organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-2-oxo­ethyl 4-meth­­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2011; accepted 18 November 2011; online 30 November 2011)

In the title compound, C16H13FO4, the dihedral angle between the benzene rings is 84.28 (8)°. In the crystal, C—H⋯F and C—H⋯O hydrogen bonds link the mol­ecules to form a three-dimensional network. The crystal structure is consolidated by C—H⋯π inter­actions and short F⋯F contacts [2.7748 (14) Å] also occur.

Related literature

For related structures and background to phenacyl benzoates, see: Fun et al. (2011a[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011a). Acta Cryst. E67, o2854.],b[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011b). Acta Cryst. E67, o3030.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FO4

  • Mr = 288.26

  • Monoclinic, P 21 /c

  • a = 9.3523 (2) Å

  • b = 10.1949 (2) Å

  • c = 15.6465 (4) Å

  • β = 118.842 (2)°

  • V = 1306.77 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.29 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.984

  • 18005 measured reflections

  • 4669 independent reflections

  • 3194 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.151

  • S = 1.03

  • 4669 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F1i 0.95 2.55 3.1334 (17) 120
C8—H8B⋯O3ii 0.99 2.43 3.3517 (19) 154
C11—H11A⋯O4iii 0.95 2.53 3.380 (2) 150
C1—H1ACg2iv 0.95 2.59 3.3693 (17) 139
C8—H8ACg1v 0.99 2.83 3.5309 (19) 128
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y+1, -z+2; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011a,b), we now report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the dihedral angle formed between the fluoro-substituted (C1–C6) and the methoxy-substituted (C10–C15) benzene rings is 84.28 (8)°. Bond lengths and angles are within the normal ranges and are comparable to the related structures (Fun et al., 2011a,b).

In the crystal (Fig. 2), C4—H4A···F1, C8—H8B···O3 and C11—H11A···O4 hydrogen bonds (Table 1) link the molecules together to form a three-dimensional network. The crystal structure is further stabilized by C–H···π interactions (Table 1) involving the fluoro-substituted (Cg1) and the methoxy-substituted (Cg2) benzene rings.

Related literature top

For related structures and background to phenacyl benzoates, see: Fun et al. (2011a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-methoxybenzoic acid (1.0 g, 0.0065 mol), potassium carbonate (0.99 g, 0.0072 mol) and 2-bromo-1-(4-fluorophenyl)ethanone (1.41 g, 0.0065 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-fluorophenyl)-2-oxoethyl 4-methoxybenzoate began to separate. It was collected by filtration and recrystallized from ethanol to yield yellow blocks of (I). Yield: 1.72 g, 91.0%. M.p: 387–388 K.

Refinement top

All H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 or 0.99 Å]. A rotating group model was applied to the methyl group.

Structure description top

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011a,b), we now report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the dihedral angle formed between the fluoro-substituted (C1–C6) and the methoxy-substituted (C10–C15) benzene rings is 84.28 (8)°. Bond lengths and angles are within the normal ranges and are comparable to the related structures (Fun et al., 2011a,b).

In the crystal (Fig. 2), C4—H4A···F1, C8—H8B···O3 and C11—H11A···O4 hydrogen bonds (Table 1) link the molecules together to form a three-dimensional network. The crystal structure is further stabilized by C–H···π interactions (Table 1) involving the fluoro-substituted (Cg1) and the methoxy-substituted (Cg2) benzene rings.

For related structures and background to phenacyl benzoates, see: Fun et al. (2011a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-(4-Fluorophenyl)-2-oxoethyl 4-methoxybenzoate top
Crystal data top
C16H13FO4F(000) = 600
Mr = 288.26Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3370 reflections
a = 9.3523 (2) Åθ = 2.5–32.1°
b = 10.1949 (2) ŵ = 0.11 mm1
c = 15.6465 (4) ÅT = 100 K
β = 118.842 (2)°Block, yellow
V = 1306.77 (5) Å30.29 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4669 independent reflections
Radiation source: fine-focus sealed tube3194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 32.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.967, Tmax = 0.984k = 1510
18005 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.1795P]
where P = (Fo2 + 2Fc2)/3
4669 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H13FO4V = 1306.77 (5) Å3
Mr = 288.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3523 (2) ŵ = 0.11 mm1
b = 10.1949 (2) ÅT = 100 K
c = 15.6465 (4) Å0.29 × 0.25 × 0.15 mm
β = 118.842 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4669 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3194 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.984Rint = 0.061
18005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
4669 reflectionsΔρmin = 0.29 e Å3
191 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.36713 (11)0.06839 (8)0.92948 (7)0.0261 (2)
O10.82633 (13)0.73381 (9)0.99094 (8)0.0196 (2)
O20.58433 (13)0.61282 (11)0.84358 (8)0.0266 (3)
O30.94829 (13)0.65098 (10)0.90861 (8)0.0242 (2)
O40.85652 (13)1.24512 (10)0.77160 (8)0.0223 (2)
C10.44544 (17)0.37022 (14)0.84080 (11)0.0197 (3)
H1A0.40370.41880.78180.024*
C20.37612 (18)0.25071 (14)0.84149 (11)0.0207 (3)
H2A0.28820.21590.78370.025*
C30.43844 (18)0.18361 (13)0.92864 (11)0.0192 (3)
C40.56758 (18)0.22904 (14)1.01457 (11)0.0203 (3)
H4A0.60710.18011.07330.024*
C50.63790 (18)0.34841 (14)1.01258 (11)0.0192 (3)
H5A0.72810.38101.07030.023*
C60.57633 (16)0.42079 (13)0.92587 (10)0.0170 (3)
C70.64362 (17)0.55037 (13)0.91908 (10)0.0176 (3)
C80.79205 (17)0.60283 (13)1.00908 (11)0.0187 (3)
H8A0.77090.60261.06530.022*
H8B0.88740.54581.02530.022*
C90.89159 (16)0.74423 (13)0.93063 (10)0.0177 (3)
C100.88512 (16)0.87944 (13)0.89496 (10)0.0162 (3)
C110.96253 (17)0.90621 (14)0.83957 (11)0.0186 (3)
H11A1.02300.83930.82900.022*
C120.95157 (17)1.02951 (14)0.80006 (11)0.0199 (3)
H12A1.00491.04740.76280.024*
C130.86196 (16)1.12769 (13)0.81507 (10)0.0173 (3)
C140.78543 (17)1.10306 (13)0.87092 (10)0.0170 (3)
H14A0.72591.17040.88180.020*
C150.79728 (16)0.97864 (13)0.91055 (10)0.0170 (3)
H15A0.74510.96110.94850.020*
C160.7667 (2)1.34901 (14)0.78505 (12)0.0240 (3)
H16A0.77241.42750.75070.036*
H16B0.81361.36830.85480.036*
H16C0.65251.32240.75890.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0259 (5)0.0168 (4)0.0324 (5)0.0055 (3)0.0114 (4)0.0027 (4)
O10.0248 (5)0.0132 (4)0.0226 (5)0.0019 (4)0.0127 (4)0.0008 (4)
O20.0247 (5)0.0252 (5)0.0243 (6)0.0029 (4)0.0074 (4)0.0073 (4)
O30.0250 (5)0.0178 (5)0.0330 (6)0.0038 (4)0.0166 (5)0.0028 (4)
O40.0279 (6)0.0165 (5)0.0305 (6)0.0026 (4)0.0203 (5)0.0046 (4)
C10.0189 (6)0.0205 (6)0.0190 (6)0.0015 (5)0.0087 (5)0.0032 (5)
C20.0177 (6)0.0206 (7)0.0207 (7)0.0013 (5)0.0068 (5)0.0009 (5)
C30.0193 (6)0.0136 (6)0.0261 (7)0.0010 (5)0.0119 (6)0.0000 (5)
C40.0227 (7)0.0173 (6)0.0196 (7)0.0014 (5)0.0091 (6)0.0029 (5)
C50.0198 (6)0.0170 (6)0.0191 (6)0.0002 (5)0.0080 (5)0.0001 (5)
C60.0164 (6)0.0160 (6)0.0203 (6)0.0001 (5)0.0100 (5)0.0006 (5)
C70.0167 (6)0.0165 (6)0.0204 (6)0.0023 (5)0.0096 (5)0.0016 (5)
C80.0218 (6)0.0134 (5)0.0201 (7)0.0006 (5)0.0093 (5)0.0023 (5)
C90.0150 (6)0.0164 (6)0.0198 (6)0.0012 (5)0.0069 (5)0.0003 (5)
C100.0141 (6)0.0144 (6)0.0181 (6)0.0007 (5)0.0062 (5)0.0003 (5)
C110.0157 (6)0.0173 (6)0.0228 (7)0.0002 (5)0.0094 (5)0.0011 (5)
C120.0184 (6)0.0205 (6)0.0252 (7)0.0010 (5)0.0140 (6)0.0003 (6)
C130.0174 (6)0.0150 (6)0.0190 (6)0.0016 (5)0.0084 (5)0.0009 (5)
C140.0177 (6)0.0150 (6)0.0198 (6)0.0004 (5)0.0103 (5)0.0006 (5)
C150.0175 (6)0.0167 (6)0.0173 (6)0.0017 (5)0.0087 (5)0.0008 (5)
C160.0302 (8)0.0172 (6)0.0301 (8)0.0041 (6)0.0188 (7)0.0034 (6)
Geometric parameters (Å, º) top
F1—C31.3541 (16)C7—C81.520 (2)
O1—C91.3528 (18)C8—H8A0.9900
O1—C81.4333 (16)C8—H8B0.9900
O2—C71.2150 (17)C9—C101.4773 (19)
O3—C91.2165 (17)C10—C151.3966 (19)
O4—C131.3657 (16)C10—C111.3983 (19)
O4—C161.4290 (18)C11—C121.383 (2)
C1—C21.383 (2)C11—H11A0.9500
C1—C61.401 (2)C12—C131.396 (2)
C1—H1A0.9500C12—H12A0.9500
C2—C31.378 (2)C13—C141.3936 (19)
C2—H2A0.9500C14—C151.3926 (19)
C3—C41.384 (2)C14—H14A0.9500
C4—C51.391 (2)C15—H15A0.9500
C4—H4A0.9500C16—H16A0.9800
C5—C61.401 (2)C16—H16B0.9800
C5—H5A0.9500C16—H16C0.9800
C6—C71.4889 (19)
C9—O1—C8115.50 (11)H8A—C8—H8B108.2
C13—O4—C16117.37 (11)O3—C9—O1122.76 (13)
C2—C1—C6120.98 (13)O3—C9—C10124.49 (13)
C2—C1—H1A119.5O1—C9—C10112.75 (12)
C6—C1—H1A119.5C15—C10—C11119.40 (13)
C3—C2—C1117.96 (14)C15—C10—C9122.01 (13)
C3—C2—H2A121.0C11—C10—C9118.50 (12)
C1—C2—H2A121.0C12—C11—C10120.38 (13)
F1—C3—C2117.70 (13)C12—C11—H11A119.8
F1—C3—C4118.95 (13)C10—C11—H11A119.8
C2—C3—C4123.34 (13)C11—C12—C13119.84 (13)
C3—C4—C5118.14 (13)C11—C12—H12A120.1
C3—C4—H4A120.9C13—C12—H12A120.1
C5—C4—H4A120.9O4—C13—C14124.28 (12)
C4—C5—C6120.31 (13)O4—C13—C12115.20 (12)
C4—C5—H5A119.8C14—C13—C12120.52 (13)
C6—C5—H5A119.8C15—C14—C13119.25 (13)
C5—C6—C1119.25 (13)C15—C14—H14A120.4
C5—C6—C7123.09 (13)C13—C14—H14A120.4
C1—C6—C7117.66 (12)C14—C15—C10120.60 (13)
O2—C7—C6121.60 (13)C14—C15—H15A119.7
O2—C7—C8120.06 (13)C10—C15—H15A119.7
C6—C7—C8118.34 (12)O4—C16—H16A109.5
O1—C8—C7109.63 (11)O4—C16—H16B109.5
O1—C8—H8A109.7H16A—C16—H16B109.5
C7—C8—H8A109.7O4—C16—H16C109.5
O1—C8—H8B109.7H16A—C16—H16C109.5
C7—C8—H8B109.7H16B—C16—H16C109.5
C6—C1—C2—C30.7 (2)C8—O1—C9—C10165.35 (11)
C1—C2—C3—F1178.20 (13)O3—C9—C10—C15170.19 (14)
C1—C2—C3—C40.9 (2)O1—C9—C10—C159.49 (19)
F1—C3—C4—C5179.17 (13)O3—C9—C10—C116.4 (2)
C2—C3—C4—C50.1 (2)O1—C9—C10—C11173.95 (12)
C3—C4—C5—C61.2 (2)C15—C10—C11—C120.4 (2)
C4—C5—C6—C11.3 (2)C9—C10—C11—C12176.28 (13)
C4—C5—C6—C7178.76 (13)C10—C11—C12—C130.4 (2)
C2—C1—C6—C50.3 (2)C16—O4—C13—C140.3 (2)
C2—C1—C6—C7179.77 (13)C16—O4—C13—C12179.80 (13)
C5—C6—C7—O2177.62 (14)C11—C12—C13—O4178.93 (13)
C1—C6—C7—O22.5 (2)C11—C12—C13—C141.0 (2)
C5—C6—C7—C83.5 (2)O4—C13—C14—C15179.01 (13)
C1—C6—C7—C8176.36 (12)C12—C13—C14—C150.9 (2)
C9—O1—C8—C773.21 (15)C13—C14—C15—C100.2 (2)
O2—C7—C8—O17.51 (19)C11—C10—C15—C140.4 (2)
C6—C7—C8—O1173.62 (11)C9—C10—C15—C14176.08 (13)
C8—O1—C9—O314.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4A···F1i0.952.553.1334 (17)120
C8—H8B···O3ii0.992.433.3517 (19)154
C11—H11A···O4iii0.952.533.380 (2)150
C1—H1A···Cg2iv0.952.593.3693 (17)139
C8—H8A···Cg1v0.992.833.5309 (19)128
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H13FO4
Mr288.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.3523 (2), 10.1949 (2), 15.6465 (4)
β (°) 118.842 (2)
V3)1306.77 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.967, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
18005, 4669, 3194
Rint0.061
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.151, 1.03
No. of reflections4669
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4A···F1i0.952.553.1334 (17)120
C8—H8B···O3ii0.992.433.3517 (19)154
C11—H11A···O4iii0.952.533.380 (2)150
C1—H1A···Cg2iv0.952.593.3693 (17)139
C8—H8A···Cg1v0.992.833.5309 (19)128
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young scientist award. SMN thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011a). Acta Cryst. E67, o2854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011b). Acta Cryst. E67, o3030.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds