organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-(3-Phenyl-1H-pyrazol-4-yl)methyl­­idene]naphtho­[2,1-b]furan-2-carbohydrazide monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title hydrate, C23H16N4O2·H2O, the pyrazole ring is approximately planar, with a maximum deviation of 0.023 (1) Å, and makes dihedral angles of 28.63 (6) and 46.44 (7)° with the naphtho­[2,1-b]furan ring system and the benzene ring, respectively, In the crystal, O—H⋯N, O—H⋯O, N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules, forming sheets lying parallel to the ab plane. The crystal structure also features C—H⋯π inter­actions involving the centroids of the pyrazole and benzene rings.

Related literature

For the biological activity of hydrazides, hydrazones and their adducts, see: Jahagirdar et al. (1990[Jahagirdar, J. A., Patil, B. G. & Havinale, B. R. (1990). Inorg. Phys. Theor. Anal. A, 29, 924-926.]); Cavier & Rips (1965[Cavier, R. & Rips, R. (1965). J. Med. Chem. 8, 706-708.]); Silva et al. (2005[Silva, A. G., Zapata-Suto, G., Kummerle, A. E., Fraga, C. A. M., Barreiro, E. J. & Sudo, R. T. (2005). Bioorg. Med. Chem. 13, 3431-3437.]); Eissa & Soliman (2009[Eissa, A. A. M. N. A. H. & Soliman, G. A. H. (2009). Bioorg. Med. Chem. 17, 5059-5070.]). For a related structure, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o1443.]). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16N4O2·H2O

  • Mr = 398.41

  • Monoclinic, P 21 /c

  • a = 7.1383 (1) Å

  • b = 9.3928 (1) Å

  • c = 28.4200 (4) Å

  • β = 96.864 (1)°

  • V = 1891.86 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.31 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.983

  • 21248 measured reflections

  • 5516 independent reflections

  • 3857 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.129

  • S = 1.03

  • 5516 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C18–C23 and N3/N4/C15–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N4i 0.86 2.13 2.9625 (18) 163
O1W—H2W1⋯O2ii 0.89 2.12 2.9465 (16) 154
N3—H1N3⋯O2iii 0.95 (2) 2.52 (3) 3.2162 (18) 130.4 (19)
N3—H1N3⋯N2iii 0.95 (2) 2.10 (3) 2.9927 (19) 155 (2)
N1—H1N1⋯O1W 0.94 (3) 2.06 (3) 2.9388 (18) 155 (2)
C14—H14A⋯O1W 0.95 2.54 3.2877 (18) 136
C16—H16A⋯N4iv 0.95 2.50 3.430 (2) 167
C21—H21A⋯O2v 0.95 2.53 3.318 (2) 140
C7—H7ACg2vi 0.95 2.80 3.6022 (18) 142
C22—H22ACg1ii 0.95 2.93 3.5274 (16) 122
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y-1, z; (vi) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acidhydrazones and their condensation products possessing an azometine –NHN CH– proton constitute an important class of compounds for new drug development. In the past several years, numerous compounds with diverse structural features have been reported. Therefore, many researchers have synthesized these compounds as target structures and evaluated their biological activities. Hydrazides, hydrazones and their adducts have displayed diverse range of biological properties such as anti-viral (Jahagirdar et al., 1990), anti-tuberculosis (Cavier et al., 1965) and anti-inflammatory activities (Silva et al., 2005; Eissa et al., 2009). We have synthesized the title compound to study its crystal structure and evaluate its biological activities.

The title compound (Fig. 1) consists of one molecule of N'-[(E)-(3-phenyl-1H-pyrazol-4-yl)methylidene]naphtho [2,1-b]furan-2-carbohydrazide and a water molecule. The pyrazole ring (N3/N4/C15–C17) is approximately planar with a maximum deviation of 0.023 (1) Å at atom C17. This ring makes dihedral angles of 28.63 (6)° with the naphtho[2,1-b]furan ring system (O1/C1–C12; maximum deviation of 0.016 (1) Å at atom C10) and 46.44 (7)° with the benzene ring (C18–C23; maximum deviation of 0.012 (1) Å at atom C18). Bond lengths and angles are comparable to a related structure (Choi et al., 2009).

In the crystal, (Fig. 2), O1W—H1W1···N4, O1W—H2W1···O2, N3—H1N3···O2, N3—H1N3···N2, N1—H1N1···O1W C14—H14A···O1W, C16—H16A···N4 and C21—H21A···O2 hydrogen bonds (Table 1) link the molecules to form sheets parallel to the ab plane. The crystal structure is further stabilized by C—H···π interactions (Table 1) involving the centroids of pyrazole (Cg1) and benzene (Cg2) rings.

Related literature top

For the biological activity of hydrazides, hydrazones and their adducts, see: Jahagirdar et al. (1990); Cavier & Rips (1965); Silva et al. (2005); Eissa & Soliman (2009). For a related structure, see: Choi et al. (2009). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of naphtho[2,1-b]furan-2-carbohydrazide (0.226 g, 0.001 mol) and 3-phenyl-1H-pyrazole-4-carbaldehyde (0.189 g, 0.0011 mol) was refluxed in ethanol for 4 h in the presence of a catalytic amount of acetic acid. The mixture was then cooled to room temperature and the resulting solid was filtered and dried to get the title compound. Yield: 0.28 g, 73.68%. M.p.: 524–526 K.

Refinement top

The O– and N-bound hydrogen atoms were located from the difference Fourier map. N-bound hydrogen atoms were refined freely and O-bound hydrogen atoms were fixed at their found positions with a riding model with Uiso(H) = 1.2 Ueq(O) [N–H= 0.94 (2) and 0.96 (2) Å; O–H = 0.8628 and 0.8895 Å]. The remaining hydrogen atoms were positioned geometrically and were refined with a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.95 Å].

Structure description top

Acidhydrazones and their condensation products possessing an azometine –NHN CH– proton constitute an important class of compounds for new drug development. In the past several years, numerous compounds with diverse structural features have been reported. Therefore, many researchers have synthesized these compounds as target structures and evaluated their biological activities. Hydrazides, hydrazones and their adducts have displayed diverse range of biological properties such as anti-viral (Jahagirdar et al., 1990), anti-tuberculosis (Cavier et al., 1965) and anti-inflammatory activities (Silva et al., 2005; Eissa et al., 2009). We have synthesized the title compound to study its crystal structure and evaluate its biological activities.

The title compound (Fig. 1) consists of one molecule of N'-[(E)-(3-phenyl-1H-pyrazol-4-yl)methylidene]naphtho [2,1-b]furan-2-carbohydrazide and a water molecule. The pyrazole ring (N3/N4/C15–C17) is approximately planar with a maximum deviation of 0.023 (1) Å at atom C17. This ring makes dihedral angles of 28.63 (6)° with the naphtho[2,1-b]furan ring system (O1/C1–C12; maximum deviation of 0.016 (1) Å at atom C10) and 46.44 (7)° with the benzene ring (C18–C23; maximum deviation of 0.012 (1) Å at atom C18). Bond lengths and angles are comparable to a related structure (Choi et al., 2009).

In the crystal, (Fig. 2), O1W—H1W1···N4, O1W—H2W1···O2, N3—H1N3···O2, N3—H1N3···N2, N1—H1N1···O1W C14—H14A···O1W, C16—H16A···N4 and C21—H21A···O2 hydrogen bonds (Table 1) link the molecules to form sheets parallel to the ab plane. The crystal structure is further stabilized by C—H···π interactions (Table 1) involving the centroids of pyrazole (Cg1) and benzene (Cg2) rings.

For the biological activity of hydrazides, hydrazones and their adducts, see: Jahagirdar et al. (1990); Cavier & Rips (1965); Silva et al. (2005); Eissa & Soliman (2009). For a related structure, see: Choi et al. (2009). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the sheets parallel to the ab plane. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N'-[(E)-(3-Phenyl-1H-pyrazol-4- yl)methylidene]naphtho[2,1-b]furan-2-carbohydrazide monohydrate top
Crystal data top
C23H16N4O2·H2OF(000) = 832
Mr = 398.41Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3650 reflections
a = 7.1383 (1) Åθ = 2.3–29.5°
b = 9.3928 (1) ŵ = 0.10 mm1
c = 28.4200 (4) ÅT = 100 K
β = 96.864 (1)°Block, colourless
V = 1891.86 (4) Å30.31 × 0.25 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5516 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 30.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 910
Tmin = 0.971, Tmax = 0.983k = 1313
21248 measured reflectionsl = 3940
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.4389P]
where P = (Fo2 + 2Fc2)/3
5516 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H16N4O2·H2OV = 1891.86 (4) Å3
Mr = 398.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1383 (1) ŵ = 0.10 mm1
b = 9.3928 (1) ÅT = 100 K
c = 28.4200 (4) Å0.31 × 0.25 × 0.18 mm
β = 96.864 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5516 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3857 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.983Rint = 0.058
21248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
5516 reflectionsΔρmin = 0.27 e Å3
279 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43329 (14)1.04167 (12)0.06904 (4)0.0190 (2)
O20.91817 (15)1.01592 (13)0.11647 (4)0.0251 (3)
N10.65264 (19)0.90451 (14)0.13601 (4)0.0177 (3)
N20.75457 (18)0.82808 (14)0.17263 (4)0.0177 (3)
N30.93853 (18)0.49668 (15)0.27204 (5)0.0196 (3)
N40.78932 (17)0.40748 (14)0.26062 (5)0.0196 (3)
C10.3524 (2)1.12767 (17)0.03335 (5)0.0183 (3)
C20.1589 (2)1.13360 (19)0.01844 (6)0.0232 (3)
H2A0.07111.07690.03270.028*
C30.1027 (2)1.22541 (19)0.01779 (6)0.0245 (4)
H3A0.02751.23080.02940.029*
C40.2337 (2)1.31378 (18)0.03878 (6)0.0212 (3)
C50.1705 (2)1.41189 (19)0.07502 (6)0.0242 (4)
H5A0.03981.41780.08610.029*
C60.2963 (2)1.49881 (18)0.09438 (6)0.0248 (4)
H6A0.25141.56610.11800.030*
C70.4909 (2)1.48864 (18)0.07936 (6)0.0238 (3)
H7A0.57721.54740.09340.029*
C80.5563 (2)1.39364 (17)0.04433 (6)0.0210 (3)
H8A0.68781.38740.03430.025*
C90.4303 (2)1.30561 (17)0.02320 (5)0.0185 (3)
C100.4875 (2)1.20827 (16)0.01465 (5)0.0170 (3)
C110.6639 (2)1.17157 (17)0.04153 (5)0.0188 (3)
H11A0.78461.20950.03770.023*
C120.6241 (2)1.07205 (17)0.07342 (5)0.0175 (3)
C130.7456 (2)0.99555 (17)0.11028 (5)0.0184 (3)
C140.6704 (2)0.71368 (16)0.18341 (5)0.0167 (3)
H14A0.54970.69310.16690.020*
C150.7500 (2)0.61507 (16)0.21930 (5)0.0166 (3)
C160.9210 (2)0.61994 (17)0.24849 (5)0.0185 (3)
H16A1.00870.69650.25120.022*
C170.6738 (2)0.47933 (16)0.22852 (5)0.0168 (3)
C180.4979 (2)0.41425 (16)0.20556 (5)0.0169 (3)
C190.4996 (2)0.27495 (17)0.18791 (5)0.0197 (3)
H19A0.61220.22030.19270.024*
C200.3376 (2)0.21643 (18)0.16353 (6)0.0229 (3)
H20A0.33960.12190.15170.027*
C210.1728 (2)0.29580 (19)0.15644 (6)0.0236 (4)
H21A0.06290.25640.13910.028*
C220.1685 (2)0.43245 (18)0.17454 (5)0.0209 (3)
H22A0.05500.48620.17000.025*
C230.3301 (2)0.49127 (17)0.19929 (5)0.0187 (3)
H23A0.32590.58460.21200.022*
O1W0.25339 (16)0.83476 (13)0.13979 (4)0.0270 (3)
H1W10.25180.83800.17010.041*
H2W10.14600.86940.12510.041*
H1N31.036 (3)0.467 (3)0.2959 (9)0.064 (8)*
H1N10.523 (4)0.888 (3)0.1276 (9)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0172 (5)0.0208 (6)0.0183 (5)0.0003 (4)0.0002 (4)0.0029 (4)
O20.0196 (6)0.0262 (6)0.0277 (6)0.0049 (5)0.0040 (4)0.0068 (5)
N10.0180 (6)0.0176 (6)0.0168 (6)0.0007 (5)0.0016 (5)0.0038 (5)
N20.0193 (6)0.0173 (6)0.0158 (6)0.0009 (5)0.0011 (5)0.0011 (5)
N30.0163 (6)0.0231 (7)0.0185 (6)0.0006 (5)0.0014 (5)0.0028 (6)
N40.0175 (6)0.0204 (7)0.0203 (7)0.0000 (5)0.0005 (5)0.0027 (5)
C10.0208 (7)0.0189 (7)0.0150 (7)0.0015 (6)0.0013 (6)0.0009 (6)
C20.0181 (8)0.0287 (9)0.0229 (8)0.0027 (7)0.0024 (6)0.0043 (7)
C30.0189 (8)0.0305 (9)0.0238 (8)0.0017 (7)0.0017 (6)0.0034 (7)
C40.0222 (8)0.0233 (8)0.0178 (7)0.0020 (7)0.0017 (6)0.0003 (6)
C50.0240 (8)0.0289 (9)0.0191 (8)0.0053 (7)0.0004 (6)0.0024 (7)
C60.0334 (9)0.0234 (8)0.0176 (8)0.0068 (7)0.0025 (6)0.0032 (7)
C70.0299 (9)0.0229 (8)0.0192 (8)0.0009 (7)0.0055 (6)0.0010 (7)
C80.0238 (8)0.0203 (8)0.0193 (8)0.0000 (6)0.0047 (6)0.0010 (6)
C90.0207 (8)0.0195 (8)0.0151 (7)0.0011 (6)0.0024 (6)0.0006 (6)
C100.0175 (7)0.0181 (7)0.0152 (7)0.0011 (6)0.0013 (5)0.0003 (6)
C110.0173 (7)0.0194 (8)0.0195 (7)0.0003 (6)0.0011 (6)0.0002 (6)
C120.0161 (7)0.0181 (7)0.0179 (7)0.0015 (6)0.0002 (5)0.0006 (6)
C130.0195 (7)0.0176 (7)0.0176 (7)0.0015 (6)0.0004 (6)0.0001 (6)
C140.0166 (7)0.0170 (7)0.0164 (7)0.0011 (6)0.0009 (5)0.0014 (6)
C150.0177 (7)0.0169 (7)0.0153 (7)0.0015 (6)0.0022 (5)0.0008 (6)
C160.0180 (7)0.0202 (8)0.0173 (7)0.0004 (6)0.0028 (6)0.0008 (6)
C170.0182 (7)0.0173 (7)0.0150 (7)0.0024 (6)0.0029 (5)0.0001 (6)
C180.0193 (7)0.0173 (7)0.0141 (7)0.0024 (6)0.0020 (5)0.0027 (6)
C190.0223 (8)0.0179 (8)0.0194 (8)0.0008 (6)0.0039 (6)0.0021 (6)
C200.0292 (9)0.0193 (8)0.0213 (8)0.0066 (7)0.0075 (6)0.0027 (6)
C210.0230 (8)0.0291 (9)0.0190 (8)0.0091 (7)0.0035 (6)0.0016 (7)
C220.0162 (7)0.0268 (9)0.0195 (8)0.0004 (6)0.0015 (6)0.0003 (7)
C230.0191 (7)0.0185 (8)0.0186 (7)0.0004 (6)0.0021 (6)0.0007 (6)
O1W0.0273 (6)0.0292 (7)0.0257 (6)0.0054 (5)0.0076 (5)0.0018 (5)
Geometric parameters (Å, º) top
O1—C11.3692 (18)C8—H8A0.9500
O1—C121.3826 (17)C9—C101.433 (2)
O2—C131.2383 (18)C10—C111.435 (2)
N1—C131.3499 (19)C11—C121.356 (2)
N1—N21.3954 (17)C11—H11A0.9500
N1—H1N10.94 (2)C12—C131.466 (2)
N2—C141.2860 (19)C14—C151.443 (2)
N3—C161.336 (2)C14—H14A0.9500
N3—N41.3636 (18)C15—C161.392 (2)
N3—H1N30.96 (2)C15—C171.423 (2)
N4—C171.3372 (19)C16—H16A0.9500
C1—C101.381 (2)C17—C181.476 (2)
C1—C21.397 (2)C18—C231.393 (2)
C2—C31.366 (2)C18—C191.402 (2)
C2—H2A0.9500C19—C201.389 (2)
C3—C41.433 (2)C19—H19A0.9500
C3—H3A0.9500C20—C211.387 (2)
C4—C51.415 (2)C20—H20A0.9500
C4—C91.422 (2)C21—C221.384 (2)
C5—C61.376 (2)C21—H21A0.9500
C5—H5A0.9500C22—C231.392 (2)
C6—C71.407 (2)C22—H22A0.9500
C6—H6A0.9500C23—H23A0.9500
C7—C81.376 (2)O1W—H1W10.8628
C7—H7A0.9500O1W—H2W10.8895
C8—C91.408 (2)
C1—O1—C12105.57 (12)C12—C11—H11A126.8
C13—N1—N2118.93 (13)C10—C11—H11A126.8
C13—N1—H1N1119.8 (15)C11—C12—O1111.43 (13)
N2—N1—H1N1121.1 (15)C11—C12—C13131.48 (14)
C14—N2—N1113.00 (12)O1—C12—C13117.09 (13)
C16—N3—N4112.94 (13)O2—C13—N1124.46 (14)
C16—N3—H1N3128.8 (15)O2—C13—C12121.30 (14)
N4—N3—H1N3118.2 (15)N1—C13—C12114.24 (13)
C17—N4—N3104.65 (13)N2—C14—C15123.27 (14)
O1—C1—C10110.89 (13)N2—C14—H14A118.4
O1—C1—C2124.22 (14)C15—C14—H14A118.4
C10—C1—C2124.89 (14)C16—C15—C17104.31 (13)
C3—C2—C1116.37 (15)C16—C15—C14130.05 (14)
C3—C2—H2A121.8C17—C15—C14125.31 (14)
C1—C2—H2A121.8N3—C16—C15107.04 (14)
C2—C3—C4122.18 (15)N3—C16—H16A126.5
C2—C3—H3A118.9C15—C16—H16A126.5
C4—C3—H3A118.9N4—C17—C15111.07 (13)
C5—C4—C9118.60 (15)N4—C17—C18121.01 (14)
C5—C4—C3120.88 (15)C15—C17—C18127.84 (13)
C9—C4—C3120.51 (14)C23—C18—C19118.89 (14)
C6—C5—C4120.73 (15)C23—C18—C17120.96 (14)
C6—C5—H5A119.6C19—C18—C17120.10 (14)
C4—C5—H5A119.6C20—C19—C18120.38 (15)
C5—C6—C7120.41 (15)C20—C19—H19A119.8
C5—C6—H6A119.8C18—C19—H19A119.8
C7—C6—H6A119.8C21—C20—C19120.06 (15)
C8—C7—C6120.04 (15)C21—C20—H20A120.0
C8—C7—H7A120.0C19—C20—H20A120.0
C6—C7—H7A120.0C22—C21—C20120.04 (15)
C7—C8—C9120.71 (15)C22—C21—H21A120.0
C7—C8—H8A119.6C20—C21—H21A120.0
C9—C8—H8A119.6C21—C22—C23120.13 (15)
C8—C9—C4119.48 (14)C21—C22—H22A119.9
C8—C9—C10123.75 (14)C23—C22—H22A119.9
C4—C9—C10116.75 (14)C22—C23—C18120.45 (15)
C1—C10—C9119.27 (14)C22—C23—H23A119.8
C1—C10—C11105.79 (13)C18—C23—H23A119.8
C9—C10—C11134.91 (14)H1W1—O1W—H2W1110.0
C12—C11—C10106.30 (13)
C13—N1—N2—C14157.33 (14)C1—O1—C12—C110.81 (17)
C16—N3—N4—C170.15 (17)C1—O1—C12—C13178.90 (13)
C12—O1—C1—C101.37 (17)N2—N1—C13—O20.8 (2)
C12—O1—C1—C2177.96 (15)N2—N1—C13—C12178.86 (13)
O1—C1—C2—C3179.88 (15)C11—C12—C13—O20.6 (3)
C10—C1—C2—C30.9 (3)O1—C12—C13—O2179.70 (14)
C1—C2—C3—C41.5 (3)C11—C12—C13—N1178.97 (16)
C2—C3—C4—C5177.51 (16)O1—C12—C13—N10.7 (2)
C2—C3—C4—C91.8 (3)N1—N2—C14—C15178.31 (13)
C9—C4—C5—C60.8 (2)N2—C14—C15—C160.5 (3)
C3—C4—C5—C6178.56 (16)N2—C14—C15—C17171.90 (14)
C4—C5—C6—C71.8 (3)N4—N3—C16—C150.06 (17)
C5—C6—C7—C81.5 (3)C17—C15—C16—N30.06 (16)
C6—C7—C8—C90.1 (2)C14—C15—C16—N3173.53 (15)
C7—C8—C9—C40.9 (2)N3—N4—C17—C150.18 (16)
C7—C8—C9—C10177.53 (15)N3—N4—C17—C18177.03 (13)
C5—C4—C9—C80.6 (2)C16—C15—C17—N40.15 (17)
C3—C4—C9—C8179.93 (15)C14—C15—C17—N4173.83 (14)
C5—C4—C9—C10177.97 (14)C16—C15—C17—C18176.73 (14)
C3—C4—C9—C101.4 (2)C14—C15—C17—C182.8 (2)
O1—C1—C10—C9179.87 (13)N4—C17—C18—C23136.78 (15)
C2—C1—C10—C90.5 (2)C15—C17—C18—C2346.9 (2)
O1—C1—C10—C111.39 (17)N4—C17—C18—C1945.9 (2)
C2—C1—C10—C11177.93 (15)C15—C17—C18—C19130.41 (16)
C8—C9—C10—C1179.24 (15)C23—C18—C19—C201.6 (2)
C4—C9—C10—C10.8 (2)C17—C18—C19—C20175.76 (14)
C8—C9—C10—C111.3 (3)C18—C19—C20—C210.1 (2)
C4—C9—C10—C11177.16 (16)C19—C20—C21—C221.4 (2)
C1—C10—C11—C120.84 (17)C20—C21—C22—C230.9 (2)
C9—C10—C11—C12178.97 (17)C21—C22—C23—C180.8 (2)
C10—C11—C12—O10.02 (18)C19—C18—C23—C222.1 (2)
C10—C11—C12—C13179.69 (16)C17—C18—C23—C22175.28 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and N3/N4/C17/C15/C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N4i0.862.132.9625 (18)163
O1W—H2W1···O2ii0.892.122.9465 (16)154
N3—H1N3···O2iii0.95 (2)2.52 (3)3.2162 (18)130.4 (19)
N3—H1N3···N2iii0.95 (2)2.10 (3)2.9927 (19)155 (2)
N1—H1N1···O1W0.94 (3)2.06 (3)2.9388 (18)155 (2)
C14—H14A···O1W0.952.543.2877 (18)136
C16—H16A···N4iv0.952.503.430 (2)167
C21—H21A···O2v0.952.533.318 (2)140
C7—H7A···Cg2vi0.952.803.6022 (18)142
C22—H22A···Cg1ii0.952.933.5274 (16)122
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x1, y1, z; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC23H16N4O2·H2O
Mr398.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1383 (1), 9.3928 (1), 28.4200 (4)
β (°) 96.864 (1)
V3)1891.86 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
21248, 5516, 3857
Rint0.058
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.129, 1.03
No. of reflections5516
No. of parameters279
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and N3/N4/C17/C15/C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N4i0.862.132.9625 (18)163
O1W—H2W1···O2ii0.892.122.9465 (16)154
N3—H1N3···O2iii0.95 (2)2.52 (3)3.2162 (18)130.4 (19)
N3—H1N3···N2iii0.95 (2)2.10 (3)2.9927 (19)155 (2)
N1—H1N1···O1W0.94 (3)2.06 (3)2.9388 (18)155 (2)
C14—H14A···O1W0.952.543.2877 (18)136
C16—H16A···N4iv0.952.503.430 (2)167
C21—H21A···O2v0.952.533.318 (2)140
C7—H7A···Cg2vi0.952.803.6022 (18)142
C22—H22A···Cg1ii0.952.933.5274 (16)122
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x1, y1, z; (vi) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavier, R. & Rips, R. (1965). J. Med. Chem. 8, 706–708.  CrossRef CAS Web of Science Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o1443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEissa, A. A. M. N. A. H. & Soliman, G. A. H. (2009). Bioorg. Med. Chem. 17, 5059–5070.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJahagirdar, J. A., Patil, B. G. & Havinale, B. R. (1990). Inorg. Phys. Theor. Anal. A, 29, 924–926.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. G., Zapata-Suto, G., Kummerle, A. E., Fraga, C. A. M., Barreiro, E. J. & Sudo, R. T. (2005). Bioorg. Med. Chem. 13, 3431–3437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds