (3)0.007 (2)0.011 (2)0.015 (2)
C40.058 (2)0.062 (2)0.040 (2)0.0104 (19)0.0177 (18)0.0156 (18)
C50.053 (2)0.056 (2)0.0287 (17)0.0129 (18)0.0107 (16)0.0070 (16)
C60.049 (2)0.058 (2)0.0291 (17)0.0123 (17)0.0148 (16)0.0078 (16)
C70.052 (2)0.061 (2)0.0312 (18)0.0097 (18)0.0182 (16)0.0020 (16)
C80.053 (2)0.054 (2)0.0299 (18)0.0145 (17)0.0174 (16)0.0049 (16)
C100.048 (2)0.063 (2)0.049 (2)0.0130 (19)0.0210 (18)0.0002 (19)
C110.054 (2)0.061 (2)0.047 (2)0.0086 (19)0.0264 (19)0.0046 (19)
C130.055 (3)0.074 (3)0.067 (3)0.007 (2)0.019 (2)0.017 (2)
C140.087 (4)0.060 (3)0.102 (4)0.004 (3)0.046 (3)0.001 (3)
C150.099 (4)0.057 (3)0.132 (5)0.011 (3)0.074 (4)0.020 (3)
C160.082 (3)0.066 (3)0.072 (3)0.014 (2)0.048 (3)0.022 (2)
C170.048 (2)0.051 (2)0.0304 (18)0.0061 (17)0.0166 (15)0.0035 (15)
C180.067 (3)0.067 (2)0.0273 (17)0.026 (2)0.0173 (17)0.0169 (17)
C190.063 (3)0.070 (3)0.038 (2)0.030 (2)0.0177 (18)0.0111 (18)
C200.053 (2)0.062 (2)0.0316 (19)0.0152 (18)0.0184 (16)0.0042 (17)
C210.048 (2)0.057 (2)0.0303 (18)0.0107 (17)0.0154 (15)0.0094 (16)
C220.048 (2)0.054 (2)0.0247 (17)0.0152 (17)0.0128 (15)0.0107 (15)
C240.068 (3)0.091 (3)0.037 (2)0.032 (2)0.0165 (19)0.022 (2)
C260.062 (3)0.104 (4)0.055 (3)0.034 (3)0.020 (2)0.011 (3)
Geometric parameters (Å, º) top
S1—C21.685 (5)C17—C221.388 (5)
S1—C51.720 (4)C18—C191.397 (6)
S9—C81.853 (5)C19—C201.394 (5)
S9—C101.760 (4)C20—C211.386 (6)
O23—C211.378 (4)C21—C221.376 (5)
O23—C241.408 (6)C2—H20.9300
O25—C201.366 (5)C3—H30.9300
O25—C261.411 (6)C4—H40.9300
N12—C61.294 (5)C7—H7A0.9700
N12—C111.400 (5)C7—H7B0.9700
C2—C31.365 (7)C8—H80.9800
C3—C41.405 (6)C13—H130.9300
C4—C51.373 (6)C14—H140.9300
C5—C61.453 (5)C15—H150.9300
C6—C71.507 (6)C16—H160.9300
C7—C81.507 (5)C18—H180.9300
C8—C171.520 (5)C19—H190.9300
C10—C111.416 (6)C22—H220.9300
C10—C131.391 (6)C24—H24A0.9600
C11—C161.388 (6)C24—H24B0.9600
C13—C141.393 (7)C24—H24C0.9600
C14—C151.355 (9)C26—H26A0.9600
C15—C161.372 (7)C26—H26B0.9600
C17—C181.368 (6)C26—H26C0.9600
C2—S1—C591.9 (2)S1—C2—H2124.00
C8—S9—C10104.1 (2)C3—C2—H2124.00
C21—O23—C24116.8 (3)C2—C3—H3124.00
C20—O25—C26118.1 (3)C4—C3—H3124.00
C6—N12—C11120.1 (3)C3—C4—H4124.00
S1—C2—C3112.6 (3)C5—C4—H4124.00
C2—C3—C4112.1 (4)C6—C7—H7A109.00
C3—C4—C5112.7 (4)C6—C7—H7B109.00
S1—C5—C4110.7 (3)C8—C7—H7A109.00
S1—C5—C6120.3 (3)C8—C7—H7B109.00
C4—C5—C6129.0 (4)H7A—C7—H7B108.00
N12—C6—C5117.6 (4)S9—C8—H8107.00
N12—C6—C7123.3 (3)C7—C8—H8107.00
C5—C6—C7119.1 (4)C17—C8—H8107.00
C6—C7—C8113.3 (3)C10—C13—H13120.00
S9—C8—C7110.2 (3)C14—C13—H13119.00
S9—C8—C17111.6 (2)C13—C14—H14120.00
C7—C8—C17114.9 (3)C15—C14—H14120.00
S9—C10—C11122.5 (3)C14—C15—H15119.00
S9—C10—C13118.8 (3)C16—C15—H15119.00
C11—C10—C13118.5 (4)C11—C16—H16120.00
N12—C11—C10122.2 (3)C15—C16—H16120.00
N12—C11—C16118.7 (3)C17—C18—H18119.00
C10—C11—C16119.0 (4)C19—C18—H18119.00
C10—C13—C14121.1 (4)C18—C19—H19120.00
C13—C14—C15119.5 (5)C20—C19—H19120.00
C14—C15—C16121.2 (5)C17—C22—H22119.00
C11—C16—C15120.8 (4)C21—C22—H22119.00
C8—C17—C18124.0 (3)O23—C24—H24A109.00
C8—C17—C22118.2 (3)O23—C24—H24B109.00
C18—C17—C22117.8 (3)O23—C24—H24C109.00
C17—C18—C19121.7 (3)H24A—C24—H24B109.00
C18—C19—C20119.6 (4)H24A—C24—H24C109.00
O25—C20—C19124.8 (4)H24B—C24—H24C109.00
O25—C20—C21116.2 (3)O25—C26—H26A110.00
C19—C20—C21119.0 (4)O25—C26—H26B109.00
O23—C21—C20115.1 (3)O25—C26—H26C109.00
O23—C21—C22125.0 (4)H26A—C26—H26B109.00
C20—C21—C22120.0 (3)H26A—C26—H26C109.00
C17—C22—C21122.0 (4)H26B—C26—H26C109.00
C5—S1—C2—C30.9 (4)S9—C8—C17—C2264.7 (4)
C2—S1—C5—C40.3 (3)C7—C8—C17—C1810.4 (6)
C2—S1—C5—C6178.9 (3)C7—C8—C17—C22169.0 (3)
C10—S9—C8—C730.2 (3)S9—C10—C11—N120.0 (6)
C10—S9—C8—C1798.7 (3)S9—C10—C11—C16175.7 (4)
C8—S9—C10—C1162.9 (4)C13—C10—C11—N12175.1 (4)
C8—S9—C10—C13122.1 (4)C13—C10—C11—C160.6 (7)
C24—O23—C21—C20175.5 (4)S9—C10—C13—C14175.6 (4)
C24—O23—C21—C223.9 (6)C11—C10—C13—C140.3 (7)
C26—O25—C20—C1913.0 (6)N12—C11—C16—C15175.9 (5)
C26—O25—C20—C21167.2 (4)C10—C11—C16—C150.1 (8)
C11—N12—C6—C5176.7 (3)C10—C13—C14—C150.6 (8)
C11—N12—C6—C76.6 (6)C13—C14—C15—C161.3 (9)
C6—N12—C11—C1050.3 (6)C14—C15—C16—C111.1 (9)
C6—N12—C11—C16134.0 (5)C8—C17—C18—C19179.1 (4)
S1—C2—C3—C41.8 (5)C22—C17—C18—C190.3 (6)
C2—C3—C4—C52.1 (5)C8—C17—C22—C21179.7 (4)
C3—C4—C5—S11.4 (4)C18—C17—C22—C210.3 (6)
C3—C4—C5—C6177.7 (4)C17—C18—C19—C200.4 (6)
S1—C5—C6—N128.7 (5)C18—C19—C20—O25179.8 (4)
S1—C5—C6—C7174.4 (3)C18—C19—C20—C210.0 (6)
C4—C5—C6—N12170.3 (4)O25—C20—C21—O230.9 (5)
C4—C5—C6—C76.5 (6)O25—C20—C21—C22179.7 (4)
N12—C6—C7—C887.7 (5)C19—C20—C21—O23178.9 (4)
C5—C6—C7—C895.7 (4)C19—C20—C21—C220.5 (6)
C6—C7—C8—S948.4 (4)O23—C21—C22—C17178.7 (4)
C6—C7—C8—C17175.5 (3)C20—C21—C22—C170.6 (6)
S9—C8—C17—C18115.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O23i0.932.543.457 (5)169
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O23i0.932.543.457 (5)169
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the IOE and the University of Mysore for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCutignano, A., Tramice, A., De Caro, S., Villani, G., Cimino, G. & Fontana, A. (2003). Angew. Chem. Int. Ed. 42, 2633–2633.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManjula, M., Manjunath, B. C., Renuka, N., Ajay Kumar, K. & Lokanath, N. K. (2013). Acta Cryst. E69, o1608.  CSD CrossRef IUCr Journals Google Scholar
First citationSanjeeva, R. C., Purnachandra, R. G., Nagaraj, A. & Srinivas, A. (2008). Org. Commun. 1, 84–94.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds