organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Acetyl-3-(5-phenyl-1H-pyrazol-3-yl)-1,3,4-thia­diazol-2(3H)-one monohydrate

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
*Correspondence e-mail: mnachemist@hotmail.com, ghulam.mustafa@uog.edu.pk

(Received 15 April 2013; accepted 20 April 2013; online 27 April 2013)

In the title hydrate, C13H10N4O2S·H2O, the dihedral angles between the central pyrazole ring and its pendant phenyl and thia­diazole rings are 9.93 (8) and 4.56 (7)°, respectively. In the crystal, the components are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, generating [100] chains incorporating R44(10) loops. A weak C—H⋯O inter­action helps to consolidate the packing.

Related literature

For the synthesis of the title compound, see: Abdelhamid et al. (2001[Abdelhamid, A. O., Salam, M. M. M. & Amer, S. A. (2001). Heteroat. Chem. 12, 468-474.]). For a related structure, see: Ge (2006[Ge, W.-Z. (2006). Acta Cryst. E62, o3109-o3110.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N4O2S·H2O

  • Mr = 304.33

  • Monoclinic, P 21 /n

  • a = 7.6084 (2) Å

  • b = 25.5788 (4) Å

  • c = 7.6524 (2) Å

  • β = 111.974 (3)°

  • V = 1381.07 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.25 mm−1

  • T = 296 K

  • 0.35 × 0.19 × 0.06 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas, CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.778, Tmax = 1.000

  • 10797 measured reflections

  • 2806 independent reflections

  • 2498 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.07

  • 2806 reflections

  • 238 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3Wi 0.93 (2) 1.83 (2) 2.749 (2) 173 (2)
O3W—H3A⋯N2ii 0.86 (3) 1.99 (3) 2.8402 (19) 169 (2)
O3W—H3B⋯O1iii 0.83 (5) 2.19 (5) 2.995 (2) 163 (4)
C8—H8⋯O1iv 0.93 (2) 2.50 (2) 3.4100 (19) 167.8 (15)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Comment top

In the title compound (I), shown in Fig. 1, the aromatic ring is inclined at angles of 9.93 (8)° & 6.36 (7)° with respect to pyrazole and thiadiazole rings. The pyrazole and thiadiazole rings are oriented at dihedral angle of 4.56 (7)°. The acetyl group is inclined at dihedral angle of 6.00 (2)° with thiadiazole ring. The water molecule as usual is involved in classical hydrogen bonding interactions. The interactions through N1—H1···O3w, and O3w—H3a···N2 give rise to inversion dimers forming ten membered ring motif R44(10). These dimers further connected through O3w—H3b···O1 interaction to make infinite one dimensional chain along a axis. Another non-classical interaction (C8—H8···O1) generates twelve membered ring motif R11(12) loops; for symmetry detail, see; Table. 1, Fig. 2.

Related literature top

For the synthesis of the title compound, see: Abdelhamid et al. (2001). For a related structure, see: Ge (2006).

Experimental top

The title compound was synthesised according to literature (Abdelhamid et al., 2001 ) procedure and recrystalized from methanol solution under slow evaporation to yield brown plates.

Refinement top

All the hydrogen atoms found from a Fourier difference map and allowed to refine freely with appropriate riding models.

Structure description top

In the title compound (I), shown in Fig. 1, the aromatic ring is inclined at angles of 9.93 (8)° & 6.36 (7)° with respect to pyrazole and thiadiazole rings. The pyrazole and thiadiazole rings are oriented at dihedral angle of 4.56 (7)°. The acetyl group is inclined at dihedral angle of 6.00 (2)° with thiadiazole ring. The water molecule as usual is involved in classical hydrogen bonding interactions. The interactions through N1—H1···O3w, and O3w—H3a···N2 give rise to inversion dimers forming ten membered ring motif R44(10). These dimers further connected through O3w—H3b···O1 interaction to make infinite one dimensional chain along a axis. Another non-classical interaction (C8—H8···O1) generates twelve membered ring motif R11(12) loops; for symmetry detail, see; Table. 1, Fig. 2.

For the synthesis of the title compound, see: Abdelhamid et al. (2001). For a related structure, see: Ge (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram showing inversion dimers through hydrogen bonds, drawn using dashed lines.
5-Acetyl-3-(5-phenyl-1H-pyrazol-3-yl)-1,3,4-thiadiazol-2(3H)-one monohydrate top
Crystal data top
C13H10N4O2S·H2OF(000) = 632
Mr = 304.33Dx = 1.464 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 5915 reflections
a = 7.6084 (2) Åθ = 3.5–74.7°
b = 25.5788 (4) ŵ = 2.25 mm1
c = 7.6524 (2) ÅT = 296 K
β = 111.974 (3)°Plate, brown
V = 1381.07 (6) Å30.35 × 0.19 × 0.06 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
2806 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2498 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
ω scansθmax = 74.8°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 99
Tmin = 0.778, Tmax = 1.000k = 3131
10797 measured reflectionsl = 96
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1856P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max = 0.002
238 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10N4O2S·H2OV = 1381.07 (6) Å3
Mr = 304.33Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.6084 (2) ŵ = 2.25 mm1
b = 25.5788 (4) ÅT = 296 K
c = 7.6524 (2) Å0.35 × 0.19 × 0.06 mm
β = 111.974 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2498 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 1.000Rint = 0.032
10797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.07Δρmax = 0.23 e Å3
2806 reflectionsΔρmin = 0.19 e Å3
238 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S120.59223 (6)0.644569 (15)0.75319 (6)0.05072 (15)
O10.5175 (2)0.55662 (5)0.90067 (17)0.0659 (4)
N30.40123 (17)0.56623 (4)0.57705 (17)0.0362 (3)
O20.5725 (2)0.72711 (5)0.4716 (2)0.0757 (4)
N40.39508 (17)0.60041 (4)0.43842 (17)0.0375 (3)
N10.11453 (18)0.46444 (5)0.33689 (18)0.0408 (3)
N20.19673 (18)0.51164 (5)0.34177 (17)0.0398 (3)
C100.4991 (2)0.58140 (6)0.7612 (2)0.0439 (3)
C70.15808 (19)0.44351 (5)0.5095 (2)0.0361 (3)
C90.29698 (18)0.51911 (5)0.52301 (19)0.0338 (3)
C110.4876 (2)0.64236 (5)0.5106 (2)0.0398 (3)
C10.08453 (19)0.39258 (5)0.5408 (2)0.0383 (3)
C80.2800 (2)0.47822 (5)0.6365 (2)0.0387 (3)
C120.4979 (2)0.68747 (6)0.3918 (3)0.0487 (4)
C20.1125 (2)0.37673 (7)0.7226 (3)0.0505 (4)
H20.177 (3)0.3992 (9)0.834 (3)0.068 (6)*
C60.0130 (2)0.35941 (6)0.3906 (3)0.0480 (4)
H60.037 (3)0.3691 (8)0.264 (3)0.052 (5)*
C130.4163 (3)0.68076 (8)0.1839 (3)0.0589 (5)
H13B0.364 (5)0.7089 (14)0.126 (5)0.116 (11)*
H13C0.501 (6)0.6663 (17)0.145 (7)0.165 (17)*
H13A0.313 (4)0.6562 (12)0.135 (4)0.099 (9)*
C40.0469 (3)0.29574 (6)0.6054 (3)0.0599 (5)
H40.085 (3)0.2633 (9)0.629 (3)0.071 (6)*
C30.0476 (3)0.32821 (7)0.7542 (3)0.0600 (5)
H30.071 (3)0.3194 (9)0.876 (4)0.072 (7)*
C50.0788 (3)0.31131 (6)0.4244 (3)0.0570 (4)
H50.140 (4)0.2917 (9)0.319 (4)0.078 (7)*
H10.025 (3)0.4545 (8)0.221 (3)0.059 (6)*
H80.337 (3)0.4743 (7)0.766 (3)0.046 (5)*
O3W0.8281 (2)0.44007 (6)0.0009 (2)0.0683 (4)
H3A0.816 (4)0.4505 (10)0.110 (4)0.089 (8)*
H3B0.722 (6)0.4442 (16)0.006 (5)0.145 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S120.0611 (3)0.0453 (2)0.0392 (2)0.01426 (16)0.01118 (19)0.00717 (15)
O10.0838 (9)0.0722 (8)0.0307 (6)0.0271 (7)0.0087 (6)0.0042 (6)
N30.0429 (6)0.0336 (5)0.0290 (6)0.0032 (4)0.0100 (5)0.0016 (4)
O20.0992 (11)0.0428 (6)0.0740 (10)0.0249 (7)0.0196 (8)0.0011 (6)
N40.0448 (6)0.0321 (5)0.0341 (6)0.0010 (4)0.0131 (5)0.0029 (4)
N10.0482 (6)0.0376 (6)0.0334 (7)0.0080 (5)0.0116 (5)0.0008 (5)
N20.0483 (6)0.0368 (6)0.0322 (6)0.0070 (5)0.0125 (5)0.0003 (5)
C100.0480 (8)0.0467 (8)0.0335 (8)0.0085 (6)0.0114 (6)0.0010 (6)
C70.0384 (6)0.0333 (6)0.0354 (7)0.0021 (5)0.0124 (6)0.0029 (5)
C90.0373 (6)0.0322 (6)0.0306 (7)0.0002 (5)0.0112 (5)0.0006 (5)
C110.0441 (7)0.0348 (7)0.0385 (8)0.0018 (5)0.0133 (6)0.0009 (6)
C10.0378 (6)0.0330 (6)0.0428 (8)0.0019 (5)0.0134 (6)0.0040 (5)
C80.0435 (7)0.0368 (7)0.0324 (8)0.0010 (5)0.0103 (6)0.0035 (6)
C120.0530 (8)0.0359 (7)0.0551 (10)0.0045 (6)0.0179 (7)0.0042 (7)
C20.0521 (8)0.0465 (8)0.0471 (10)0.0060 (7)0.0118 (7)0.0093 (7)
C60.0551 (9)0.0385 (7)0.0506 (10)0.0026 (6)0.0199 (8)0.0019 (7)
C130.0727 (12)0.0511 (10)0.0503 (11)0.0066 (9)0.0198 (9)0.0124 (8)
C40.0581 (9)0.0373 (8)0.0833 (15)0.0030 (7)0.0253 (10)0.0121 (8)
C30.0608 (10)0.0536 (9)0.0599 (12)0.0052 (8)0.0161 (9)0.0203 (8)
C50.0623 (10)0.0363 (8)0.0720 (13)0.0058 (7)0.0246 (9)0.0068 (8)
O3W0.0807 (10)0.0829 (10)0.0325 (7)0.0270 (8)0.0112 (6)0.0031 (6)
Geometric parameters (Å, º) top
S12—C111.7254 (16)C1—C61.398 (2)
S12—C101.7744 (15)C8—H80.92 (2)
O1—C101.2038 (19)C12—C131.486 (3)
N3—N41.3619 (16)C2—C31.390 (2)
N3—C101.3804 (19)C2—H20.99 (2)
N3—C91.4170 (17)C6—C51.388 (2)
O2—C121.210 (2)C6—H60.95 (2)
N4—C111.2887 (18)C13—H13B0.86 (4)
N1—C71.3466 (19)C13—H13C0.89 (5)
N1—N21.3538 (16)C13—H13A0.96 (3)
N1—H10.93 (2)C4—C51.372 (3)
N2—C91.3229 (19)C4—C31.375 (3)
C7—C81.385 (2)C4—H40.92 (2)
C7—C11.4724 (18)C3—H30.91 (3)
C9—C81.3960 (19)C5—H50.92 (3)
C11—C121.489 (2)O3W—H3A0.86 (3)
C1—C21.387 (2)O3W—H3B0.83 (4)
C11—S12—C1088.73 (7)C9—C8—H8129.2 (12)
N4—N3—C10117.57 (11)O2—C12—C13124.48 (16)
N4—N3—C9117.81 (11)O2—C12—C11117.62 (16)
C10—N3—C9124.49 (12)C13—C12—C11117.90 (14)
C11—N4—N3110.27 (12)C1—C2—C3120.31 (17)
C7—N1—N2112.70 (12)C1—C2—H2122.2 (13)
C7—N1—H1130.7 (13)C3—C2—H2117.5 (13)
N2—N1—H1115.8 (13)C5—C6—C1120.13 (17)
C9—N2—N1103.70 (11)C5—C6—H6118.6 (12)
O1—C10—N3126.60 (14)C1—C6—H6121.3 (12)
O1—C10—S12126.50 (12)C12—C13—H13B113 (2)
N3—C10—S12106.89 (10)C12—C13—H13C110 (3)
N1—C7—C8106.73 (12)H13B—C13—H13C115 (4)
N1—C7—C1122.84 (13)C12—C13—H13A116.2 (19)
C8—C7—C1130.42 (14)H13B—C13—H13A101 (3)
N2—C9—C8113.13 (12)H13C—C13—H13A101 (3)
N2—C9—N3117.96 (12)C5—C4—C3120.03 (16)
C8—C9—N3128.89 (13)C5—C4—H4120.7 (15)
N4—C11—C12121.91 (14)C3—C4—H4119.3 (15)
N4—C11—S12116.53 (11)C4—C3—C2120.32 (19)
C12—C11—S12121.52 (11)C4—C3—H3122.7 (15)
C2—C1—C6118.83 (14)C2—C3—H3116.9 (15)
C2—C1—C7119.80 (14)C4—C5—C6120.37 (18)
C6—C1—C7121.37 (14)C4—C5—H5124.8 (15)
C7—C8—C9103.72 (13)C6—C5—H5114.8 (16)
C7—C8—H8127.1 (12)H3A—O3W—H3B105 (3)
C10—N3—N4—C110.25 (18)N1—C7—C1—C2170.77 (14)
C9—N3—N4—C11176.34 (12)C8—C7—C1—C210.4 (2)
C7—N1—N2—C91.40 (16)N1—C7—C1—C69.5 (2)
N4—N3—C10—O1179.14 (16)C8—C7—C1—C6169.31 (15)
C9—N3—C10—O13.3 (3)N1—C7—C8—C90.87 (16)
N4—N3—C10—S120.66 (16)C1—C7—C8—C9179.81 (14)
C9—N3—C10—S12176.46 (10)N2—C9—C8—C70.03 (17)
C11—S12—C10—O1179.15 (18)N3—C9—C8—C7178.50 (13)
C11—S12—C10—N30.65 (11)N4—C11—C12—O2173.25 (16)
N2—N1—C7—C81.46 (17)S12—C11—C12—O24.4 (2)
N2—N1—C7—C1179.50 (12)N4—C11—C12—C136.8 (2)
N1—N2—C9—C80.80 (16)S12—C11—C12—C13175.50 (14)
N1—N2—C9—N3179.51 (12)C6—C1—C2—C31.3 (3)
N4—N3—C9—N21.44 (18)C7—C1—C2—C3178.47 (16)
C10—N3—C9—N2174.35 (14)C2—C1—C6—C50.6 (2)
N4—N3—C9—C8179.92 (13)C7—C1—C6—C5179.19 (14)
C10—N3—C9—C84.1 (2)C5—C4—C3—C20.4 (3)
N3—N4—C11—C12177.47 (13)C1—C2—C3—C40.8 (3)
N3—N4—C11—S120.32 (16)C3—C4—C5—C61.1 (3)
C10—S12—C11—N40.59 (13)C1—C6—C5—C40.7 (3)
C10—S12—C11—C12177.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Wi0.93 (2)1.83 (2)2.749 (2)173 (2)
O3W—H3A···N2ii0.86 (3)1.99 (3)2.8402 (19)169 (2)
O3W—H3B···O1iii0.83 (5)2.19 (5)2.995 (2)163 (4)
C8—H8···O1iv0.93 (2)2.50 (2)3.4100 (19)167.8 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC13H10N4O2S·H2O
Mr304.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.6084 (2), 25.5788 (4), 7.6524 (2)
β (°) 111.974 (3)
V3)1381.07 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.25
Crystal size (mm)0.35 × 0.19 × 0.06
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas, CCD)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.778, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10797, 2806, 2498
Rint0.032
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.07
No. of reflections2806
No. of parameters238
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Wi0.93 (2)1.83 (2)2.749 (2)173 (2)
O3W—H3A···N2ii0.86 (3)1.99 (3)2.8402 (19)169 (2)
O3W—H3B···O1iii0.83 (5)2.19 (5)2.995 (2)163 (4)
C8—H8···O1iv0.93 (2)2.50 (2)3.4100 (19)167.8 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the deanship of scientific research at King Abdulaziz University for the support of this research via Research Group Track of Grant No. (3-102/428).

References

First citationAbdelhamid, A. O., Salam, M. M. M. & Amer, S. A. (2001). Heteroat. Chem. 12, 468–474.  Web of Science CrossRef CAS Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGe, W.-Z. (2006). Acta Cryst. E62, o3109–o3110.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds