metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1503-m1504

μ-2,5-Dihy­dr­oxy­terephthalato-bis­­[tri­aqua­(1,10-phenanthroline)zinc] dihy­dr­oxy­terephthalate

aDepartment of Information & Technology, Jilin Normal University, Siping 136000, People's Republic of China, and bDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: chuanbl@gmail.com

(Received 10 September 2012; accepted 6 November 2012; online 17 November 2012)

In the title compound, [Zn2(C8H4O6)(C12H8N2)2(H2O)6](C8H4O6), the complete ions of both the binuclear dication and the dianion are generated by crystallographic inversion symmetry. The Zn atom is bonded to an N,N′-bidentate phenanthroline ligand, three water moleules and an O-mono­denate 2,5-dihy­droxy­terephthalate dianion. In the resulting distorted octa­hedral ZnN2O4 coordination poly­hedron, the water O atoms are in a mer orientation. Two intra­molecular O—H⋯O hydrogen bonds occur in the bridging 2,5-dihy­droxy­terephthalate dianion within the complex cation and also in the free dianion. An intra­molecular Ow—H⋯O (w = water) hydrogen bond also occurs within the dication. In the crystal, O—H⋯O hydrogen bonds link the component ions into a three-dimensional network.

Related literature

For a related structure, see: Sun et al. (2007[Sun, Y. G., Gao, E. J. & Wei, D. Z. (2007). Inorg. Chem. Commun. 10, 467-470.]). For background to the applications of coordination polymers, see: Perry et al. (2009[Perry, J. J. IV, Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400-1417.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H4O6)(C12H8N2)2(H2O)6](C8H4O6)

  • Mr = 991.46

  • Triclinic, [P \overline 1]

  • a = 8.765 (5) Å

  • b = 10.697 (5) Å

  • c = 11.062 (5) Å

  • α = 106.994 (5)°

  • β = 92.226 (5)°

  • γ = 90.977 (5)°

  • V = 990.7 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 293 K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.737, Tmax = 0.829

  • 5446 measured reflections

  • 3824 independent reflections

  • 3205 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.086

  • S = 1.04

  • 3824 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.0181 (19)
Zn1—O1W 2.184 (2)
Zn1—O2W 2.1581 (19)
Zn1—O3W 2.113 (2)
Zn1—N1 2.124 (2)
Zn1—N2 2.156 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.97 1.95 2.902 (3) 170
O1W—H1WB⋯O2Wii 0.92 2.01 2.911 (3) 168
O2W—H2WA⋯O2 0.93 1.75 2.663 (3) 166
O3—H3A⋯O2iii 0.82 1.84 2.562 (3) 147
O2W—H2WB⋯O5iv 0.91 1.80 2.692 (3) 166
O3W—H3WA⋯O4 0.89 1.85 2.695 (3) 158
O3W—H3WB⋯O4iv 0.83 1.82 2.650 (3) 175
O6—H6A⋯O5v 0.82 1.84 2.566 (3) 146
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y, -z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact BbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination compounds have attracted much interest in the fields of supramolecular chemistry and crystal engineering because of their intriguing structural diversities and potential applications (Sun et al., 2007; Perry IV, et al., 2009). To extend the previous work, we obtained the title compound, (I), by using ZnII, phenanthroline (phen) and 2,5-dihydroxyterephthalic acid (dhtp) as the starting materials.

The title compound, (I), is composed of a ZnII canion, a phen molecule, half a coordinated dhtp anion, half a free dhtp anion and three coordinated water molecules in the asymmetric unit as shown in Fig. 1. ZnII canion exhibits a distorted octahedral geometry, being coordinated by two N atoms of a phen molecule, one O atom from dhtp anion and three water O atoms. The Zn–O and Zn–N distances are normal. ZnII canions are connected by dhtp anion to form a [Zn2(phen)2(dhtp)(H2O)6]II cation unit. In additon, the free dhtp anion as the counter-ion presents in the sturcture. By way of O–H···O hydrogen bonding between the cation units and counter-anions, a three-dimensional network is formed (Fig. 2). The detailed hydrogen-bonding parameters are summarized in Table 1.

Related literature top

For a related structure, see: Sun et al. (2007). For background to the applications of coordination polymers, see: Perry et al. (2009).

Experimental top

A mixture of Zn(CH3COO)2.2H2O (0.2 mmol), phen (0.3 mmol) and dhtp (0.2 mmol) were dissolved in 15 ml water. The resulting solution was stirred for about 0.5 h at room temperature, sealed in a 25-ml Teflon-lined stainless steel autoclave and heated at 443 K for three days under autogenous pressure. Afterward, the reaction system was slowly cooled to room temperature and colourless blocks of the title compound were recovered.

Refinement top

Carbon-bound H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding, with Uiso(H) fixed at 1.2Ueq(C). Oxygen-bound for H3A and H6A atoms were positioned geometrically (O–H = 0.82 Å) and refined as riding, with Uiso(H) fixed at 1.5Ueq(O). In the case of coordinated water molecules, H atoms were clearly detected in a difference Fourier map, and refined freely. Final O–H bond length span the range 0.83–0.97 Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A representation of title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. Unlabelled atoms are related to the reference atoms by the symmetry operations. [Symmetry codes: (i) - x + 2, - y, - z; (ii) - x + 1, - y, - z + 1].
[Figure 2] Fig. 2. The packing diagram of the title compound. All H-atoms except for those involved in hydrogen bonds are omitted for clarity. (hydrogen bonds indicated by dashed lines).
µ-2,5-Dihydroxyterephthalato-bis[triaqua(1,10-phenanthroline)zinc] dihydroxyterephthalate top
Crystal data top
[Zn2(C8H4O6)(C12H8N2)2(H2O)6](C8H4O6)Z = 1
Mr = 991.46F(000) = 508
Triclinic, P1Dx = 1.662 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.765 (5) ÅCell parameters from 1867 reflections
b = 10.697 (5) Åθ = 2.3–24.9°
c = 11.062 (5) ŵ = 1.30 mm1
α = 106.994 (5)°T = 293 K
β = 92.226 (5)°Block, colorless
γ = 90.977 (5)°0.25 × 0.18 × 0.15 mm
V = 990.7 (9) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube3205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 105
Tmin = 0.737, Tmax = 0.829k = 1313
5446 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.484P]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn2(C8H4O6)(C12H8N2)2(H2O)6](C8H4O6)γ = 90.977 (5)°
Mr = 991.46V = 990.7 (9) Å3
Triclinic, P1Z = 1
a = 8.765 (5) ÅMo Kα radiation
b = 10.697 (5) ŵ = 1.30 mm1
c = 11.062 (5) ÅT = 293 K
α = 106.994 (5)°0.25 × 0.18 × 0.15 mm
β = 92.226 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3205 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.829Rint = 0.019
5446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3824 reflectionsΔρmin = 0.29 e Å3
289 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50422 (4)0.32879 (3)0.16460 (3)0.03368 (11)
C10.4116 (3)0.0549 (3)0.1904 (3)0.0410 (7)
H10.50200.02580.15150.049*
C20.3222 (4)0.0322 (3)0.2306 (3)0.0490 (8)
H20.35180.11800.21770.059*
C30.1916 (4)0.0092 (3)0.2888 (3)0.0534 (9)
H30.13210.04780.31780.064*
C40.1455 (3)0.1379 (3)0.3054 (3)0.0468 (8)
C50.0065 (4)0.1877 (4)0.3598 (3)0.0634 (10)
H50.05600.13510.39200.076*
C60.0360 (4)0.3089 (4)0.3656 (3)0.0643 (11)
H60.12820.33820.40080.077*
C70.0574 (3)0.3950 (3)0.3186 (3)0.0518 (8)
C80.0161 (4)0.5197 (4)0.3177 (3)0.0677 (11)
H80.07620.55280.35000.081*
C90.1111 (5)0.5934 (4)0.2692 (4)0.0735 (12)
H90.08330.67610.26670.088*
C100.2505 (4)0.5432 (3)0.2235 (3)0.0600 (9)
H100.31570.59490.19250.072*
C110.1974 (3)0.3504 (3)0.2684 (3)0.0386 (6)
C120.2414 (3)0.2194 (3)0.2602 (2)0.0357 (6)
C130.7999 (3)0.2201 (3)0.0587 (2)0.0319 (6)
C140.9054 (3)0.1076 (2)0.0300 (2)0.0274 (5)
C150.8650 (3)0.0063 (2)0.0586 (2)0.0300 (6)
H150.77430.01040.09850.036*
C160.9569 (3)0.1134 (2)0.0290 (2)0.0296 (5)
C170.4052 (3)0.2683 (3)0.5940 (3)0.0377 (6)
C180.4543 (3)0.1290 (2)0.5460 (2)0.0307 (6)
C190.5797 (3)0.0989 (2)0.4716 (2)0.0338 (6)
H190.63400.16600.45310.041*
C200.6264 (3)0.0285 (2)0.4243 (2)0.0334 (6)
N10.3740 (2)0.1776 (2)0.2049 (2)0.0346 (5)
N20.2937 (3)0.4250 (2)0.2225 (2)0.0419 (6)
O10.6766 (2)0.20561 (17)0.10775 (18)0.0382 (4)
O20.8398 (2)0.32217 (18)0.0314 (2)0.0447 (5)
O30.9102 (2)0.22265 (18)0.0592 (2)0.0461 (5)
H3A0.97350.27950.03700.069*
O40.4677 (3)0.35176 (18)0.5525 (2)0.0592 (7)
O50.3055 (3)0.29470 (18)0.6758 (2)0.0500 (5)
O60.7485 (3)0.05155 (19)0.3502 (2)0.0563 (6)
H6A0.76470.13010.32820.084*
O1W0.4148 (2)0.28676 (19)0.03067 (18)0.0434 (5)
H1WA0.30830.26170.03170.052*
H1WB0.41610.35980.05820.052*
O2W0.6253 (2)0.49092 (17)0.12905 (17)0.0371 (4)
H2WA0.70500.44150.08790.045*
H2WB0.66290.55670.19710.045*
O3W0.5968 (2)0.39846 (17)0.35216 (17)0.0380 (4)
H3WA0.55670.36120.40600.046*
H3WB0.58060.47770.37930.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03234 (18)0.02944 (18)0.04078 (19)0.00700 (12)0.01051 (13)0.01119 (13)
C10.0402 (16)0.0353 (15)0.0467 (17)0.0007 (13)0.0064 (13)0.0120 (13)
C20.058 (2)0.0409 (17)0.0477 (18)0.0125 (15)0.0175 (16)0.0160 (14)
C30.061 (2)0.057 (2)0.0446 (18)0.0277 (18)0.0106 (16)0.0206 (16)
C40.0400 (17)0.063 (2)0.0343 (16)0.0155 (15)0.0036 (13)0.0107 (14)
C50.044 (2)0.091 (3)0.050 (2)0.018 (2)0.0094 (16)0.011 (2)
C60.0291 (17)0.102 (3)0.048 (2)0.0024 (19)0.0123 (15)0.000 (2)
C70.0350 (16)0.069 (2)0.0410 (17)0.0148 (16)0.0012 (13)0.0009 (15)
C80.047 (2)0.085 (3)0.057 (2)0.029 (2)0.0002 (17)0.002 (2)
C90.081 (3)0.058 (2)0.074 (3)0.040 (2)0.002 (2)0.007 (2)
C100.068 (2)0.050 (2)0.065 (2)0.0224 (17)0.0092 (18)0.0192 (17)
C110.0307 (14)0.0508 (17)0.0319 (14)0.0062 (13)0.0012 (12)0.0081 (13)
C120.0293 (14)0.0456 (16)0.0305 (14)0.0035 (12)0.0027 (11)0.0093 (12)
C130.0296 (14)0.0303 (14)0.0331 (14)0.0045 (11)0.0008 (11)0.0048 (11)
C140.0230 (12)0.0291 (13)0.0270 (12)0.0053 (10)0.0003 (10)0.0033 (10)
C150.0215 (13)0.0336 (14)0.0340 (14)0.0037 (10)0.0072 (10)0.0076 (11)
C160.0285 (13)0.0277 (13)0.0316 (13)0.0013 (11)0.0006 (11)0.0074 (11)
C170.0541 (18)0.0248 (14)0.0333 (14)0.0011 (12)0.0027 (13)0.0068 (11)
C180.0399 (15)0.0221 (12)0.0296 (13)0.0005 (11)0.0001 (11)0.0071 (10)
C190.0412 (15)0.0210 (12)0.0387 (15)0.0053 (11)0.0038 (12)0.0081 (11)
C200.0379 (15)0.0276 (13)0.0349 (14)0.0012 (11)0.0051 (12)0.0091 (11)
N10.0306 (12)0.0355 (13)0.0381 (12)0.0005 (10)0.0001 (10)0.0115 (10)
N20.0410 (14)0.0395 (13)0.0450 (14)0.0138 (11)0.0050 (11)0.0111 (11)
O10.0308 (10)0.0313 (10)0.0540 (12)0.0106 (8)0.0151 (9)0.0124 (9)
O20.0440 (12)0.0337 (11)0.0599 (13)0.0102 (9)0.0169 (10)0.0167 (10)
O30.0384 (11)0.0346 (11)0.0705 (14)0.0081 (9)0.0190 (10)0.0211 (10)
O40.1041 (19)0.0225 (10)0.0548 (13)0.0075 (11)0.0337 (13)0.0132 (9)
O50.0615 (14)0.0293 (10)0.0564 (13)0.0071 (10)0.0205 (11)0.0058 (9)
O60.0590 (14)0.0323 (11)0.0774 (16)0.0039 (10)0.0363 (12)0.0113 (11)
O1W0.0437 (12)0.0450 (11)0.0452 (11)0.0008 (9)0.0007 (9)0.0191 (9)
O2W0.0425 (11)0.0287 (10)0.0407 (11)0.0044 (8)0.0081 (9)0.0097 (8)
O3W0.0471 (11)0.0270 (9)0.0401 (11)0.0057 (8)0.0097 (9)0.0090 (8)
Geometric parameters (Å, º) top
Zn1—O12.0181 (19)C11—C121.437 (4)
Zn1—O1W2.184 (2)C12—N11.356 (3)
Zn1—O2W2.1581 (19)C13—O11.255 (3)
Zn1—O3W2.113 (2)C13—O21.263 (3)
Zn1—N12.124 (2)C13—C141.497 (3)
Zn1—N22.156 (2)C14—C151.389 (4)
C1—N11.324 (3)C14—C16i1.402 (3)
C1—C21.388 (4)C15—C161.380 (3)
C1—H10.9300C15—H150.9300
C2—C31.353 (5)C16—O31.367 (3)
C2—H20.9300C16—C14i1.402 (3)
C3—C41.403 (5)C17—O41.244 (3)
C3—H30.9300C17—O51.258 (3)
C4—C121.407 (4)C17—C181.505 (4)
C4—C51.422 (5)C18—C191.384 (4)
C5—C61.339 (5)C18—C20ii1.401 (3)
C5—H50.9300C19—C201.385 (4)
C6—C71.441 (5)C19—H190.9300
C6—H60.9300C20—O61.356 (3)
C7—C81.391 (5)C20—C18ii1.401 (3)
C7—C111.400 (4)O3—H3A0.8200
C8—C91.364 (6)O6—H6A0.8200
C8—H80.9300O1W—H1WA0.9650
C9—C101.397 (5)O1W—H1WB0.9182
C9—H90.9300O2W—H2WA0.9333
C10—N21.322 (4)O2W—H2WB0.9127
C10—H100.9300O3W—H3WA0.8873
C11—N21.362 (4)O3W—H3WB0.8287
O1—Zn1—O3W93.06 (8)C7—C11—C12119.7 (3)
O1—Zn1—N190.52 (9)N1—C12—C4122.2 (3)
O3W—Zn1—N192.67 (8)N1—C12—C11117.9 (2)
O1—Zn1—N2168.50 (8)C4—C12—C11119.9 (3)
O3W—Zn1—N290.35 (8)O1—C13—O2124.5 (2)
N1—Zn1—N278.34 (9)O1—C13—C14117.3 (2)
O1—Zn1—O2W93.13 (8)O2—C13—C14118.2 (2)
O3W—Zn1—O2W86.71 (7)C15—C14—C16i119.1 (2)
N1—Zn1—O2W176.32 (8)C15—C14—C13119.7 (2)
N2—Zn1—O2W98.03 (9)C16i—C14—C13121.2 (2)
O1—Zn1—O1W90.61 (8)C16—C15—C14121.1 (2)
O3W—Zn1—O1W171.35 (7)C16—C15—H15119.4
N1—Zn1—O1W95.13 (8)C14—C15—H15119.4
N2—Zn1—O1W87.58 (9)O3—C16—C15118.2 (2)
O2W—Zn1—O1W85.27 (7)O3—C16—C14i122.0 (2)
N1—C1—C2122.9 (3)C15—C16—C14i119.8 (2)
N1—C1—H1118.6O4—C17—O5123.5 (3)
C2—C1—H1118.6O4—C17—C18118.2 (3)
C3—C2—C1119.2 (3)O5—C17—C18118.3 (2)
C3—C2—H2120.4C19—C18—C20ii119.3 (2)
C1—C2—H2120.4C19—C18—C17120.2 (2)
C2—C3—C4120.3 (3)C20ii—C18—C17120.5 (2)
C2—C3—H3119.9C18—C19—C20121.6 (2)
C4—C3—H3119.9C18—C19—H19119.2
C3—C4—C12117.0 (3)C20—C19—H19119.2
C3—C4—C5124.0 (3)O6—C20—C19118.7 (2)
C12—C4—C5119.0 (3)O6—C20—C18ii122.3 (2)
C6—C5—C4121.2 (3)C19—C20—C18ii119.1 (2)
C6—C5—H5119.4C1—N1—C12118.5 (2)
C4—C5—H5119.4C1—N1—Zn1128.2 (2)
C5—C6—C7121.7 (3)C12—N1—Zn1113.14 (18)
C5—C6—H6119.1C10—N2—C11118.1 (3)
C7—C6—H6119.1C10—N2—Zn1129.8 (2)
C8—C7—C11117.5 (3)C11—N2—Zn1112.08 (18)
C8—C7—C6124.1 (3)C13—O1—Zn1131.20 (17)
C11—C7—C6118.4 (3)C16—O3—H3A109.5
C9—C8—C7119.9 (3)C20—O6—H6A109.5
C9—C8—H8120.1Zn1—O1W—H1WA107.0
C7—C8—H8120.1Zn1—O1W—H1WB112.0
C8—C9—C10119.3 (3)H1WA—O1W—H1WB105.5
C8—C9—H9120.4Zn1—O2W—H2WA95.5
C10—C9—H9120.4Zn1—O2W—H2WB118.0
N2—C10—C9122.6 (4)H2WA—O2W—H2WB110.3
N2—C10—H10118.7Zn1—O3W—H3WA114.7
C9—C10—H10118.7Zn1—O3W—H3WB108.4
N2—C11—C7122.6 (3)H3WA—O3W—H3WB106.6
N2—C11—C12117.6 (2)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.971.952.902 (3)170
O1W—H1WB···O2Wiv0.922.012.911 (3)168
O2W—H2WA···O20.931.752.663 (3)166
O3—H3A···O2i0.821.842.562 (3)147
O2W—H2WB···O5v0.911.802.692 (3)166
O3W—H3WA···O40.891.852.695 (3)158
O3W—H3WB···O4v0.831.822.650 (3)175
O6—H6A···O5ii0.821.842.566 (3)146
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C8H4O6)(C12H8N2)2(H2O)6](C8H4O6)
Mr991.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.765 (5), 10.697 (5), 11.062 (5)
α, β, γ (°)106.994 (5), 92.226 (5), 90.977 (5)
V3)990.7 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.737, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
5446, 3824, 3205
Rint0.019
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.04
No. of reflections3824
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Zn1—O12.0181 (19)Zn1—O3W2.113 (2)
Zn1—O1W2.184 (2)Zn1—N12.124 (2)
Zn1—O2W2.1581 (19)Zn1—N22.156 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.971.952.902 (3)170
O1W—H1WB···O2Wii0.922.012.911 (3)168
O2W—H2WA···O20.931.752.663 (3)166
O3—H3A···O2iii0.821.842.562 (3)147
O2W—H2WB···O5iv0.911.802.692 (3)166
O3W—H3WA···O40.891.852.695 (3)158
O3W—H3WB···O4iv0.831.822.650 (3)175
O6—H6A···O5v0.821.842.566 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
 

Acknowledgements

The authors thank Jilin Normal University for supporting this study.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact BbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPerry, J. J. IV, Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400–1417.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. G., Gao, E. J. & Wei, D. Z. (2007). Inorg. Chem. Commun. 10, 467–470.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1503-m1504
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds