metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(2,2′-bi­pyridine-κ2N,N′)zinc]-μ-furan-2,5-di­carboxyl­ato-κ2O2:O5] dihydrate]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 31 October 2012; accepted 3 November 2012; online 10 November 2012)

In the title hydrated coordination polymer, {[Zn(C6H2O5)(C10H8N2)(H2O)]·2H2O}n, an infinite [1-10] chain is formed by the linking of [Zn(C10H8N2)(H2O)]2+ entities by bridging, monodentate furan-2,5-dicarboxyl­ate dianionic linkers. The Zn2+ coordination geometry is a trigonal bipyramid, with one N atom (from 2,2′-bipyridine) and one O atom (from the bridging dianion) in the axial positions. For each ZnII atom, the dihedral angle between the furan ring of its coordinated bridging ligand and its coordinated bipyridine ring system is 87.19 (8)°. O—H⋯O hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules generate a layer motif parallel to (001).

Related literature

For a related structure, see: Li, et al. (2012[Li, Y.-F., Xu, Y., Qin, X.-L., Gao, W.-Y. & Gao, Y. (2012). Acta Cryst. E68, m659.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H2O5)(C10H8N2)(H2O)]·2H2O

  • Mr = 429.70

  • Triclinic, [P \overline 1]

  • a = 8.5815 (17) Å

  • b = 9.2928 (19) Å

  • c = 12.753 (3) Å

  • α = 69.99 (3)°

  • β = 87.63 (3)°

  • γ = 65.85 (3)°

  • V = 866.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 293 K

  • 0.43 × 0.34 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.57, Tmax = 0.73

  • 8557 measured reflections

  • 3925 independent reflections

  • 3433 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.10

  • 3925 reflections

  • 262 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O4i 2.0180 (17)
Zn1—O1 2.0221 (17)
Zn1—N2 2.078 (2)
Zn1—O1W 2.1142 (17)
Zn1—N1 2.1298 (19)
Symmetry code: (i) x+1, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O5ii 0.87 (2) 1.89 (2) 2.724 (2) 159 (2)
O1W—H1B⋯O1iii 0.86 (2) 1.88 (2) 2.701 (3) 158 (2)
O2W—H2A⋯O2 0.89 (2) 1.91 (3) 2.731 (4) 152 (5)
O2W—H2B⋯O5iv 0.89 (2) 2.12 (3) 2.902 (4) 146 (5)
O3W—H3A⋯O4 0.88 (2) 2.27 (3) 3.050 (4) 148 (4)
O3W—H3B⋯O2W 0.87 (2) 2.15 (3) 2.943 (7) 152 (5)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: Crystal Structure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As the analogous structure of BDC (benzene-1,4-dicarboxyl acid), FDA (furan-2,5-dicarboxyl acid) attracts attentions owing to the bond angle of two carboxyl groups about 126° Recently, we utilized furan-2,5-dicarboxyl acid as the ligand to construct coordination polymers (Li, et al., 2012). As an extension of this work, a chainlike compound, [Zn(H2O)(C10H8N2)(C6H2O5)].2H2O (I), is now determined.

The asymmetric unit of (I) is consisted of one Zn(II) cation, one furan-2,5-dicarboxylate anion, one 2,2'-bipyridine and three waters involving in one coordinated waters and two structural water (Fig.1). Zn cation is coordinated by two N atoms of 2,2'-bipyridine, one water O atoms and two carboxylate O atoms, exhibiting a triangle bipyramid geometry (Table 1) with one O atoms of furan-2,5-dicarboxylate and one nitrogen atom of 2,2'-bipyridine in the axial positions. The adjacent Zn cations are connected by the furan-2,5-dicarboxylate to infinite chain (Fig.2). Owater—H···O hydrogen bonds (Table 2) help to consolidate the structure.

Related literature top

For a related structure, see: Li, et al. (2012).

Experimental top

In a typically synthesized route of (I), furan-2,5-dicarboxyl acid (0.0156 g, 0.10 mmol), Zn(NO3)2.6H2O (0.0300 g, 0.10 mmol), and 2,2'-bipyridine (0.0156, 0.10 mmol) and NaOH (0.004, 0.10 mmol) were dissolved in water (5 ml, 278 mmol) under stirring. The mixture with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Zn(NO3)2.6H2O): 1 (2,2'-bipyridine): 1 NaOH: 2780 H2O was layed under room temperature for 5 days. The colorless block product was collected as a single phase.

Refinement top

Water H atoms were located in a difference Fourier map and refined with O—H = 0.87 (2) Å and Uiso(H) = 1.2Ueq(O). The carbon H-atoms were placed in calculated positions (C—H (furan and pyridine ring) = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing displacement ellipsoids at the 50% probability level. [Symmetry code: (i) 1 + x, -1 + y, z.]
[Figure 2] Fig. 2. The polyhedral plot of (I), displaying the infinite chain formed by linking the adjacent Zn cations with furan-2,5-dicarboxylate.
[Figure 3] Fig. 3. The ball-stick packing diagram of (I). The adjacent chains are holded together by the Owater–H···O H-bonding interactions to the supermolecular net.
catena-Poly[[[aqua(2,2'-bipyridine-κ2N,N')zinc]-µ- furan-2,5-dicarboxylato-κ2O2:O5] dihydrate] top
Crystal data top
[Zn(C6H2O5)(C10H8N2)(H2O)]·2H2OZ = 2
Mr = 429.70F(000) = 440
Triclinic, P1Dx = 1.648 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5815 (17) ÅCell parameters from 2000 reflections
b = 9.2928 (19) Åθ = 3.3–27.5°
c = 12.753 (3) ŵ = 1.47 mm1
α = 69.99 (3)°T = 293 K
β = 87.63 (3)°Block, colorless
γ = 65.85 (3)°0.43 × 0.34 × 0.23 mm
V = 866.2 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3925 independent reflections
Radiation source: fine-focus sealed tube3433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1011
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1112
Tmin = 0.57, Tmax = 0.73l = 1616
8557 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0684P)2]
where P = (Fo2 + 2Fc2)/3
3925 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.67 e Å3
9 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn(C6H2O5)(C10H8N2)(H2O)]·2H2Oγ = 65.85 (3)°
Mr = 429.70V = 866.2 (3) Å3
Triclinic, P1Z = 2
a = 8.5815 (17) ÅMo Kα radiation
b = 9.2928 (19) ŵ = 1.47 mm1
c = 12.753 (3) ÅT = 293 K
α = 69.99 (3)°0.43 × 0.34 × 0.23 mm
β = 87.63 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3925 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3433 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.73Rint = 0.023
8557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0369 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.67 e Å3
3925 reflectionsΔρmin = 0.59 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.02440 (3)0.08858 (3)0.301753 (18)0.03278 (11)
O10.8000 (2)0.15494 (19)0.36940 (13)0.0406 (3)
O20.7541 (3)0.4185 (2)0.26829 (18)0.0583 (5)
O30.44358 (18)0.53732 (17)0.35155 (12)0.0331 (3)
O40.1984 (2)0.84783 (19)0.33670 (14)0.0437 (4)
O50.0295 (2)0.7310 (2)0.43028 (18)0.0558 (5)
N10.9017 (2)0.1152 (2)0.15016 (15)0.0381 (4)
N21.1346 (2)0.2204 (2)0.18046 (15)0.0366 (4)
C10.7097 (3)0.3148 (3)0.33458 (17)0.0351 (4)
C20.5420 (3)0.3677 (2)0.38022 (17)0.0308 (4)
C30.4610 (3)0.2801 (3)0.4468 (2)0.0401 (5)
H30.50140.16320.47730.048*
C40.3028 (3)0.3994 (3)0.4615 (2)0.0427 (5)
H40.21890.37650.50340.051*
C50.2977 (3)0.5523 (3)0.40305 (17)0.0329 (4)
C60.1649 (3)0.7242 (3)0.38908 (18)0.0355 (4)
C70.7801 (3)0.0635 (3)0.1426 (2)0.0494 (6)
H70.74560.00750.20820.059*
C80.7031 (4)0.0910 (4)0.0391 (3)0.0573 (7)
H80.61820.05450.03540.069*
C90.7551 (4)0.1728 (4)0.0565 (2)0.0593 (7)
H90.70530.19260.12630.071*
C100.8824 (4)0.2266 (3)0.0497 (2)0.0492 (6)
H100.91900.28210.11430.059*
C110.9536 (3)0.1952 (3)0.05628 (18)0.0387 (5)
C121.0886 (3)0.2478 (3)0.07396 (18)0.0373 (4)
C131.1640 (3)0.3239 (3)0.0142 (2)0.0491 (6)
H131.13210.34140.08780.059*
C141.2854 (4)0.3726 (3)0.0090 (2)0.0558 (6)
H141.33680.42320.04890.067*
C151.3307 (4)0.3460 (3)0.1186 (2)0.0524 (6)
H151.41130.37990.13590.063*
C161.2541 (3)0.2686 (3)0.2017 (2)0.0465 (5)
H161.28620.24850.27590.056*
O1W1.1508 (2)0.1017 (2)0.43471 (13)0.0397 (3)
H1A1.079 (3)0.175 (3)0.462 (2)0.048*
H1B1.189 (3)0.005 (2)0.4890 (18)0.048*
O2W0.8859 (7)0.6378 (6)0.2753 (2)0.1299 (15)
H2A0.872 (8)0.543 (5)0.291 (4)0.156*
H2B0.919 (8)0.632 (7)0.342 (3)0.156*
O3W0.5178 (5)0.8678 (5)0.2312 (3)0.1173 (12)
H3A0.456 (5)0.842 (6)0.285 (3)0.141*
H3B0.612 (4)0.777 (5)0.240 (4)0.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03146 (16)0.02874 (14)0.03086 (15)0.00672 (10)0.00895 (10)0.01011 (10)
O10.0337 (8)0.0338 (7)0.0378 (8)0.0014 (6)0.0106 (6)0.0102 (7)
O20.0560 (11)0.0468 (9)0.0676 (12)0.0222 (9)0.0314 (10)0.0170 (9)
O30.0296 (7)0.0248 (6)0.0381 (7)0.0058 (6)0.0078 (6)0.0109 (6)
O40.0395 (9)0.0297 (7)0.0515 (9)0.0041 (6)0.0042 (7)0.0152 (7)
O50.0394 (10)0.0562 (10)0.0831 (13)0.0156 (8)0.0249 (9)0.0454 (11)
N10.0325 (9)0.0392 (9)0.0380 (9)0.0089 (8)0.0072 (7)0.0165 (8)
N20.0384 (10)0.0324 (8)0.0339 (9)0.0114 (7)0.0099 (7)0.0108 (8)
C10.0311 (10)0.0355 (10)0.0346 (10)0.0092 (9)0.0064 (8)0.0140 (9)
C20.0286 (10)0.0249 (8)0.0335 (9)0.0053 (7)0.0036 (8)0.0116 (8)
C30.0385 (12)0.0266 (9)0.0505 (12)0.0106 (9)0.0113 (10)0.0128 (9)
C40.0360 (12)0.0384 (11)0.0554 (13)0.0154 (9)0.0186 (10)0.0205 (11)
C50.0284 (10)0.0323 (9)0.0373 (10)0.0083 (8)0.0072 (8)0.0175 (9)
C60.0317 (11)0.0335 (10)0.0404 (11)0.0052 (8)0.0028 (8)0.0225 (9)
C70.0407 (13)0.0544 (14)0.0549 (14)0.0168 (11)0.0118 (11)0.0263 (13)
C80.0395 (14)0.0617 (16)0.0741 (18)0.0131 (12)0.0014 (12)0.0378 (16)
C90.0544 (17)0.0597 (16)0.0537 (15)0.0058 (13)0.0076 (13)0.0294 (14)
C100.0542 (15)0.0433 (12)0.0390 (12)0.0084 (11)0.0010 (10)0.0162 (11)
C110.0384 (12)0.0325 (10)0.0347 (10)0.0039 (9)0.0059 (9)0.0133 (9)
C120.0389 (12)0.0288 (9)0.0334 (10)0.0051 (8)0.0083 (8)0.0102 (8)
C130.0528 (15)0.0445 (12)0.0349 (11)0.0125 (11)0.0143 (10)0.0073 (10)
C140.0545 (16)0.0459 (13)0.0536 (15)0.0193 (12)0.0230 (12)0.0062 (12)
C150.0469 (15)0.0481 (13)0.0614 (16)0.0234 (12)0.0133 (12)0.0152 (13)
C160.0487 (14)0.0474 (12)0.0450 (12)0.0217 (11)0.0098 (10)0.0168 (11)
O1W0.0422 (9)0.0358 (7)0.0343 (8)0.0091 (7)0.0081 (6)0.0140 (7)
O2W0.221 (4)0.178 (4)0.0612 (16)0.155 (4)0.025 (2)0.038 (2)
O3W0.091 (2)0.135 (3)0.123 (3)0.069 (2)0.019 (2)0.017 (2)
Geometric parameters (Å, º) top
Zn1—O4i2.0180 (17)C7—H70.9300
Zn1—O12.0221 (17)C8—C91.364 (5)
Zn1—N22.078 (2)C8—H80.9300
Zn1—O1W2.1142 (17)C9—C101.391 (4)
Zn1—N12.1298 (19)C9—H90.9300
O1—C11.281 (3)C10—C111.392 (3)
O2—C11.226 (3)C10—H100.9300
O3—C51.367 (2)C11—C121.481 (3)
O3—C21.369 (2)C12—C131.397 (3)
O4—C61.255 (3)C13—C141.371 (4)
O5—C61.242 (3)C13—H130.9300
N1—C71.334 (3)C14—C151.378 (4)
N1—C111.342 (3)C14—H140.9300
N2—C121.338 (3)C15—C161.371 (4)
N2—C161.344 (3)C15—H150.9300
C1—C21.483 (3)C16—H160.9300
C2—C31.345 (3)O1W—H1A0.873 (16)
C3—C41.413 (3)O1W—H1B0.864 (16)
C3—H30.9300O2W—H2A0.890 (19)
C4—C51.343 (3)O2W—H2B0.890 (19)
C4—H40.9300O3W—H3A0.879 (19)
C5—C61.488 (3)O3W—H3B0.871 (19)
C7—C81.395 (4)
O4i—Zn1—O1123.96 (7)O5—C6—C5116.0 (2)
O4i—Zn1—N2101.59 (8)O4—C6—C5117.87 (19)
O1—Zn1—N2134.31 (7)O4—C6—C5117.87 (19)
O4i—Zn1—O1W89.61 (7)N1—C7—C8121.8 (3)
O1—Zn1—O1W91.03 (7)N1—C7—H7119.1
N2—Zn1—O1W92.77 (7)C8—C7—H7119.1
O4i—Zn1—N196.59 (8)C9—C8—C7118.5 (3)
O1—Zn1—N192.21 (7)C9—C8—H8120.7
N2—Zn1—N178.06 (8)C7—C8—H8120.7
O1W—Zn1—N1169.79 (7)C8—C9—C10120.1 (2)
C1—O1—Zn1112.97 (14)C8—C9—H9119.9
C5—O3—C2105.96 (16)C10—C9—H9119.9
C6—O4—Zn1ii122.19 (15)C9—C10—C11118.3 (3)
C7—N1—C11119.8 (2)C9—C10—H10120.8
C7—N1—Zn1125.87 (17)C11—C10—H10120.8
C11—N1—Zn1114.32 (15)N1—C11—C10121.3 (2)
C12—N2—C16119.0 (2)N1—C11—C12115.47 (19)
C12—N2—Zn1115.74 (15)C10—C11—C12123.2 (2)
C16—N2—Zn1125.13 (16)N2—C12—C13120.9 (2)
O2—C1—O1124.2 (2)N2—C12—C11116.2 (2)
O2—C1—O1124.2 (2)C13—C12—C11122.9 (2)
O2—C1—C2121.42 (19)C14—C13—C12119.4 (2)
O2—C1—C2121.42 (19)C14—C13—H13120.3
O1—C1—C2114.39 (19)C12—C13—H13120.3
C3—C2—O3110.11 (18)C13—C14—C15119.4 (2)
C3—C2—C1132.51 (18)C13—C14—H14120.3
O3—C2—C1117.38 (18)C15—C14—H14120.3
C2—C3—C4106.94 (19)C16—C15—C14118.5 (2)
C2—C3—H3126.5C16—C15—H15120.7
C4—C3—H3126.5C14—C15—H15120.7
C5—C4—C3106.4 (2)N2—C16—C15122.8 (2)
C5—C4—H4126.8N2—C16—H16118.6
C3—C4—H4126.8C15—C16—H16118.6
C4—C5—O3110.58 (18)Zn1—O1W—H1A110.7 (18)
C4—C5—C6130.7 (2)Zn1—O1W—H1B109.3 (17)
O3—C5—C6118.72 (18)H1A—O1W—H1B106 (2)
O5—C6—O4126.2 (2)H2A—O2W—H2B103 (3)
O5—C6—O4126.2 (2)H3A—O3W—H3B108 (3)
O4i—Zn1—O1—C1179.73 (13)C2—O3—C5—C40.2 (2)
N2—Zn1—O1—C14.84 (19)C2—O3—C5—C6178.97 (17)
O1W—Zn1—O1—C190.05 (15)O4—O4—C6—O50.00 (18)
N1—Zn1—O1—C180.27 (15)Zn1ii—O4—C6—O53.8 (3)
O4i—Zn1—N1—C782.2 (2)O4—O4—C6—C50.00 (19)
O1—Zn1—N1—C742.31 (19)Zn1ii—O4—C6—C5175.53 (13)
N2—Zn1—N1—C7177.3 (2)C4—C5—C6—O56.4 (3)
O1W—Zn1—N1—C7150.7 (3)O3—C5—C6—O5174.61 (18)
O4i—Zn1—N1—C1199.23 (15)C4—C5—C6—O4174.2 (2)
O1—Zn1—N1—C11136.22 (15)O3—C5—C6—O44.8 (3)
N2—Zn1—N1—C111.27 (14)C4—C5—C6—O4174.2 (2)
O1W—Zn1—N1—C1127.8 (4)O3—C5—C6—O44.8 (3)
O4i—Zn1—N2—C1290.59 (16)C11—N1—C7—C80.4 (4)
O1—Zn1—N2—C1285.08 (17)Zn1—N1—C7—C8178.01 (18)
O1W—Zn1—N2—C12179.24 (15)N1—C7—C8—C90.2 (4)
N1—Zn1—N2—C123.79 (14)C7—C8—C9—C100.1 (4)
O4i—Zn1—N2—C1684.86 (19)C8—C9—C10—C110.2 (4)
O1—Zn1—N2—C1699.5 (2)C7—N1—C11—C100.3 (3)
O1W—Zn1—N2—C165.32 (19)Zn1—N1—C11—C10178.29 (17)
N1—Zn1—N2—C16179.24 (19)C7—N1—C11—C12179.80 (19)
O2—O2—C1—O10.00 (12)Zn1—N1—C11—C121.2 (2)
O2—O2—C1—C20.00 (9)C9—C10—C11—N10.0 (3)
Zn1—O1—C1—O20.9 (3)C9—C10—C11—C12179.4 (2)
Zn1—O1—C1—O20.9 (3)C16—N2—C12—C130.5 (3)
Zn1—O1—C1—C2178.44 (13)Zn1—N2—C12—C13175.20 (16)
C5—O3—C2—C30.1 (2)C16—N2—C12—C11178.66 (19)
C5—O3—C2—C1179.71 (16)Zn1—N2—C12—C115.6 (2)
O2—C1—C2—C3175.1 (2)N1—C11—C12—N24.5 (3)
O2—C1—C2—C3175.1 (2)C10—C11—C12—N2175.0 (2)
O1—C1—C2—C34.2 (3)N1—C11—C12—C13176.33 (19)
O2—C1—C2—O34.4 (3)C10—C11—C12—C134.2 (3)
O2—C1—C2—O34.4 (3)N2—C12—C13—C140.7 (3)
O1—C1—C2—O3176.30 (17)C11—C12—C13—C14178.5 (2)
O3—C2—C3—C40.0 (3)C12—C13—C14—C150.1 (4)
C1—C2—C3—C4179.5 (2)C13—C14—C15—C161.1 (4)
C2—C3—C4—C50.1 (3)C12—N2—C16—C150.5 (4)
C3—C4—C5—O30.2 (3)Zn1—N2—C16—C15175.76 (19)
C3—C4—C5—C6178.8 (2)C14—C15—C16—N21.3 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5iii0.87 (2)1.89 (2)2.724 (2)159 (2)
O1W—H1B···O1iv0.86 (2)1.88 (2)2.701 (3)158 (2)
O2W—H2A···O20.89 (2)1.91 (3)2.731 (4)152 (5)
O2W—H2B···O5v0.89 (2)2.12 (3)2.902 (4)146 (5)
O3W—H3A···O40.88 (2)2.27 (3)3.050 (4)148 (4)
O3W—H3B···O2W0.87 (2)2.15 (3)2.943 (7)152 (5)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C6H2O5)(C10H8N2)(H2O)]·2H2O
Mr429.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5815 (17), 9.2928 (19), 12.753 (3)
α, β, γ (°)69.99 (3), 87.63 (3), 65.85 (3)
V3)866.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.43 × 0.34 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.57, 0.73
No. of measured, independent and
observed [I > 2σ(I)] reflections
8557, 3925, 3433
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.10
No. of reflections3925
No. of parameters262
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.59

Computer programs: PROCESS-AUTO (Rigaku, 1998), Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Selected bond lengths (Å) top
Zn1—O4i2.0180 (17)Zn1—O1W2.1142 (17)
Zn1—O12.0221 (17)Zn1—N12.1298 (19)
Zn1—N22.078 (2)
Symmetry code: (i) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5ii0.873 (16)1.891 (19)2.724 (2)159 (2)
O1W—H1B···O1iii0.864 (16)1.88 (2)2.701 (3)158 (2)
O2W—H2A···O20.890 (19)1.91 (3)2.731 (4)152 (5)
O2W—H2B···O5iv0.890 (19)2.12 (3)2.902 (4)146 (5)
O3W—H3A···O40.879 (19)2.27 (3)3.050 (4)148 (4)
O3W—H3B···O2W0.871 (19)2.15 (3)2.943 (7)152 (5)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Y.-F., Xu, Y., Qin, X.-L., Gao, W.-Y. & Gao, Y. (2012). Acta Cryst. E68, m659.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds