organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1566

(6-Meth­­oxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodi­thio­ate

aDepartment of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 21 April 2012; accepted 22 April 2012; online 28 April 2012)

In the title compound, C16H17NO3S2, the 2H-chromene ring is close to being planar [maximum deviation = 0.034 (2) Å] and the pyrrolidine ring is twisted about the C—C bond opposite the N atom. The dihedral angle between the ring-system planes is 75.24 (16)° and an intra­molecular C—H⋯S inter­action occurs. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and the packing also exhibits ππ inter­actions, with a distance of 3.6106 (13) Å between the centroids of the benzene rings of neighbouring mol­ecules.

Related literature

For a related structure and background to the properties of coumarins, see: Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104-o1105.]). For further synthetic details, see: Shastri et al. (2004[Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416-2422.]); Vasilliev et al. (2000[Vasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014-1017.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO3S2

  • Mr = 335.43

  • Triclinic, [P \overline 1]

  • a = 6.7223 (2) Å

  • b = 8.0369 (2) Å

  • c = 15.4101 (5) Å

  • α = 75.320 (2)°

  • β = 88.482 (1)°

  • γ = 78.842 (1)°

  • V = 789.93 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 15231 measured reflections

  • 2768 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.05

  • 2768 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O5i 0.96 2.55 3.396 (4) 147
C7—H7C⋯O4ii 0.96 2.57 3.356 (3) 139
C13—H13⋯O3iii 0.93 2.50 3.411 (3) 168
C17—H17B⋯S2 0.97 2.52 3.160 (3) 124
Symmetry codes: (i) x-1, y-1, z; (ii) x, y-1, z; (iii) -x-1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our interest on crystal structures of coumarin derivatives (Kant et al., 2012), we now report the crystal structure of the title compound.

The asymmetric unit of (6-methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate is shown in Fig. 1. The 2H-chromene (O4/C8–C16) ring is close to planar, with a maximum deviation of 0.034 (2) Å for atom C16. The dihedral angle between the 2H-chromene (O4/C8–C16) ring and pyrrolidine (N6/C18–C22) ring is 75.24 (16)°.

In the crystal, (Fig. 2), the molecules are connected via weak C7—H7B···O5, C7—H7C···O4 and C13—H13···O3 interaction hydrogen bonds (Table 1). Furthermore, the crystal structure packing also exhibits π-π interactions, with distance of 3.6106 (13)Å between the centroids Cg3 (C8–C13) of the benzene rings of neighbouring molecules

Related literature top

For a related structure and background to the properties of coumarins, see: Kant et al. (2012). For further synthetic details, see: Shastri et al. (2004); Vasilliev et al. (2000).

Experimental top

4-bromomethyl coumarin required was synthesized according to an already reported procedure involving Pechmann cyclization of phenols with 4-Bromoethyl acetoacetate and sodium pyrrolidine-1-carbodithioate was synthesized according to the procedure reported. A mixture of 6-methoxy-4-bromomethyl coumarin (0.01 mol) and sodium pyrrolidine-1-carbodithioate (0.01 mol) in 30 ml dry alcohol was stirred for 24 hrs at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the solid obtained was extracted twice with MDC-H2O mixture. The organic layer dried over anhydrous CaCl2 and on evaporating the organic solvent the title compound can be obtained. The compound was recrystallised from an ethanol-chloroform solvent mixture as colourless plates. Yield = 81%, M.P.435 K.

IR (KBr) 660 cm-1 (C—S), 1251 cm-1 (C=S), 1036 cm-1(C—O), 842 cm-1 (C—N),1279 cm-1 (C—O—C), 1708.6 cm-1 (C=O). GCMS: m/e: 335. 1H NMR (400 MHz, DMSO.D6, δ, p.p.m.): 1.92 (m,2H, C10), 2.01 ((m,2H, C1), 2.49(m,4H, C2,C11), 3.80 (s,3H, C9), 4.86 (s,2H, C4), 6.57 (s,1H, C12), 7.24(m,1H, C15), 7.36 (t,1H, C7), 7.38 (s,1H, C16). Elemental analysis: C, 57.26; H, 5.07; N, 4.15; O, 14.29; S, 19.08.

Refinement top

All H atoms were positioned at calculated positions C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methelene H and C—H = 0.96 Å for methyl H and refined using a riding model with Uiso(H) = 1.5Ueq(C)for methyl H and Uiso(H) = 1.2Ueq(C)for other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the title structure.
(6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate top
Crystal data top
C16H17NO3S2Z = 2
Mr = 335.43F(000) = 352
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Melting point: 435 K
a = 6.7223 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0369 (2) ÅCell parameters from 2768 reflections
c = 15.4101 (5) Åθ = 2.7–25.0°
α = 75.320 (2)°µ = 0.35 mm1
β = 88.482 (1)°T = 293 K
γ = 78.842 (1)°Plate, colourless
V = 789.93 (4) Å30.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2768 independent reflections
Radiation source: fine-focus sealed tube2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.770, Tmax = 1.000k = 99
15231 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.3732P]
where P = (Fo2 + 2Fc2)/3
2768 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H17NO3S2γ = 78.842 (1)°
Mr = 335.43V = 789.93 (4) Å3
Triclinic, P1Z = 2
a = 6.7223 (2) ÅMo Kα radiation
b = 8.0369 (2) ŵ = 0.35 mm1
c = 15.4101 (5) ÅT = 293 K
α = 75.320 (2)°0.24 × 0.20 × 0.12 mm
β = 88.482 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2768 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2453 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.024
15231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
2768 reflectionsΔρmin = 0.27 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19010 (9)0.10311 (9)0.13745 (4)0.0584 (2)
S20.60578 (10)0.18643 (10)0.08087 (5)0.0710 (2)
O30.3276 (3)0.0847 (2)0.41586 (13)0.0658 (5)
O40.1152 (3)0.4294 (2)0.39350 (11)0.0574 (4)
O50.3545 (4)0.5741 (3)0.34066 (16)0.0881 (6)
N60.2772 (3)0.2620 (2)0.02227 (13)0.0522 (5)
C70.2661 (5)0.2251 (3)0.3765 (2)0.0716 (7)
H7A0.26560.18140.31240.107*
H7B0.35850.30480.39190.107*
H7C0.13210.28520.39800.107*
C80.2095 (3)0.0380 (3)0.40578 (15)0.0495 (5)
C90.0408 (3)0.0425 (3)0.35217 (14)0.0471 (5)
H90.00350.04120.31970.057*
C100.0731 (3)0.1724 (3)0.34692 (13)0.0434 (5)
C110.0111 (4)0.2970 (3)0.39567 (14)0.0473 (5)
C120.1572 (4)0.2920 (3)0.44935 (15)0.0540 (6)
H120.19560.37540.48200.065*
C130.2659 (4)0.1638 (3)0.45391 (15)0.0545 (6)
H130.37940.16030.48970.065*
C140.2545 (3)0.1843 (3)0.29518 (14)0.0471 (5)
C150.3517 (4)0.3155 (3)0.29444 (16)0.0572 (6)
H150.46960.32100.26180.069*
C160.2814 (4)0.4486 (3)0.34202 (17)0.0610 (6)
C170.3306 (4)0.0515 (3)0.24279 (15)0.0546 (6)
H17A0.31670.06400.27800.066*
H17B0.47340.04960.23090.066*
C180.3634 (3)0.1932 (3)0.05759 (16)0.0493 (5)
C190.0669 (4)0.2655 (4)0.04648 (18)0.0676 (7)
H19A0.02660.34430.01910.081*
H19B0.03470.14930.02750.081*
C200.0557 (6)0.3305 (6)0.1473 (2)0.1022 (12)
H20A0.07470.23280.17490.123*
H20B0.07470.40540.16700.123*
C210.2206 (6)0.4298 (5)0.1712 (2)0.0920 (10)
H21A0.17430.55110.16980.110*
H21B0.26820.42660.23090.110*
C220.3867 (5)0.3409 (4)0.10192 (18)0.0695 (7)
H22A0.48160.25160.12190.083*
H22B0.46000.42510.08910.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0516 (4)0.0805 (4)0.0513 (3)0.0254 (3)0.0134 (3)0.0233 (3)
S20.0432 (4)0.0889 (5)0.0828 (5)0.0197 (3)0.0108 (3)0.0209 (4)
O30.0625 (11)0.0579 (10)0.0844 (12)0.0230 (8)0.0155 (9)0.0240 (9)
O40.0653 (11)0.0497 (9)0.0624 (10)0.0165 (8)0.0038 (8)0.0199 (7)
O50.0919 (15)0.0733 (12)0.1171 (17)0.0450 (11)0.0114 (13)0.0359 (12)
N60.0517 (11)0.0552 (11)0.0534 (11)0.0160 (8)0.0119 (8)0.0175 (9)
C70.0665 (17)0.0551 (14)0.099 (2)0.0158 (12)0.0006 (15)0.0272 (14)
C80.0487 (13)0.0462 (11)0.0509 (12)0.0090 (9)0.0005 (10)0.0075 (9)
C90.0518 (13)0.0424 (11)0.0473 (11)0.0075 (9)0.0025 (9)0.0132 (9)
C100.0484 (12)0.0408 (10)0.0369 (10)0.0040 (9)0.0026 (8)0.0054 (8)
C110.0553 (13)0.0415 (11)0.0442 (11)0.0092 (9)0.0033 (9)0.0090 (9)
C120.0631 (15)0.0511 (12)0.0474 (12)0.0040 (11)0.0057 (10)0.0177 (10)
C130.0551 (14)0.0547 (13)0.0515 (12)0.0088 (11)0.0102 (10)0.0121 (10)
C140.0474 (12)0.0462 (11)0.0444 (11)0.0082 (9)0.0024 (9)0.0060 (9)
C150.0522 (14)0.0604 (14)0.0595 (14)0.0175 (11)0.0047 (11)0.0117 (11)
C160.0641 (16)0.0542 (13)0.0669 (15)0.0193 (12)0.0062 (12)0.0128 (11)
C170.0499 (13)0.0567 (13)0.0545 (13)0.0064 (10)0.0067 (10)0.0124 (10)
C180.0462 (13)0.0469 (11)0.0611 (13)0.0122 (9)0.0137 (10)0.0237 (10)
C190.0595 (16)0.0845 (18)0.0611 (15)0.0181 (13)0.0014 (12)0.0194 (13)
C200.105 (3)0.130 (3)0.0654 (19)0.038 (2)0.0115 (18)0.0000 (19)
C210.120 (3)0.095 (2)0.0615 (17)0.038 (2)0.0020 (18)0.0095 (16)
C220.0791 (19)0.0671 (15)0.0659 (16)0.0263 (14)0.0254 (14)0.0168 (13)
Geometric parameters (Å, º) top
S1—C181.787 (2)C12—C131.361 (3)
S1—C171.813 (2)C12—H120.9300
S2—C181.666 (2)C13—H130.9300
O3—C81.358 (3)C14—C151.341 (3)
O3—C71.403 (3)C14—C171.502 (3)
O4—C161.364 (3)C15—C161.446 (4)
O4—C111.375 (3)C15—H150.9300
O5—C161.199 (3)C17—H17A0.9700
N6—C181.313 (3)C17—H17B0.9700
N6—C191.465 (3)C19—C201.507 (4)
N6—C221.480 (3)C19—H19A0.9700
C7—H7A0.9600C19—H19B0.9700
C7—H7B0.9600C20—C211.474 (5)
C7—H7C0.9600C20—H20A0.9700
C8—C91.386 (3)C20—H20B0.9700
C8—C131.391 (3)C21—C221.505 (5)
C9—C101.395 (3)C21—H21A0.9700
C9—H90.9300C21—H21B0.9700
C10—C111.395 (3)C22—H22A0.9700
C10—C141.445 (3)C22—H22B0.9700
C11—C121.385 (3)
C18—S1—C17102.70 (11)O5—C16—O4116.9 (2)
C8—O3—C7118.4 (2)O5—C16—C15126.6 (3)
C16—O4—C11121.98 (18)O4—C16—C15116.5 (2)
C18—N6—C19126.0 (2)C14—C17—S1110.94 (16)
C18—N6—C22123.3 (2)C14—C17—H17A109.5
C19—N6—C22110.6 (2)S1—C17—H17A109.5
O3—C7—H7A109.5C14—C17—H17B109.5
O3—C7—H7B109.5S1—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B108.0
O3—C7—H7C109.5N6—C18—S2124.10 (18)
H7A—C7—H7C109.5N6—C18—S1111.67 (17)
H7B—C7—H7C109.5S2—C18—S1124.21 (15)
O3—C8—C9124.1 (2)N6—C19—C20104.6 (2)
O3—C8—C13115.9 (2)N6—C19—H19A110.8
C9—C8—C13119.9 (2)C20—C19—H19A110.8
C8—C9—C10120.1 (2)N6—C19—H19B110.8
C8—C9—H9120.0C20—C19—H19B110.8
C10—C9—H9120.0H19A—C19—H19B108.9
C11—C10—C9118.4 (2)C21—C20—C19105.7 (3)
C11—C10—C14117.6 (2)C21—C20—H20A110.6
C9—C10—C14123.99 (19)C19—C20—H20A110.6
O4—C11—C12116.88 (19)C21—C20—H20B110.6
O4—C11—C10121.7 (2)C19—C20—H20B110.6
C12—C11—C10121.4 (2)H20A—C20—H20B108.7
C13—C12—C11119.3 (2)C20—C21—C22105.6 (3)
C13—C12—H12120.3C20—C21—H21A110.6
C11—C12—H12120.3C22—C21—H21A110.6
C12—C13—C8120.9 (2)C20—C21—H21B110.6
C12—C13—H13119.6C22—C21—H21B110.6
C8—C13—H13119.6H21A—C21—H21B108.8
C15—C14—C10119.0 (2)N6—C22—C21103.7 (2)
C15—C14—C17121.1 (2)N6—C22—H22A111.0
C10—C14—C17119.93 (19)C21—C22—H22A111.0
C14—C15—C16123.0 (2)N6—C22—H22B111.0
C14—C15—H15118.5C21—C22—H22B111.0
C16—C15—H15118.5H22A—C22—H22B109.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O5i0.962.553.396 (4)147
C7—H7C···O4ii0.962.573.356 (3)139
C13—H13···O3iii0.932.503.411 (3)168
C17—H17B···S20.972.523.160 (3)124
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H17NO3S2
Mr335.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7223 (2), 8.0369 (2), 15.4101 (5)
α, β, γ (°)75.320 (2), 88.482 (1), 78.842 (1)
V3)789.93 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15231, 2768, 2453
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.05
No. of reflections2768
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O5i0.962.553.396 (4)147
C7—H7C···O4ii0.962.573.356 (3)139
C13—H13···O3iii0.932.503.411 (3)168
C17—H17B···S20.972.523.160 (3)124
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x1, y, z+1.
 

Acknowledgements

The authors acknowledges the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, single-crystal X-ray diffractometer, GCMS, IR, CHNS and NMR data. NMM is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. He is also thankful to P C Jabin Science College, Hubli, and the UGC for allowing him to do research under FIP.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104–o1105.  CSD CrossRef IUCr Journals Google Scholar
First citationShastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014–1017.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1566
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds