organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 February 2012; accepted 5 February 2012; online 10 February 2012)

The title mol­ecule, C15H21N3S, exists as the thione tautomer in the solid state. The 1,2,4-triazole ring is almost planar (r.m.s. deviation = 0.004 Å) and the prop-2-en-1-yl chain is close to being perpendicular to this plane [C—N—C—C torsion angle = 77.1 (5)°]. In the crystal, centrosymmetric dimeric aggregates are formed by pairs of N—H⋯S hydrogen bonds as parts of eight-membered (⋯HNCS)2 synthons. These are connected into layers parallel to (101) via C—H⋯π inter­actions, where the π-system is the triazole ring. The investigated sample was a nonmerohedral twin; the refined domain ratio was 0.655 (4):0.345 (4).

Related literature

For the biological activity of adamantyl derivatives, see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]). For the biological activity of adamantyl-1,2,4-triazole derivatives, see: Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]). For the separation of diffraction data into twin domains, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N3S

  • Mr = 275.41

  • Monoclinic, P 21 /n

  • a = 13.5833 (17) Å

  • b = 8.6483 (6) Å

  • c = 13.6973 (14) Å

  • β = 115.938 (14)°

  • V = 1447.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.929, Tmax = 0.979

  • 10998 measured reflections

  • 3324 independent reflections

  • 2875 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.230

  • S = 1.17

  • 3324 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C2/N1/N2/N3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.88 2.43 3.296 (3) 170
C5—H5⋯Cg1ii 1.00 2.60 3.529 (6) 155
C13—H13ACg1iii 0.99 2.81 3.351 (5) 115
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were recently reported to exhibit marked anti-bacterial activity (Kadi et al., 2007, 2010). In an earlier publication, we reported the synthesis and potent anti-microbial and anti-inflammatory activities for a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives, including the title compound, (I) (Al-Deeb et al., 2006). Herein, the crystal and molecular structure is described which was performed to determine the tautomeric form of (I).

The key result of the structure determination of (I) is the confirmation of the thione form of the molecule, Fig. 1. The 1,2,4-triazole ring is planar [r.m.s. deviation = 0.004 Å] and the S1 atom lies 0.060 (1) Å out of this plane. The C13 atom lies even further out of the plane, i.e. by 0.155 (4) Å in the opposite direction to the S1 atom. The prop-2-en-1-yl chain is almost perpendicular to the plane through the five-membered ring as seen in the value of the C1—N1—C13—C14 torsion angle of 77.1 (5)°. The terminal ethene bond is directed toward the adamantyl group.

In the crystal packing, centrosymmetric dimeric aggregates are formed by N—H···S hydrogen bonds via eight-membered {···HNCS}2 synthons. These are connected into a two-dimensional array parallel to (101) via C—H···π interactions, where the π-system is the triazole ring, Fig. 2 and Table 1. Layers stack without specific intermolecular interactions between them, Fig. 3.

Related literature top

For the biological activity of adamantyl derivatives, see: Vernier et al. (1969); El-Emam et al. (2004). Kadi et al. (2007, 2010). For the biological activity of adamantyl-1,2,4-triazole derivatives, see: Al-Deeb et al. (2006). For the separation of diffraction data into twin domains, see: Spek (2009).

Experimental top

A mixture of adamantane-1-carbohydrazide (1.94 g, 0.01 mol) and allyl isothiocyanate (0.99 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for one hour and the solvent was distilled off in vacuo. Aqueous sodium hydroxide (10%, 15 ml) was added to the residue and the mixture was heated under reflux for 2 h then filtered hot. On cooling, the mixture was acidified with hydrochloric acid and the precipitated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 2.18 g (79%) of (I) as colourless prisms. m.p. 468–470 K. 1H NMR (CDCl3): δ 1.75–1.83 (m, 6H, adamantane-H), 1.94 (s, 3H, adamantane-H), 2.05 (s, 6H, adamantane-H), 4.91 (s, 2H, CH2), 5.03 (d, 1H, CHa, J = 17.0 Hz), 5.30 (d, 1H, CHb, J = 10.5 Hz), 5.90–5.96 (m, 1H, –CH), 11.78 (br s, 1H, NH). 13C NMR: δ 27.88, 35.52, 36.27, 38.58 (adamantane-C), 47.66 (CH2), 117.92 (CH2), 131.03 (–CH), 158.34 (CN), 168.61 (CS).

Refinement top

Carbon-bound H atoms were placed in calculated positions [N—H = 0.88 Å and C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(N, C)] and were included in the refinement in the riding model approximation.

A sphere of reflections was measured, which should be sufficient to refine the non-merohedral twinned structure. However, separating the reflection data into two domains did not lead to an improvement in the refinement, and this was not improved at varying degrees of overlap. The twin domains were instead separated by using the TwinRotMat routine of PLATON (Spek, 2009). The minor twin component refined to 34.5 (4)%.

Two reflections, i.e. (10 3 5) and (5 0 1), were omitted owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer parallel to (101) in (I). The N—H···S hydrogen bonds and C—H···π interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The N—H···S, C—H···S and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.
3-(Adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C15H21N3SF(000) = 592
Mr = 275.41Dx = 1.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1371 reflections
a = 13.5833 (17) Åθ = 2.4–27.5°
b = 8.6483 (6) ŵ = 0.22 mm1
c = 13.6973 (14) ÅT = 100 K
β = 115.938 (14)°Prism, colourless
V = 1447.0 (3) Å30.35 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3324 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2875 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.077
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scansh = 1715
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.929, Tmax = 0.979l = 617
10998 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0882P)2 + 4.0546P]
where P = (Fo2 + 2Fc2)/3
3324 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C15H21N3SV = 1447.0 (3) Å3
Mr = 275.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5833 (17) ŵ = 0.22 mm1
b = 8.6483 (6) ÅT = 100 K
c = 13.6973 (14) Å0.35 × 0.15 × 0.10 mm
β = 115.938 (14)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3324 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2875 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.979Rint = 0.077
10998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.17Δρmax = 0.71 e Å3
3324 reflectionsΔρmin = 0.66 e Å3
173 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60052 (9)0.72236 (11)0.51878 (8)0.0170 (3)
N10.6426 (3)0.7440 (4)0.7336 (3)0.0115 (6)
N20.5548 (3)0.5391 (4)0.6557 (3)0.0137 (7)
H2N0.52030.46850.60620.016*
N30.5707 (3)0.5286 (4)0.7620 (3)0.0141 (7)
C10.5976 (3)0.6683 (5)0.6357 (3)0.0127 (7)
C20.6240 (3)0.6536 (4)0.8078 (3)0.0124 (7)
C30.6643 (3)0.6857 (5)0.9271 (3)0.0124 (7)
C40.7912 (3)0.6936 (5)0.9857 (3)0.0152 (8)
H4A0.82240.59540.97470.018*
H4B0.81730.77840.95440.018*
C50.8298 (4)0.7216 (5)1.1068 (3)0.0190 (9)
H50.91150.72861.14350.023*
C60.7923 (4)0.5877 (6)1.1559 (3)0.0238 (10)
H6A0.81760.60521.23460.029*
H6B0.82450.48951.14620.029*
C70.6670 (4)0.5770 (6)1.0993 (3)0.0222 (9)
H70.64290.48851.13070.027*
C80.6281 (3)0.5500 (5)0.9779 (3)0.0176 (8)
H8A0.54730.54110.94190.021*
H8B0.65920.45200.96650.021*
C90.6144 (3)0.8368 (5)0.9470 (3)0.0170 (8)
H9A0.63610.92540.91490.020*
H9B0.53350.82960.91130.020*
C100.6547 (4)0.8630 (6)1.0692 (3)0.0228 (10)
H100.62330.96181.08130.027*
C110.7803 (4)0.8738 (6)1.1234 (3)0.0232 (9)
H11A0.80690.89411.20200.028*
H11B0.80370.96051.09140.028*
C120.6173 (4)0.7278 (6)1.1179 (4)0.0263 (11)
H12A0.53640.72081.08260.032*
H12B0.64190.74471.19660.032*
C130.6875 (3)0.9016 (5)0.7431 (3)0.0157 (8)
H13A0.73160.90790.70170.019*
H13B0.73650.92370.82020.019*
C140.5979 (4)1.0210 (5)0.7008 (3)0.0180 (8)
H140.54091.00800.62950.022*
C150.5939 (4)1.1433 (5)0.7573 (4)0.0234 (10)
H15A0.64971.15930.82880.035*
H15B0.53531.21490.72640.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0220 (6)0.0180 (5)0.0114 (5)0.0044 (4)0.0077 (4)0.0016 (4)
N10.0121 (15)0.0121 (14)0.0112 (15)0.0009 (13)0.0058 (12)0.0001 (12)
N20.0165 (16)0.0116 (15)0.0109 (14)0.0005 (13)0.0039 (12)0.0013 (12)
N30.0173 (16)0.0125 (16)0.0114 (15)0.0001 (13)0.0051 (12)0.0014 (12)
C10.0131 (17)0.0137 (18)0.0104 (16)0.0001 (15)0.0043 (13)0.0016 (14)
C20.0137 (18)0.0119 (17)0.0127 (17)0.0005 (14)0.0067 (14)0.0010 (14)
C30.0135 (18)0.0150 (18)0.0108 (16)0.0018 (15)0.0073 (14)0.0003 (14)
C40.0156 (19)0.0188 (19)0.0121 (17)0.0012 (16)0.0070 (14)0.0014 (15)
C50.0162 (19)0.025 (2)0.0129 (18)0.0087 (17)0.0038 (15)0.0021 (16)
C60.023 (2)0.031 (2)0.0132 (18)0.0073 (19)0.0042 (16)0.0063 (17)
C70.023 (2)0.029 (2)0.0146 (18)0.0090 (19)0.0088 (16)0.0029 (17)
C80.0174 (19)0.019 (2)0.0155 (18)0.0065 (16)0.0063 (15)0.0016 (15)
C90.0181 (19)0.0167 (19)0.0173 (19)0.0002 (16)0.0087 (16)0.0039 (15)
C100.026 (2)0.030 (2)0.0175 (19)0.0006 (19)0.0137 (17)0.0061 (17)
C110.027 (2)0.029 (2)0.0150 (18)0.0116 (19)0.0107 (17)0.0096 (17)
C120.024 (2)0.043 (3)0.016 (2)0.009 (2)0.0134 (17)0.0073 (19)
C130.0161 (19)0.015 (2)0.0144 (17)0.0059 (15)0.0054 (15)0.0007 (14)
C140.021 (2)0.0132 (18)0.0178 (18)0.0031 (16)0.0071 (16)0.0015 (15)
C150.030 (2)0.015 (2)0.024 (2)0.0007 (18)0.0103 (18)0.0003 (17)
Geometric parameters (Å, º) top
S1—C11.685 (4)C7—C121.539 (7)
N1—C11.372 (5)C7—H71.0000
N1—C21.390 (5)C8—H8A0.9900
N1—C131.476 (5)C8—H8B0.9900
N2—C11.342 (5)C9—C101.534 (6)
N2—N31.379 (5)C9—H9A0.9900
N2—H2N0.8800C9—H9B0.9900
N3—C21.300 (5)C10—C111.537 (6)
C2—C31.504 (5)C10—C121.538 (7)
C3—C81.550 (5)C10—H101.0000
C3—C91.551 (6)C11—H11A0.9900
C3—C41.552 (5)C11—H11B0.9900
C4—C51.525 (5)C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900C13—C141.506 (6)
C5—C61.533 (6)C13—H13A0.9900
C5—C111.539 (7)C13—H13B0.9900
C5—H51.0000C14—C151.326 (6)
C6—C71.534 (6)C14—H140.9500
C6—H6A0.9900C15—H15A0.9500
C6—H6B0.9900C15—H15B0.9500
C7—C81.527 (6)
C1—N1—C2107.5 (3)C7—C8—C3110.3 (3)
C1—N1—C13121.1 (3)C7—C8—H8A109.6
C2—N1—C13131.0 (3)C3—C8—H8A109.6
C1—N2—N3112.9 (3)C7—C8—H8B109.6
C1—N2—H2N123.6C3—C8—H8B109.6
N3—N2—H2N123.6H8A—C8—H8B108.1
C2—N3—N2104.6 (3)C10—C9—C3110.0 (3)
N2—C1—N1104.2 (3)C10—C9—H9A109.7
N2—C1—S1128.1 (3)C3—C9—H9A109.7
N1—C1—S1127.7 (3)C10—C9—H9B109.7
N3—C2—N1110.8 (3)C3—C9—H9B109.7
N3—C2—C3122.6 (3)H9A—C9—H9B108.2
N1—C2—C3126.4 (3)C9—C10—C11109.1 (3)
C2—C3—C8108.2 (3)C9—C10—C12109.4 (4)
C2—C3—C9111.5 (3)C11—C10—C12110.1 (4)
C8—C3—C9108.1 (3)C9—C10—H10109.4
C2—C3—C4111.4 (3)C11—C10—H10109.4
C8—C3—C4107.5 (3)C12—C10—H10109.4
C9—C3—C4110.1 (3)C10—C11—C5110.0 (4)
C5—C4—C3110.2 (3)C10—C11—H11A109.7
C5—C4—H4A109.6C5—C11—H11A109.7
C3—C4—H4A109.6C10—C11—H11B109.7
C5—C4—H4B109.6C5—C11—H11B109.7
C3—C4—H4B109.6H11A—C11—H11B108.2
H4A—C4—H4B108.1C10—C12—C7108.7 (4)
C4—C5—C6109.6 (3)C10—C12—H12A110.0
C4—C5—C11109.4 (3)C7—C12—H12A110.0
C6—C5—C11109.3 (4)C10—C12—H12B110.0
C4—C5—H5109.5C7—C12—H12B110.0
C6—C5—H5109.5H12A—C12—H12B108.3
C11—C5—H5109.5N1—C13—C14111.4 (3)
C5—C6—C7109.4 (4)N1—C13—H13A109.3
C5—C6—H6A109.8C14—C13—H13A109.3
C7—C6—H6A109.8N1—C13—H13B109.3
C5—C6—H6B109.8C14—C13—H13B109.3
C7—C6—H6B109.8H13A—C13—H13B108.0
H6A—C6—H6B108.2C15—C14—C13123.7 (4)
C8—C7—C6109.7 (4)C15—C14—H14118.2
C8—C7—C12110.0 (4)C13—C14—H14118.2
C6—C7—C12109.6 (4)C14—C15—H15A120.0
C8—C7—H7109.2C14—C15—H15B120.0
C6—C7—H7109.2H15A—C15—H15B120.0
C12—C7—H7109.2
C1—N2—N3—C20.0 (4)C11—C5—C6—C760.0 (5)
N3—N2—C1—N10.1 (4)C5—C6—C7—C859.5 (5)
N3—N2—C1—S1177.5 (3)C5—C6—C7—C1261.4 (5)
C2—N1—C1—N20.2 (4)C6—C7—C8—C360.4 (5)
C13—N1—C1—N2173.0 (3)C12—C7—C8—C360.3 (5)
C2—N1—C1—S1177.5 (3)C2—C3—C8—C7179.9 (3)
C13—N1—C1—S19.3 (6)C9—C3—C8—C759.1 (4)
N2—N3—C2—N10.1 (4)C4—C3—C8—C759.7 (4)
N2—N3—C2—C3176.5 (3)C2—C3—C9—C10178.3 (3)
C1—N1—C2—N30.2 (5)C8—C3—C9—C1059.6 (4)
C13—N1—C2—N3172.1 (4)C4—C3—C9—C1057.5 (4)
C1—N1—C2—C3176.2 (4)C3—C9—C10—C1159.2 (5)
C13—N1—C2—C311.5 (7)C3—C9—C10—C1261.3 (5)
N3—C2—C3—C81.5 (5)C9—C10—C11—C561.2 (5)
N1—C2—C3—C8177.5 (4)C12—C10—C11—C558.9 (4)
N3—C2—C3—C9120.2 (4)C4—C5—C11—C1061.1 (4)
N1—C2—C3—C963.8 (5)C6—C5—C11—C1058.9 (4)
N3—C2—C3—C4116.4 (4)C9—C10—C12—C760.6 (5)
N1—C2—C3—C459.6 (5)C11—C10—C12—C759.3 (4)
C2—C3—C4—C5178.4 (3)C8—C7—C12—C1060.2 (4)
C8—C3—C4—C560.1 (4)C6—C7—C12—C1060.6 (4)
C9—C3—C4—C557.4 (4)C1—N1—C13—C1477.1 (5)
C3—C4—C5—C661.0 (5)C2—N1—C13—C1494.3 (5)
C3—C4—C5—C1158.8 (4)N1—C13—C14—C15126.8 (4)
C4—C5—C6—C759.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C2/N1/N2/N3 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.882.433.296 (3)170
C5—H5···Cg1ii1.002.603.529 (6)155
C13—H13A···Cg1iii0.992.813.351 (5)115
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H21N3S
Mr275.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.5833 (17), 8.6483 (6), 13.6973 (14)
β (°) 115.938 (14)
V3)1447.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.929, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10998, 3324, 2875
Rint0.077
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.230, 1.17
No. of reflections3324
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.66

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C2/N1/N2/N3 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.882.433.296 (3)170
C5—H5···Cg1ii1.002.603.529 (6)155
C13—H13A···Cg1iii0.992.813.351 (5)115
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds