organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4,4′′-di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 November 2011; accepted 16 November 2011; online 23 November 2011)

In the title compound, C21H16F2O3, the pendant fluoro­benzene rings form dihedral angles of 22.22 (12) and 50.74 (11)° with the central benzene ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains along the a axis. The crystal structure also features C—H⋯π inter­actions.

Related literature

For a related structure and background to terphenyls, see: Fun et al. (2011[Fun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.]). For further related structures, see: Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o3159-o3160.],b[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3181-o3182.]). For further synthetic details, see: Kotnis (1990[Kotnis, A. S. (1990). Tetrahedron Lett. 31, 481-484.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16F2O3

  • Mr = 354.34

  • Orthorhombic, P 21 21 21

  • a = 8.1270 (1) Å

  • b = 9.4681 (1) Å

  • c = 22.3297 (3) Å

  • V = 1718.21 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 11903 measured reflections

  • 2851 independent reflections

  • 2411 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.102

  • S = 1.13

  • 2851 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13—C18 and C7–C12 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.95 2.57 3.310 (3) 135
C1—H1ACg1ii 0.95 2.76 3.367 (3) 123
C19—H19ACg2iii 0.98 2.62 3.466 (2) 144
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of terphenyls (Fun et al., 2011), the title compound was prepared and its crystal structure is reported. The precursor of the title compound was prepared from 4,4'-difluoro chalcone by several steps.

The molecular structure of the title compound is shown in Fig. 1. The least-squares planes of the two fluorophenyl rings (C1–C6 & C13–C18) make dihedral angles of 22.22 (12) and 50.74 (11)°, respectively, with the least-squares plane of the central benzene ring(C7–C12) in the terphenyl moiety. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Betz et al., 2011a,b).

In the crystal structure, (Fig. 2), the molecules are interconnected by C1—H1A···O2 hydrogen bonds (Table 1) into infinite chains along a axis. The crystal structure is further stabilized by C—H···π interactions, involving the centroids of C7–C12 and C13—C18 benzene rings.

Related literature top

For a related structure and background to terphenyls, see: Fun et al. (2011). For further related structures, see: Betz et al. (2011a,b). For further synthetic details, see: Kotnis (1990). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For reference bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the aromatization of a cyclohexenone derivative, methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate, using iodine and methanol at reflux condition (Kotnis, 1990). Colourless blocks of (I) were grown from methanol by slow evaporation method (m.p.: 401 K).

Refinement top

All H atoms were positioned geometrically [C—H = 0.95 or 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

As part of our ongoing studies of terphenyls (Fun et al., 2011), the title compound was prepared and its crystal structure is reported. The precursor of the title compound was prepared from 4,4'-difluoro chalcone by several steps.

The molecular structure of the title compound is shown in Fig. 1. The least-squares planes of the two fluorophenyl rings (C1–C6 & C13–C18) make dihedral angles of 22.22 (12) and 50.74 (11)°, respectively, with the least-squares plane of the central benzene ring(C7–C12) in the terphenyl moiety. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Betz et al., 2011a,b).

In the crystal structure, (Fig. 2), the molecules are interconnected by C1—H1A···O2 hydrogen bonds (Table 1) into infinite chains along a axis. The crystal structure is further stabilized by C—H···π interactions, involving the centroids of C7–C12 and C13—C18 benzene rings.

For a related structure and background to terphenyls, see: Fun et al. (2011). For further related structures, see: Betz et al. (2011a,b). For further synthetic details, see: Kotnis (1990). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
Methyl 4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-carboxylate top
Crystal data top
C21H16F2O3F(000) = 736
Mr = 354.34Dx = 1.370 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3629 reflections
a = 8.1270 (1) Åθ = 2.8–30.6°
b = 9.4681 (1) ŵ = 0.11 mm1
c = 22.3297 (3) ÅT = 100 K
V = 1718.21 (4) Å3Block, colourless
Z = 40.26 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2851 independent reflections
Radiation source: fine-focus sealed tube2411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 119
Tmin = 0.973, Tmax = 0.982k = 1310
11903 measured reflectionsl = 3130
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.548P]
where P = (Fo2 + 2Fc2)/3
2851 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H16F2O3V = 1718.21 (4) Å3
Mr = 354.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1270 (1) ŵ = 0.11 mm1
b = 9.4681 (1) ÅT = 100 K
c = 22.3297 (3) Å0.26 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2851 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2411 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.043
11903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.13Δρmax = 0.51 e Å3
2851 reflectionsΔρmin = 0.28 e Å3
235 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.7209 (2)0.59514 (17)0.82984 (6)0.0346 (4)
F20.5985 (2)1.05766 (16)0.32763 (7)0.0340 (4)
O10.2900 (2)0.27202 (16)0.49542 (7)0.0214 (4)
O20.1948 (2)0.54018 (18)0.39484 (7)0.0252 (4)
O30.3970 (2)0.38062 (19)0.38201 (7)0.0264 (4)
C10.6798 (3)0.6457 (2)0.66999 (10)0.0182 (5)
H1A0.72600.70220.63910.022*
C20.7354 (3)0.6627 (3)0.72845 (10)0.0218 (5)
H2A0.81800.73010.73790.026*
C30.6670 (3)0.5787 (3)0.77222 (10)0.0223 (5)
C40.5468 (4)0.4812 (3)0.76107 (10)0.0260 (6)
H4A0.50180.42550.79240.031*
C50.4921 (3)0.4661 (3)0.70215 (10)0.0234 (5)
H5A0.40870.39900.69340.028*
C60.5580 (3)0.5481 (2)0.65562 (9)0.0163 (4)
C70.4997 (3)0.5310 (2)0.59270 (9)0.0155 (4)
C80.4251 (3)0.4044 (2)0.57459 (9)0.0173 (5)
H8A0.41360.32870.60220.021*
C90.3682 (3)0.3896 (2)0.51633 (10)0.0160 (4)
C100.3870 (3)0.4985 (2)0.47469 (9)0.0160 (4)
C110.4653 (3)0.6234 (2)0.49160 (9)0.0153 (4)
C120.5185 (3)0.6392 (2)0.55078 (10)0.0162 (4)
H12A0.56860.72540.56270.019*
C130.4995 (3)0.7377 (2)0.44754 (10)0.0162 (4)
C140.5776 (3)0.7085 (2)0.39312 (10)0.0202 (5)
H14A0.60680.61400.38360.024*
C150.6131 (3)0.8163 (3)0.35290 (11)0.0236 (5)
H15A0.66650.79660.31600.028*
C160.5690 (3)0.9521 (3)0.36781 (11)0.0234 (5)
C170.4933 (3)0.9866 (2)0.42104 (11)0.0223 (5)
H17A0.46431.08150.43000.027*
C180.4605 (3)0.8777 (2)0.46129 (10)0.0202 (5)
H18A0.41090.89900.49870.024*
C190.2657 (3)0.1589 (2)0.53712 (10)0.0207 (5)
H19A0.21530.07840.51650.031*
H19B0.19320.19060.56950.031*
H19C0.37210.13030.55390.031*
C200.3146 (3)0.4776 (2)0.41326 (10)0.0181 (5)
C210.3284 (4)0.3466 (4)0.32363 (12)0.0410 (8)
H21A0.23470.28250.32860.062*
H21B0.41270.30090.29900.062*
H21C0.29150.43360.30400.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0421 (10)0.0490 (10)0.0127 (7)0.0089 (8)0.0074 (7)0.0038 (7)
F20.0373 (10)0.0306 (8)0.0341 (8)0.0019 (8)0.0038 (8)0.0178 (7)
O10.0310 (10)0.0176 (7)0.0157 (7)0.0079 (7)0.0028 (7)0.0001 (6)
O20.0299 (10)0.0233 (8)0.0224 (8)0.0058 (8)0.0088 (8)0.0020 (7)
O30.0301 (10)0.0354 (10)0.0137 (8)0.0092 (8)0.0040 (7)0.0068 (7)
C10.0211 (12)0.0182 (10)0.0152 (10)0.0020 (10)0.0016 (9)0.0008 (8)
C20.0232 (13)0.0239 (11)0.0184 (11)0.0035 (10)0.0031 (10)0.0035 (9)
C30.0268 (13)0.0292 (12)0.0109 (10)0.0017 (11)0.0042 (10)0.0036 (9)
C40.0308 (15)0.0330 (13)0.0141 (10)0.0048 (12)0.0007 (10)0.0033 (10)
C50.0255 (13)0.0292 (12)0.0154 (10)0.0076 (11)0.0023 (10)0.0014 (10)
C60.0182 (11)0.0182 (10)0.0125 (9)0.0006 (9)0.0000 (9)0.0017 (8)
C70.0140 (10)0.0183 (10)0.0141 (10)0.0009 (9)0.0003 (9)0.0016 (8)
C80.0198 (12)0.0184 (10)0.0136 (10)0.0010 (9)0.0007 (9)0.0021 (8)
C90.0162 (11)0.0156 (9)0.0161 (10)0.0006 (8)0.0016 (9)0.0012 (8)
C100.0167 (11)0.0176 (10)0.0136 (9)0.0021 (8)0.0004 (9)0.0013 (8)
C110.0158 (11)0.0147 (9)0.0154 (10)0.0022 (8)0.0012 (9)0.0000 (8)
C120.0172 (11)0.0168 (10)0.0146 (10)0.0001 (9)0.0005 (9)0.0017 (8)
C130.0158 (11)0.0176 (10)0.0151 (10)0.0007 (9)0.0025 (9)0.0013 (8)
C140.0203 (12)0.0210 (11)0.0192 (10)0.0012 (10)0.0026 (10)0.0018 (9)
C150.0223 (13)0.0302 (13)0.0183 (11)0.0001 (10)0.0016 (10)0.0048 (10)
C160.0230 (13)0.0229 (11)0.0244 (12)0.0037 (10)0.0019 (10)0.0106 (10)
C170.0253 (13)0.0161 (10)0.0255 (12)0.0011 (10)0.0048 (11)0.0027 (9)
C180.0252 (13)0.0176 (10)0.0179 (11)0.0003 (9)0.0027 (10)0.0001 (9)
C190.0237 (13)0.0189 (10)0.0197 (11)0.0042 (10)0.0022 (10)0.0009 (9)
C200.0222 (12)0.0158 (10)0.0163 (10)0.0024 (9)0.0002 (9)0.0014 (8)
C210.052 (2)0.0546 (18)0.0166 (12)0.0205 (17)0.0117 (13)0.0164 (13)
Geometric parameters (Å, º) top
F1—C31.368 (3)C9—C101.397 (3)
F2—C161.364 (3)C10—C111.395 (3)
O1—C91.364 (3)C10—C201.506 (3)
O1—C191.433 (3)C11—C121.398 (3)
O2—C201.211 (3)C11—C131.489 (3)
O3—C201.334 (3)C12—H12A0.9500
O3—C211.454 (3)C13—C181.397 (3)
C1—C21.391 (3)C13—C141.399 (3)
C1—C61.392 (3)C14—C151.390 (3)
C1—H1A0.9500C14—H14A0.9500
C2—C31.377 (3)C15—C161.376 (3)
C2—H2A0.9500C15—H15A0.9500
C3—C41.367 (4)C16—C171.378 (3)
C4—C51.396 (3)C17—C181.393 (3)
C4—H4A0.9500C17—H17A0.9500
C5—C61.403 (3)C18—H18A0.9500
C5—H5A0.9500C19—H19A0.9800
C6—C71.491 (3)C19—H19B0.9800
C7—C121.396 (3)C19—H19C0.9800
C7—C81.403 (3)C21—H21A0.9800
C8—C91.388 (3)C21—H21B0.9800
C8—H8A0.9500C21—H21C0.9800
C9—O1—C19116.85 (17)C7—C12—H12A119.3
C20—O3—C21115.4 (2)C11—C12—H12A119.3
C2—C1—C6121.6 (2)C18—C13—C14118.8 (2)
C2—C1—H1A119.2C18—C13—C11120.1 (2)
C6—C1—H1A119.2C14—C13—C11121.00 (19)
C3—C2—C1117.9 (2)C15—C14—C13120.7 (2)
C3—C2—H2A121.0C15—C14—H14A119.7
C1—C2—H2A121.0C13—C14—H14A119.7
C4—C3—F1118.5 (2)C16—C15—C14118.4 (2)
C4—C3—C2123.3 (2)C16—C15—H15A120.8
F1—C3—C2118.2 (2)C14—C15—H15A120.8
C3—C4—C5117.9 (2)F2—C16—C15118.7 (2)
C3—C4—H4A121.0F2—C16—C17118.2 (2)
C5—C4—H4A121.0C15—C16—C17123.1 (2)
C4—C5—C6121.3 (2)C16—C17—C18117.8 (2)
C4—C5—H5A119.3C16—C17—H17A121.1
C6—C5—H5A119.3C18—C17—H17A121.1
C1—C6—C5117.9 (2)C17—C18—C13121.1 (2)
C1—C6—C7121.0 (2)C17—C18—H18A119.4
C5—C6—C7121.1 (2)C13—C18—H18A119.4
C12—C7—C8118.75 (19)O1—C19—H19A109.5
C12—C7—C6121.2 (2)O1—C19—H19B109.5
C8—C7—C6120.1 (2)H19A—C19—H19B109.5
C9—C8—C7120.0 (2)O1—C19—H19C109.5
C9—C8—H8A120.0H19A—C19—H19C109.5
C7—C8—H8A120.0H19B—C19—H19C109.5
O1—C9—C8124.0 (2)O2—C20—O3124.2 (2)
O1—C9—C10115.18 (18)O2—C20—C10124.0 (2)
C8—C9—C10120.9 (2)O3—C20—C10111.8 (2)
C9—C10—C11119.69 (19)O3—C21—H21A109.5
C9—C10—C20117.84 (19)O3—C21—H21B109.5
C11—C10—C20122.42 (19)H21A—C21—H21B109.5
C10—C11—C12119.20 (19)O3—C21—H21C109.5
C10—C11—C13121.49 (19)H21A—C21—H21C109.5
C12—C11—C13119.26 (19)H21B—C21—H21C109.5
C7—C12—C11121.4 (2)
C6—C1—C2—C30.5 (4)C9—C10—C11—C13175.2 (2)
C1—C2—C3—C40.7 (4)C20—C10—C11—C137.3 (3)
C1—C2—C3—F1179.9 (2)C8—C7—C12—C110.2 (4)
F1—C3—C4—C5179.6 (2)C6—C7—C12—C11179.5 (2)
C2—C3—C4—C50.4 (4)C10—C11—C12—C72.1 (3)
C3—C4—C5—C60.0 (4)C13—C11—C12—C7175.4 (2)
C2—C1—C6—C50.1 (4)C10—C11—C13—C18132.5 (2)
C2—C1—C6—C7179.9 (2)C12—C11—C13—C1850.0 (3)
C4—C5—C6—C10.2 (4)C10—C11—C13—C1450.5 (3)
C4—C5—C6—C7179.7 (2)C12—C11—C13—C14127.0 (2)
C1—C6—C7—C1222.6 (3)C18—C13—C14—C151.3 (4)
C5—C6—C7—C12157.5 (2)C11—C13—C14—C15178.3 (2)
C1—C6—C7—C8157.1 (2)C13—C14—C15—C160.2 (4)
C5—C6—C7—C822.8 (3)C14—C15—C16—F2177.8 (2)
C12—C7—C8—C91.5 (3)C14—C15—C16—C170.8 (4)
C6—C7—C8—C9178.8 (2)F2—C16—C17—C18178.7 (2)
C19—O1—C9—C80.4 (3)C15—C16—C17—C180.0 (4)
C19—O1—C9—C10178.9 (2)C16—C17—C18—C131.6 (4)
C7—C8—C9—O1178.0 (2)C14—C13—C18—C172.2 (4)
C7—C8—C9—C101.3 (4)C11—C13—C18—C17179.2 (2)
O1—C9—C10—C11179.9 (2)C21—O3—C20—O23.3 (3)
C8—C9—C10—C110.6 (3)C21—O3—C20—C10175.9 (2)
O1—C9—C10—C202.4 (3)C9—C10—C20—O2108.9 (3)
C8—C9—C10—C20177.0 (2)C11—C10—C20—O268.6 (3)
C9—C10—C11—C122.3 (3)C9—C10—C20—O370.2 (3)
C20—C10—C11—C12175.2 (2)C11—C10—C20—O3112.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13—C18 and C7–C12 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.952.573.310 (3)135
C1—H1A···Cg1ii0.952.763.367 (3)123
C19—H19A···Cg2iii0.982.623.466 (2)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+3/2, z+3/2; (iii) x1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H16F2O3
Mr354.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.1270 (1), 9.4681 (1), 22.3297 (3)
V3)1718.21 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11903, 2851, 2411
Rint0.043
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.102, 1.13
No. of reflections2851
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13—C18 and C7–C12 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.952.573.310 (3)135
C1—H1A···Cg1ii0.952.763.367 (3)123
C19—H19A···Cg2iii0.982.623.466 (2)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+3/2, z+3/2; (iii) x1, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PSKBP/8630013). BN thanks the UGC for financial assistance through an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o3159–o3160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3181–o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKotnis, A. S. (1990). Tetrahedron Lett. 31, 481–484.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds