organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{2-[4-(2-Hy­dr­oxy­eth­yl)piperazin-1-yl]eth­yl}phthalimide

aKey Laboratory of Fine Petrohemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China, and bAnalytical Center, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: yingshao@cczu.edu.cn

(Received 10 December 2011; accepted 10 December 2011; online 21 December 2011)

In the title compound, C16H21N3O3, the piperazine ring adopts a chair conformation, with its N—C bonds in pseudo-equatorial orientations. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, generating C(5) chains propagating in [101]. Weak aromatic ππ stacking inter­actions also occur [centroid–centroid separation = 3.899 (1) Å].

Related literature

For general background to piperazine derivatives, see: Tian et al. (2011[Tian, Z., Wei, X., Liang, J., Liu, R. & Zhang, Y. (2011). Yingyong Huagong, 40, 1648-1652.]). For the preparation, see: Ghosh et al. (2010[Ghosh, B., Antonio, T., Zhen, J., Kharkar, P., Reith, M. E. A. & Dutta, A. K. (2010). J. Med. Chem. 53, 1023-1037.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21N3O3

  • Mr = 303.36

  • Monoclinic, P 21 /n

  • a = 5.8109 (6) Å

  • b = 37.012 (4) Å

  • c = 7.3537 (8) Å

  • β = 95.634 (2)°

  • V = 1573.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 8562 measured reflections

  • 2775 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.161

  • S = 1.00

  • 2775 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N3i 0.82 2.00 2.811 (3) 171
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Piperazine derivatives in pharmaceutical and chemical industries have a wide range of applications (Tian, et al., 2011). The title compound, which is an intermediate for our designed drug, was synthesized from 2-(2-bromoethyl)phthalimide and 2-(piperazin-1-yl)ethanol in the presence of K2CO3 as acid-acceptor (Ghosh, et al., 2010). In the molecule of the title compound (Fig. 1), the phthalimide fragment is planar, with r.m.s. deviation of 0.02 Å. The six-membered piperazine ring adopts the chair conformation. In the crystal, the crystal packing is stabilized by O—H···N hydrogen bonding interactions and ππ interactions involving the benzene ring (Fig. 2). For the O—H···N the hydrogen bonding interactions, the relevant distances and angles are: O3···H3A= 0.821 Å, H3A···N3 =1.997 Å, O3···N3[i]= 2.811 (3) Å, and O3—H3A···N3[i]= 171.3°. And for the π ···π interactions, the relevant distances are: Cg···Cg[ii] = 3.899 (1)Å [symmetry code: (i) x - 1/2, 1/2 - y, -1/2 + z; (ii) 2 - x, -y, 2 - z; Cg is the centroid of the C1–C2–C3–C4–C5–C6 ring].

Related literature top

For general background to piperazine derivatives, see: Tian et al. (2011). For the preparation, see: Ghosh et al. (2010).

Experimental top

A suspension of 2-(2-bromoethyl)phthalimide (0.63 g, 2.5 mmol), 2-(piperazin-1-yl)ethanol (0.36 g, 2.8 mmol) and K2CO3 (0.90 g, 6.5 mmol) in 15 ml acetonitrile was stirred at room temperature for 0.5 h, and then heated to reflux for 10 h. After cooling and filtration, the filter residue was washed with CH3CN. And the filtrate and washing were combined prior to removing the solvent under vacuum. A white powder (0.55 g, 1.8 mmol) was obtained after recrystallization from ethyl acetate/ petroleum ether. Colourless blocks were obtained by slow evaporation of a CH3OH solution.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Perspective view of the title compound along c direction. Labels of atoms have been omitted for clarity.
(I) top
Crystal data top
C16H21N3O3F(000) = 648
Mr = 303.36Dx = 1.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5733 reflections
a = 5.8109 (6) Åθ = 2.8–29.9°
b = 37.012 (4) ŵ = 0.09 mm1
c = 7.3537 (8) ÅT = 296 K
β = 95.634 (2)°Block, colorless
V = 1573.9 (3) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2775 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.978, Tmax = 0.982k = 4443
8562 measured reflectionsl = 86
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.081P)2 + 1.190P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2775 reflectionsΔρmax = 0.53 e Å3
201 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (4)
Crystal data top
C16H21N3O3V = 1573.9 (3) Å3
Mr = 303.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8109 (6) ŵ = 0.09 mm1
b = 37.012 (4) ÅT = 296 K
c = 7.3537 (8) Å0.25 × 0.22 × 0.20 mm
β = 95.634 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2537 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.025
8562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
2775 reflectionsΔρmin = 0.38 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8296 (4)0.04878 (5)0.9736 (3)0.0374 (5)
C20.7865 (4)0.02500 (6)1.1105 (3)0.0471 (6)
H20.65300.01101.10240.057*
C30.9495 (5)0.02280 (7)1.2607 (3)0.0522 (6)
H30.92600.00671.35430.063*
C41.1458 (5)0.04391 (7)1.2744 (3)0.0538 (6)
H41.25180.04191.37730.065*
C51.1882 (4)0.06811 (7)1.1375 (3)0.0496 (6)
H51.31990.08251.14660.060*
C61.0265 (4)0.06991 (6)0.9870 (3)0.0389 (5)
C71.0250 (4)0.09147 (6)0.8160 (3)0.0429 (5)
C80.6974 (4)0.05594 (6)0.7936 (3)0.0414 (5)
C90.7626 (5)0.09520 (6)0.5245 (3)0.0473 (6)
H9A0.66590.07760.45580.057*
H9B0.90240.09820.46400.057*
C100.6356 (4)0.13096 (6)0.5228 (3)0.0398 (5)
H10A0.50430.12880.59400.048*
H10B0.73800.14940.57890.048*
C110.7464 (4)0.15193 (6)0.2321 (3)0.0412 (5)
H11A0.85260.13180.22900.049*
H11B0.83000.17210.29160.049*
C120.6585 (4)0.16244 (6)0.0396 (3)0.0432 (5)
H12A0.78810.16870.02800.052*
H12B0.57850.14210.02100.052*
C130.3083 (4)0.18340 (7)0.1460 (3)0.0472 (6)
H13A0.22230.16350.08650.057*
H13B0.20440.20380.15010.057*
C140.3970 (4)0.17252 (6)0.3390 (3)0.0439 (5)
H14A0.47680.19280.40060.053*
H14B0.26760.16610.40640.053*
C150.4241 (5)0.20357 (6)0.1491 (3)0.0519 (6)
H15A0.32100.18500.20320.062*
H15B0.55760.20450.21840.062*
C160.3036 (6)0.23880 (8)0.1657 (4)0.0696 (8)
H16A0.14830.23670.12900.083*
H16B0.38700.25680.08920.083*
N10.8237 (3)0.08156 (5)0.7086 (2)0.0419 (5)
N20.5552 (3)0.14180 (5)0.3366 (2)0.0360 (4)
N30.5012 (3)0.19317 (5)0.0404 (2)0.0403 (5)
O10.5199 (3)0.04208 (5)0.7274 (2)0.0618 (5)
O21.1636 (3)0.11320 (5)0.7720 (3)0.0648 (6)
O30.2965 (5)0.24873 (7)0.3547 (3)0.0921 (8)
H3A0.20180.26500.37660.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0419 (11)0.0314 (10)0.0381 (11)0.0005 (8)0.0002 (9)0.0024 (8)
C20.0529 (14)0.0431 (12)0.0443 (12)0.0071 (10)0.0002 (10)0.0086 (10)
C30.0676 (16)0.0493 (13)0.0383 (12)0.0031 (12)0.0014 (11)0.0086 (10)
C40.0582 (15)0.0584 (15)0.0416 (13)0.0088 (12)0.0115 (11)0.0004 (11)
C50.0417 (12)0.0526 (14)0.0524 (14)0.0020 (10)0.0059 (10)0.0047 (11)
C60.0398 (11)0.0342 (10)0.0420 (12)0.0016 (8)0.0011 (9)0.0001 (9)
C70.0434 (12)0.0382 (11)0.0473 (12)0.0015 (9)0.0054 (10)0.0020 (9)
C80.0452 (12)0.0343 (11)0.0432 (12)0.0016 (9)0.0034 (9)0.0041 (9)
C90.0655 (15)0.0407 (12)0.0354 (11)0.0044 (10)0.0033 (10)0.0052 (9)
C100.0457 (12)0.0431 (12)0.0310 (10)0.0030 (9)0.0059 (9)0.0049 (8)
C110.0380 (11)0.0497 (12)0.0364 (11)0.0053 (9)0.0067 (9)0.0062 (9)
C120.0481 (12)0.0487 (13)0.0335 (11)0.0026 (10)0.0076 (9)0.0035 (9)
C130.0440 (12)0.0513 (13)0.0448 (13)0.0093 (10)0.0025 (10)0.0073 (10)
C140.0417 (12)0.0531 (13)0.0375 (12)0.0081 (10)0.0067 (9)0.0072 (10)
C150.0728 (17)0.0457 (13)0.0350 (12)0.0036 (12)0.0063 (11)0.0025 (10)
C160.098 (2)0.0624 (17)0.0448 (14)0.0265 (16)0.0084 (14)0.0069 (12)
N10.0491 (11)0.0367 (9)0.0391 (10)0.0018 (8)0.0011 (8)0.0075 (8)
N20.0373 (9)0.0403 (9)0.0307 (9)0.0014 (7)0.0046 (7)0.0047 (7)
N30.0502 (11)0.0404 (10)0.0291 (9)0.0017 (8)0.0018 (7)0.0031 (7)
O10.0588 (11)0.0610 (11)0.0604 (11)0.0196 (9)0.0195 (9)0.0150 (9)
O20.0597 (11)0.0635 (11)0.0720 (13)0.0211 (9)0.0098 (9)0.0157 (9)
O30.136 (2)0.0818 (15)0.0558 (12)0.0490 (15)0.0048 (13)0.0216 (11)
Geometric parameters (Å, º) top
C1—C21.379 (3)C11—N21.460 (3)
C1—C61.381 (3)C11—C121.508 (3)
C1—C81.487 (3)C11—H11A0.9700
C2—C31.385 (3)C11—H11B0.9700
C2—H20.9300C12—N31.460 (3)
C3—C41.378 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.387 (4)C13—N31.470 (3)
C4—H40.9300C13—C141.516 (3)
C5—C61.381 (3)C13—H13A0.9700
C5—H50.9300C13—H13B0.9700
C6—C71.489 (3)C14—N21.463 (3)
C7—O21.204 (3)C14—H14A0.9700
C7—N11.395 (3)C14—H14B0.9700
C8—O11.210 (3)C15—N31.472 (3)
C8—N11.385 (3)C15—C161.479 (4)
C9—N11.456 (3)C15—H15A0.9700
C9—C101.515 (3)C15—H15B0.9700
C9—H9A0.9700C16—O31.435 (3)
C9—H9B0.9700C16—H16A0.9700
C10—N21.459 (3)C16—H16B0.9700
C10—H10A0.9700O3—H3A0.8200
C10—H10B0.9700
C2—C1—C6121.2 (2)H11A—C11—H11B108.1
C2—C1—C8130.4 (2)N3—C12—C11110.60 (17)
C6—C1—C8108.36 (18)N3—C12—H12A109.5
C1—C2—C3117.4 (2)C11—C12—H12A109.5
C1—C2—H2121.3N3—C12—H12B109.5
C3—C2—H2121.3C11—C12—H12B109.5
C4—C3—C2121.5 (2)H12A—C12—H12B108.1
C4—C3—H3119.3N3—C13—C14110.70 (18)
C2—C3—H3119.3N3—C13—H13A109.5
C3—C4—C5121.1 (2)C14—C13—H13A109.5
C3—C4—H4119.4N3—C13—H13B109.5
C5—C4—H4119.4C14—C13—H13B109.5
C6—C5—C4117.2 (2)H13A—C13—H13B108.1
C6—C5—H5121.4N2—C14—C13110.55 (18)
C4—C5—H5121.4N2—C14—H14A109.5
C5—C6—C1121.6 (2)C13—C14—H14A109.5
C5—C6—C7130.5 (2)N2—C14—H14B109.5
C1—C6—C7107.87 (18)C13—C14—H14B109.5
O2—C7—N1124.7 (2)H14A—C14—H14B108.1
O2—C7—C6129.5 (2)N3—C15—C16114.0 (2)
N1—C7—C6105.80 (18)N3—C15—H15A108.8
O1—C8—N1125.2 (2)C16—C15—H15A108.8
O1—C8—C1128.9 (2)N3—C15—H15B108.8
N1—C8—C1105.84 (17)C16—C15—H15B108.8
N1—C9—C10112.62 (18)H15A—C15—H15B107.7
N1—C9—H9A109.1O3—C16—C15105.9 (2)
C10—C9—H9A109.1O3—C16—H16A110.6
N1—C9—H9B109.1C15—C16—H16A110.6
C10—C9—H9B109.1O3—C16—H16B110.6
H9A—C9—H9B107.8C15—C16—H16B110.6
N2—C10—C9111.02 (17)H16A—C16—H16B108.7
N2—C10—H10A109.4C8—N1—C7112.13 (18)
C9—C10—H10A109.4C8—N1—C9124.43 (19)
N2—C10—H10B109.4C7—N1—C9123.34 (19)
C9—C10—H10B109.4C11—N2—C10111.95 (16)
H10A—C10—H10B108.0C11—N2—C14108.56 (17)
N2—C11—C12110.79 (18)C10—N2—C14110.22 (16)
N2—C11—H11A109.5C12—N3—C13108.70 (17)
C12—C11—H11A109.5C12—N3—C15109.44 (17)
N2—C11—H11B109.5C13—N3—C15112.78 (18)
C12—C11—H11B109.5C16—O3—H3A109.5
C6—C1—C2—C30.8 (3)O1—C8—N1—C7177.6 (2)
C8—C1—C2—C3176.4 (2)C1—C8—N1—C70.3 (2)
C1—C2—C3—C41.0 (4)O1—C8—N1—C91.1 (4)
C2—C3—C4—C50.3 (4)C1—C8—N1—C9176.87 (19)
C3—C4—C5—C60.4 (4)O2—C7—N1—C8179.9 (2)
C4—C5—C6—C10.5 (3)C6—C7—N1—C80.1 (2)
C4—C5—C6—C7177.1 (2)O2—C7—N1—C93.2 (4)
C2—C1—C6—C50.1 (3)C6—C7—N1—C9176.69 (19)
C8—C1—C6—C5177.7 (2)C10—C9—N1—C897.9 (3)
C2—C1—C6—C7178.2 (2)C10—C9—N1—C785.9 (3)
C8—C1—C6—C70.4 (2)C12—C11—N2—C10179.14 (17)
C5—C6—C7—O22.3 (4)C12—C11—N2—C1459.0 (2)
C1—C6—C7—O2179.9 (2)C9—C10—N2—C1169.7 (2)
C5—C6—C7—N1177.6 (2)C9—C10—N2—C14169.38 (19)
C1—C6—C7—N10.2 (2)C13—C14—N2—C1158.3 (2)
C2—C1—C8—O10.1 (4)C13—C14—N2—C10178.72 (18)
C6—C1—C8—O1177.4 (2)C11—C12—N3—C1358.2 (2)
C2—C1—C8—N1178.0 (2)C11—C12—N3—C15178.21 (19)
C6—C1—C8—N10.4 (2)C14—C13—N3—C1257.8 (2)
N1—C9—C10—N2173.76 (18)C14—C13—N3—C15179.35 (18)
N2—C11—C12—N360.1 (2)C16—C15—N3—C12168.0 (2)
N3—C13—C14—N258.9 (3)C16—C15—N3—C1370.9 (3)
N3—C15—C16—O3165.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N3i0.822.002.811 (3)171
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H21N3O3
Mr303.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.8109 (6), 37.012 (4), 7.3537 (8)
β (°) 95.634 (2)
V3)1573.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8562, 2775, 2537
Rint0.025
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.161, 1.00
No. of reflections2775
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.38

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N3i0.822.002.811 (3)171
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Changzhou University (ZMF10020010) for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, B., Antonio, T., Zhen, J., Kharkar, P., Reith, M. E. A. & Dutta, A. K. (2010). J. Med. Chem. 53, 1023–1037.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z., Wei, X., Liang, J., Liu, R. & Zhang, Y. (2011). Yingyong Huagong, 40, 1648–1652.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds