metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m735-m736

Bis[(E)-N-(pyridin-3-yl­methyl­­idene)hydroxyl­amine-κN1]silver(I) perchlorate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 April 2012; accepted 30 April 2012; online 5 May 2012)

Each of the ions in the title salt, [Ag(C6H6N2O)2]ClO4, is completed by the application of crystallographic twofold symmetry. The AgI atom is coordinated by two pyridine N atoms in an almost linear fashion [N—Ag—N = 170.0 (2)°], with the T-shaped coordination geometry being completed by a weakly associated perchlorate-O atom. Supra­molecular zigzag chains along [100] mediated by O—H⋯N hydrogen bonds [as parts of R22(6) loops] feature in the crystal packing. The perchlorate O atoms are disordered over two sets of sites in a statistical ratio.

Related literature

For structural diversity in the structures of silver salts, see: Kundu et al. (2010[Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269-1282.]). For related structures, see: Abu-Youssef et al. (2010[Abu-Youssef, M. A. M., Soliman, S. M., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Ohrstrom, L. R. (2010). Inorg. Chem. 49, 9788-9797.]); Xu et al. (2012[Xu, J., Gao, S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m639-m640.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C6H6N2O)2]ClO4

  • Mr = 451.58

  • Monoclinic, C 2/c

  • a = 15.382 (5) Å

  • b = 8.234 (3) Å

  • c = 13.320 (4) Å

  • β = 111.531 (15)°

  • V = 1569.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.449, Tmax = 1.000

  • 7501 measured reflections

  • 1795 independent reflections

  • 1176 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.06

  • 1795 reflections

  • 129 parameters

  • 34 restraints

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Ag—N1 2.138 (5)
Ag—O2 2.843 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N2i 0.84 2.07 2.821 (7) 148
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structural diversity of nitrogen adducts of silver salts are well known with distinct coordination geometries and supramolecular patterns being observed even when only a simple change, for example, in counter-ion, is made (Kundu et al., 2010). The structural chemistry of pyridine-2-carboxaldoxime (LH) complexes with silver are relatively unexplored with only the Ag(LH)NO3 salt (Abu-Youssef et al., 2010) and the salt co-crystal [C12H11AgN4O2]+[ClO4]-[C12H12AgN4O2] (Xu et al., 2012) having been reported previously. Herein, the crystal structure determination of the title salt, [Ag(C6H6N2O)2]ClO4, (I), is described.

In (I), Fig. 1, each of the ions has crystallographic twofold symmetry. The Ag+ atom is coordinated by two N atoms in an almost linear array, Table 1. One of the perchlorate-O atoms is weakly associated with the silver atom so that the coordination geometry is T-shaped. The pyridine-2-carboxaldoxime ligand is planar as seen in the values of the C3—C4—C6—N2 and O1—N2—C6—C4 torsion angles of -2.3 (9) and -178.7 (5)°, respectively. The conformation about the imine bond [N2C6 = 1.255 (7) Å] is E, and the nitrogen atoms are anti.

In the crystal packing, the oxime residues self-associate via O—H···N hydrogen bonds and six-membered {···HON}2 synthons, Table 2. The result is the formation of a supramolecular chain with a zigzag topology along the a axis, Fig. 2.

Related literature top

For structural diversity in the structures of silver salts, see: Kundu et al. (2010). For related structures, see: Abu-Youssef et al. (2010); Xu et al. (2012).

Experimental top

Silver perchlorate (1 mmol) and nicotinylaldehyde oxime (1 mmol) was dissolved in methanol solution (10 ml). The solution was filtered and set aside, away from light, for the growth of crystals. Colourless crystals deposited after several days.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C—H = 0.93 and O—H = 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C,O).

The oxygen atoms of the perchlorate ion are disordered about a twofold rotation axis, and four oxygen atoms were given 0.5 occupancies. The Cl—O distances were restrained to 1.41±0.01 Å and the O···O distances to 2.30±0.01 Å. The anisotropic displacement parameters of the oxygen atoms were restrained to be nearly isotropic.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 20% probability level. Each ion has crystallographic twofold symmetry. Only one orientation for the disordered perchlorate anion is shown.
[Figure 2] Fig. 2. A view of the zigzag supramolecular chain along [100] in (I). The O—H···N hydrogen bonds are shown as orange dashed lines. Only one orientation for the disordered perchlorate anion is shown.
Bis[(E)-N-(pyridin-3-ylmethylidene)hydroxylamine- κN1]silver(I) perchlorate top
Crystal data top
[Ag(C6H6N2O)2]ClO4F(000) = 896
Mr = 451.58Dx = 1.911 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3613 reflections
a = 15.382 (5) Åθ = 3.0–27.5°
b = 8.234 (3) ŵ = 1.49 mm1
c = 13.320 (4) ÅT = 293 K
β = 111.531 (15)°Prism, colourless
V = 1569.3 (8) Å30.18 × 0.16 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1795 independent reflections
Radiation source: fine-focus sealed tube1176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.449, Tmax = 1.000k = 1010
7501 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0776P)2 + 1.2356P]
where P = (Fo2 + 2Fc2)/3
1795 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.74 e Å3
34 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ag(C6H6N2O)2]ClO4V = 1569.3 (8) Å3
Mr = 451.58Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.382 (5) ŵ = 1.49 mm1
b = 8.234 (3) ÅT = 293 K
c = 13.320 (4) Å0.18 × 0.16 × 0.14 mm
β = 111.531 (15)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1795 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1176 reflections with I > 2σ(I)
Tmin = 0.449, Tmax = 1.000Rint = 0.052
7501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04834 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.06Δρmax = 0.74 e Å3
1795 reflectionsΔρmin = 0.49 e Å3
129 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag1.00000.04678 (8)0.75000.0718 (3)
Cl1.00000.4118 (3)0.75000.0779 (6)
O10.5863 (3)0.6168 (5)0.5648 (4)0.0819 (13)
H1o0.52970.63700.52980.123*
N10.8519 (3)0.0695 (5)0.6720 (4)0.0573 (11)
N20.6021 (3)0.4515 (5)0.5606 (4)0.0603 (12)
C10.7951 (4)0.0529 (6)0.6259 (5)0.0617 (14)
H10.82070.15590.62850.074*
C20.7003 (4)0.0342 (7)0.5744 (5)0.0645 (14)
H20.66300.12340.54370.077*
C30.6612 (4)0.1150 (7)0.5686 (4)0.0587 (13)
H30.59710.12890.53370.070*
C40.7187 (3)0.2477 (6)0.6158 (4)0.0495 (11)
C50.8130 (3)0.2174 (7)0.6658 (4)0.0544 (12)
H50.85210.30440.69710.065*
C60.6859 (4)0.4136 (7)0.6113 (4)0.0571 (12)
H60.72830.49430.64690.068*
O21.0050 (8)0.2768 (10)0.6778 (8)0.105 (3)0.50
O30.9040 (6)0.4057 (13)0.7376 (10)0.110 (4)0.50
O41.0044 (7)0.5524 (9)0.6836 (7)0.089 (3)0.50
O51.0649 (10)0.4065 (18)0.8439 (7)0.171 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.0392 (4)0.0813 (5)0.0859 (5)0.0000.0121 (3)0.000
Cl0.0624 (13)0.0605 (12)0.1049 (17)0.0000.0238 (13)0.000
O10.064 (3)0.054 (2)0.106 (3)0.005 (2)0.005 (3)0.007 (2)
N10.042 (2)0.061 (3)0.063 (3)0.0016 (19)0.013 (2)0.000 (2)
N20.054 (3)0.054 (3)0.066 (3)0.005 (2)0.013 (2)0.006 (2)
C10.056 (3)0.051 (3)0.072 (3)0.000 (2)0.017 (3)0.000 (3)
C20.048 (3)0.058 (3)0.075 (4)0.009 (3)0.009 (3)0.006 (3)
C30.040 (3)0.068 (3)0.060 (3)0.003 (3)0.009 (2)0.002 (3)
C40.043 (2)0.055 (3)0.045 (2)0.006 (2)0.010 (2)0.002 (2)
C50.040 (3)0.059 (3)0.057 (3)0.005 (2)0.010 (2)0.003 (2)
C60.045 (3)0.057 (3)0.062 (3)0.004 (2)0.010 (2)0.002 (2)
O20.123 (7)0.082 (5)0.125 (7)0.002 (5)0.063 (6)0.020 (5)
O30.098 (7)0.104 (6)0.148 (8)0.010 (6)0.068 (7)0.018 (6)
O40.072 (5)0.074 (5)0.107 (6)0.006 (4)0.018 (5)0.014 (4)
O50.166 (11)0.162 (9)0.137 (9)0.001 (9)0.001 (8)0.008 (8)
Geometric parameters (Å, º) top
Ag—N1i2.138 (5)C2—H20.9300
Ag—N12.138 (5)C3—C41.402 (8)
Ag—O22.843 (9)C3—H30.9300
O1—N21.387 (7)C4—C51.378 (7)
O1—H1o0.8400C4—C61.449 (8)
N1—C11.327 (7)C5—H50.9300
N1—C51.346 (7)C6—H60.9300
N2—C61.255 (7)Cl—O51.283 (7)
C1—C21.374 (9)Cl—O31.426 (7)
C1—H10.9300Cl—O41.474 (6)
C2—C31.357 (8)Cl—O21.490 (6)
N1i—Ag—N1170.0 (2)C5—C4—C3117.1 (5)
N1i—Ag—O295.1 (3)C5—C4—C6118.6 (5)
N1—Ag—O294.2 (3)C3—C4—C6124.3 (5)
N2—O1—H1o109.5N1—C5—C4124.0 (5)
C1—N1—C5117.2 (5)N1—C5—H5118.0
C1—N1—Ag124.1 (4)C4—C5—H5118.0
C5—N1—Ag118.6 (3)N2—C6—C4122.0 (5)
C6—N2—O1112.5 (5)N2—C6—H6119.0
N1—C1—C2122.9 (5)C4—C6—H6119.0
N1—C1—H1118.6O5—Cl—O3120.9 (7)
C2—C1—H1118.6O5—Cl—O4114.9 (7)
C3—C2—C1119.8 (5)O3—Cl—O4103.4 (5)
C3—C2—H2120.1O5—Cl—O2113.4 (7)
C1—C2—H2120.1O3—Cl—O2101.3 (5)
C2—C3—C4119.1 (5)O4—Cl—O2100.0 (5)
C2—C3—H3120.5Cl—O2—Ag117.8 (5)
C4—C3—H3120.5
N1i—Ag—N1—C1168.7 (5)Ag—N1—C5—C4178.7 (4)
O2—Ag—N1—C19.2 (5)C3—C4—C5—N10.4 (8)
N1i—Ag—N1—C59.2 (4)C6—C4—C5—N1177.8 (5)
O2—Ag—N1—C5168.7 (4)O1—N2—C6—C4178.7 (5)
C5—N1—C1—C20.7 (9)C5—C4—C6—N2175.0 (5)
Ag—N1—C1—C2178.7 (5)C3—C4—C6—N22.3 (9)
N1—C1—C2—C30.5 (10)O5—Cl—O2—Ag57.3 (9)
C1—C2—C3—C40.2 (9)O3—Cl—O2—Ag73.9 (7)
C2—C3—C4—C50.1 (8)O4—Cl—O2—Ag179.9 (5)
C2—C3—C4—C6177.4 (5)N1—Ag—O2—Cl93.0 (6)
C1—N1—C5—C40.7 (8)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2ii0.842.072.821 (7)148
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C6H6N2O)2]ClO4
Mr451.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.382 (5), 8.234 (3), 13.320 (4)
β (°) 111.531 (15)
V3)1569.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.449, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7501, 1795, 1176
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.06
No. of reflections1795
No. of parameters129
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.49

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag—N12.138 (5)Ag—O22.843 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2i0.842.072.821 (7)148
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: shangao67@yahoo.com.

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010td03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAbu-Youssef, M. A. M., Soliman, S. M., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Ohrstrom, L. R. (2010). Inorg. Chem. 49, 9788–9797.  Web of Science CAS PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Gao, S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m639–m640.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m735-m736
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds