organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1,3-Thia­zol-2-yl)-2-(2,4,6-tri­methyl­phen­yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 July 2012; accepted 11 July 2012; online 18 July 2012)

In the title compound, C14H16N2OS, the thia­zole ring is essentially planar (r.m.s. deviation = 0.005 Å) and it forms a dihedral angle of 75.21 (8)° with the benzene ring. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯N hydrogen bonds to generate R22(8) loops.

Related literature

For general background to and related structures of the title compound, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2OS

  • Mr = 260.35

  • Monoclinic, P 21 /c

  • a = 16.421 (2) Å

  • b = 4.6397 (7) Å

  • c = 20.1144 (18) Å

  • β = 123.150 (7)°

  • V = 1283.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.979

  • 13735 measured reflections

  • 3748 independent reflections

  • 2999 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.03

  • 3748 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N1i 0.88 2.08 2.9623 (19) 175
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2011a,b, 2012), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the thiazol-2-yl ring (S1/N1/C1–C3) is essentially planar (r.m.s. deviation = 0.005 Å) and it forms a dihedral angle of 75.21 (8)° with the benzene ring (C6–C11). Bond lengths and angles are comparable to those in related structures (Fun et al., 2011a,b, 2012).

In the crystal (Fig. 2), molecules are linked into an inversion dimer by pairs of intermolecular N2—H1···N1 hydrogen bonds (Table 1).

Related literature top

For general background to and related structures of the title compound, see: Fun et al. (2011a,b, 2012). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

2,4,6-Trimethylphenylacetic acid (0.178 g, 1 mmol), 2-aminothiazole (0.1 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Colourless blocks were grown from an acetone and toluene (1:1) solvent mixture by the slow evaporation method (m.p. 457–459 K).

Refinement top

N-bound hydrogen atom was located in a difference Fourier map and refined using a riding model with Uiso(H) = 1.2 Ueq(N) [N—H = 0.8794 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95-0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl groups.

Structure description top

In continuation of our work on synthesis of amides (Fun et al., 2011a,b, 2012), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the thiazol-2-yl ring (S1/N1/C1–C3) is essentially planar (r.m.s. deviation = 0.005 Å) and it forms a dihedral angle of 75.21 (8)° with the benzene ring (C6–C11). Bond lengths and angles are comparable to those in related structures (Fun et al., 2011a,b, 2012).

In the crystal (Fig. 2), molecules are linked into an inversion dimer by pairs of intermolecular N2—H1···N1 hydrogen bonds (Table 1).

For general background to and related structures of the title compound, see: Fun et al. (2011a,b, 2012). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-(1,3-Thiazol-2-yl)-2-(2,4,6-trimethylphenyl)acetamide top
Crystal data top
C14H16N2OSF(000) = 552
Mr = 260.35Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4087 reflections
a = 16.421 (2) Åθ = 3.0–29.9°
b = 4.6397 (7) ŵ = 0.24 mm1
c = 20.1144 (18) ÅT = 100 K
β = 123.150 (7)°Block, colourless
V = 1283.1 (3) Å30.30 × 0.25 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3748 independent reflections
Radiation source: fine-focus sealed tube2999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2320
Tmin = 0.932, Tmax = 0.979k = 66
13735 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.7659P]
where P = (Fo2 + 2Fc2)/3
3748 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C14H16N2OSV = 1283.1 (3) Å3
Mr = 260.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.421 (2) ŵ = 0.24 mm1
b = 4.6397 (7) ÅT = 100 K
c = 20.1144 (18) Å0.30 × 0.25 × 0.09 mm
β = 123.150 (7)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2999 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.979Rint = 0.040
13735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
3748 reflectionsΔρmin = 0.51 e Å3
166 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.03056 (3)0.78584 (8)0.83439 (2)0.01686 (10)
O10.86995 (7)0.4661 (2)0.75301 (6)0.0180 (2)
N11.06903 (9)0.7448 (3)0.97704 (7)0.0176 (2)
N20.93660 (8)0.4568 (3)0.88579 (7)0.0151 (2)
H10.93470.38710.92560.018*
C11.13491 (11)0.9354 (3)0.97864 (9)0.0206 (3)
H1A1.18351.02811.02620.025*
C21.12628 (11)0.9823 (3)0.90878 (9)0.0203 (3)
H2A1.16711.10570.90170.024*
C31.01013 (10)0.6518 (3)0.90413 (8)0.0145 (3)
C40.86909 (10)0.3723 (3)0.80944 (8)0.0146 (3)
C50.79327 (10)0.1587 (3)0.79947 (8)0.0166 (3)
H5A0.79850.13700.85060.020*
H5B0.80600.03180.78470.020*
C60.69101 (10)0.2559 (3)0.73607 (8)0.0153 (3)
C70.64731 (10)0.1640 (3)0.65713 (8)0.0158 (3)
C80.55387 (10)0.2626 (3)0.60037 (9)0.0184 (3)
H8A0.52380.19880.54710.022*
C90.50331 (11)0.4500 (3)0.61885 (9)0.0201 (3)
C100.54813 (11)0.5407 (3)0.69713 (9)0.0211 (3)
H10A0.51470.66980.71090.025*
C110.64099 (11)0.4466 (3)0.75590 (9)0.0180 (3)
C120.69872 (11)0.0344 (3)0.63240 (9)0.0209 (3)
H12A0.65960.05570.57450.031*
H12B0.70760.22340.65720.031*
H12C0.76230.04690.64940.031*
C130.40305 (12)0.5556 (4)0.55574 (10)0.0287 (4)
H13A0.39960.76460.56070.043*
H13B0.35460.46080.56240.043*
H13C0.38990.50980.50320.043*
C140.68632 (12)0.5548 (4)0.83981 (9)0.0251 (3)
H14A0.64510.70570.84060.038*
H14B0.75090.63400.85920.038*
H14C0.69230.39510.87410.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01899 (17)0.02010 (18)0.01301 (16)0.00305 (13)0.00974 (14)0.00054 (13)
O10.0200 (5)0.0210 (5)0.0134 (5)0.0015 (4)0.0094 (4)0.0009 (4)
N10.0188 (6)0.0209 (6)0.0125 (5)0.0052 (5)0.0083 (5)0.0013 (4)
N20.0174 (6)0.0170 (6)0.0114 (5)0.0037 (4)0.0082 (5)0.0004 (4)
C10.0201 (7)0.0230 (8)0.0167 (7)0.0076 (6)0.0087 (6)0.0021 (6)
C20.0192 (7)0.0230 (7)0.0183 (7)0.0054 (6)0.0099 (6)0.0001 (6)
C30.0164 (6)0.0145 (6)0.0136 (6)0.0002 (5)0.0089 (5)0.0007 (5)
C40.0160 (6)0.0134 (6)0.0139 (6)0.0019 (5)0.0077 (5)0.0002 (5)
C50.0185 (7)0.0151 (7)0.0144 (6)0.0022 (5)0.0079 (5)0.0004 (5)
C60.0169 (6)0.0133 (6)0.0161 (6)0.0020 (5)0.0092 (5)0.0002 (5)
C70.0182 (6)0.0125 (6)0.0168 (6)0.0024 (5)0.0097 (6)0.0009 (5)
C80.0181 (7)0.0188 (7)0.0155 (7)0.0037 (5)0.0074 (6)0.0013 (5)
C90.0176 (7)0.0211 (7)0.0221 (7)0.0000 (5)0.0111 (6)0.0034 (6)
C100.0217 (7)0.0220 (8)0.0240 (8)0.0012 (6)0.0155 (6)0.0001 (6)
C110.0210 (7)0.0176 (7)0.0186 (7)0.0032 (5)0.0130 (6)0.0020 (5)
C120.0245 (7)0.0178 (7)0.0169 (7)0.0015 (6)0.0091 (6)0.0020 (5)
C130.0211 (8)0.0375 (10)0.0267 (8)0.0061 (7)0.0125 (7)0.0083 (7)
C140.0294 (8)0.0288 (9)0.0211 (8)0.0019 (7)0.0164 (7)0.0051 (6)
Geometric parameters (Å, º) top
S1—C21.7227 (16)C7—C121.506 (2)
S1—C31.7267 (14)C8—C91.386 (2)
O1—C41.2230 (17)C8—H8A0.9500
N1—C31.3119 (18)C9—C101.389 (2)
N1—C11.3840 (19)C9—C131.509 (2)
N2—C41.3709 (18)C10—C111.394 (2)
N2—C31.3875 (18)C10—H10A0.9500
N2—H10.8794C11—C141.510 (2)
C1—C21.351 (2)C12—H12A0.9800
C1—H1A0.9500C12—H12B0.9800
C2—H2A0.9500C12—H12C0.9800
C4—C51.516 (2)C13—H13A0.9800
C5—C61.519 (2)C13—H13B0.9800
C5—H5A0.9900C13—H13C0.9800
C5—H5B0.9900C14—H14A0.9800
C6—C71.404 (2)C14—H14B0.9800
C6—C111.405 (2)C14—H14C0.9800
C7—C81.397 (2)
C2—S1—C388.58 (7)C9—C8—H8A118.7
C3—N1—C1108.98 (12)C7—C8—H8A118.7
C4—N2—C3122.51 (12)C8—C9—C10118.04 (14)
C4—N2—H1120.3C8—C9—C13121.07 (14)
C3—N2—H1117.2C10—C9—C13120.89 (15)
C2—C1—N1116.28 (14)C9—C10—C11121.49 (14)
C2—C1—H1A121.9C9—C10—H10A119.3
N1—C1—H1A121.9C11—C10—H10A119.3
C1—C2—S1110.20 (11)C10—C11—C6119.66 (13)
C1—C2—H2A124.9C10—C11—C14119.06 (14)
S1—C2—H2A124.9C6—C11—C14121.28 (14)
N1—C3—N2120.93 (12)C7—C12—H12A109.5
N1—C3—S1115.96 (11)C7—C12—H12B109.5
N2—C3—S1123.11 (10)H12A—C12—H12B109.5
O1—C4—N2121.68 (13)C7—C12—H12C109.5
O1—C4—C5122.36 (13)H12A—C12—H12C109.5
N2—C4—C5115.95 (12)H12B—C12—H12C109.5
C4—C5—C6111.57 (12)C9—C13—H13A109.5
C4—C5—H5A109.3C9—C13—H13B109.5
C6—C5—H5A109.3H13A—C13—H13B109.5
C4—C5—H5B109.3C9—C13—H13C109.5
C6—C5—H5B109.3H13A—C13—H13C109.5
H5A—C5—H5B108.0H13B—C13—H13C109.5
C7—C6—C11119.71 (13)C11—C14—H14A109.5
C7—C6—C5120.39 (13)C11—C14—H14B109.5
C11—C6—C5119.87 (13)H14A—C14—H14B109.5
C8—C7—C6118.59 (13)C11—C14—H14C109.5
C8—C7—C12119.60 (13)H14A—C14—H14C109.5
C6—C7—C12121.81 (13)H14B—C14—H14C109.5
C9—C8—C7122.52 (14)
C3—N1—C1—C20.6 (2)C5—C6—C7—C8178.83 (13)
N1—C1—C2—S10.76 (19)C11—C6—C7—C12178.50 (13)
C3—S1—C2—C10.54 (13)C5—C6—C7—C120.6 (2)
C1—N1—C3—N2179.97 (13)C6—C7—C8—C90.8 (2)
C1—N1—C3—S10.13 (17)C12—C7—C8—C9178.67 (14)
C4—N2—C3—N1174.78 (13)C7—C8—C9—C100.2 (2)
C4—N2—C3—S15.40 (19)C7—C8—C9—C13179.08 (15)
C2—S1—C3—N10.23 (13)C8—C9—C10—C110.3 (2)
C2—S1—C3—N2179.60 (13)C13—C9—C10—C11179.52 (15)
C3—N2—C4—O10.3 (2)C9—C10—C11—C60.1 (2)
C3—N2—C4—C5179.76 (13)C9—C10—C11—C14179.44 (14)
O1—C4—C5—C649.20 (19)C7—C6—C11—C100.5 (2)
N2—C4—C5—C6130.23 (13)C5—C6—C11—C10178.43 (13)
C4—C5—C6—C792.65 (16)C7—C6—C11—C14178.81 (14)
C4—C5—C6—C1185.24 (16)C5—C6—C11—C140.9 (2)
C11—C6—C7—C80.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.882.082.9623 (19)175
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC14H16N2OS
Mr260.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.421 (2), 4.6397 (7), 20.1144 (18)
β (°) 123.150 (7)
V3)1283.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.25 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.932, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
13735, 3748, 2999
Rint0.040
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.03
No. of reflections3748
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.882.082.9623 (19)175
Symmetry code: (i) x+2, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). BN also thanks UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds