Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, {[Ni(C2H8N2)3][Cd(C4N2S2)2]·H2O}n, contains chains of bis­(1,2-dicyano­ethyl­enedithiol­ato)­cadmate(II) complex anions, tri(ethyl­enediamine)nickel(II) cations and uncoordinated water mol­ecules. The CdII centre is in a very distorted CdS6 octa­hedral environment. Three bidentate ethyl­enediamine ligands are coordinated to the NiII atom, resulting in somewhat distorted NiN6 octa­hedra. The polymeric anionic chains, cations and water mol­ecules are linked by hydrogen bonds into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030291/hb6270sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030291/hb6270Isup2.hkl
Contains datablock I

CCDC reference: 287570

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.051
  • wR factor = 0.083
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 - S3_a .. 23.77 su
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N5 .. 8.88 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N7 .. 8.99 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N8 .. 7.18 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N9 .. 7.29 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N10 .. 7.95 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ni1 PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 13 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C1 - C2 ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C3 - C4 ... 1.46 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C5 - C6 ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C7 - C8 ... 1.44 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H1 .. H1 .. 2.14 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N10 - H10B ... ? PLAT731_ALERT_1_C Bond Calc 0.84(7), Rep 0.84(3) ...... 2.33 su-Rat O1 -H2 1.555 1.555
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 17 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Recently we have reported a number of d-block metal ion complexes with ethylenediamine (en) and 1,2-dicyanoethylenedithiolate (mnt) (Fu et al., 2004, 2004a,b; Wang, Fu & Wei, 2004; Wang, Fu & He, 2004), which display a plethora of interesting structures. We now report the crystal structure of the title compound, (I), which has a distinct crystal structure from those previously determined.

Compound (I) can be formulated as {[Ni (C2H8N2)3][Cd(C4N2S2)2]·H2O}n and consists of chains of bis(µ2-1,2-dicyanoethylenedithiolato-κ3S,S':S')cadmium(II) complex anions, tri(ethylenediamine-κ2N,N')nickel(II) complex cations and uncoordinated water molecules (Fig. 1).

The central NiII atom of the cation is in an octahedral geometry, coordinated by three bidentate en ligands via six N atoms. The three trans angles for the octahedron are 169.1 (3), 168.4 (2) and 170.7 (3)°, and the other angles range from 81.1 (3)° to 96.7 (3)°, indicating a somewhat distorted octahedral geometry. The Ni—N distances (Table 1) are comparable to the values of 2.110 (3)–2.151 (2) Å observed in related complexes (Fu et al., 2004, 2004a,b; Wang, Fu & Wei, 2004; Wang, Fu & He, 2004).

Atom Cd1 of the anionic chain is coordinated by six S atoms, of which S1–S4 are from two chelating mnt ligands and constitute the basal plane of the coordination octahedron [mean Cd—S = 2.589 (2) Å]. The two longer Cd—S bonds [mean Cd—S = 3.032 (3) Å; Table 1], to atoms S3i and S2ii [symmetry codes: (i) 1 − x, −y, 2 − z; (ii) 2 − x, −y, 2 − z], are from additional mnt bridging ligands and occupy the apical positions of the octahedron. The CdS4 basal plane of the octahedron is not completely planar and displays a puckered shape. Dihedral angles of 17.39 (19)° between the planar CdS4 group and the N1/C1–C4/N2 (mnt2−) mean plane, and 26.78 (18)° between the planar CdS4 group and the N3/C5–C8/N4 (mnt2−) mean plane, arise. The S—Cd—S bond angles within the basal plane are 84.01 (7) and 82.34 (7)°

Bridging atoms S3i and S2ii coordinate to two neighboring Cd atoms simultaneously, and these four atoms (as –S3—Cd1—S3i—Cd1i–) construct an essentially planar four-membered ring. In this way each mnt bivalent anion bridges two cadmium(II) ions to form a one-dimensional chain along the a axis, as shown in Fig. 2. The distances between neighbouring Cd atoms in the chain are 4.009 (9) and 4.139 (9) Å.

The water H atoms and the NH groups of the en ligands serve as hydrogen-bond donors (Table 2). The acceptor species include water O and mnt N and S atoms. Some of these bonds connect adjacent inversion-related chains, forming a three-dimensional network (Table 2 and Fig. 3).

Experimental top

H2mnt (1.00 mmol) and NaOH (2.00 mmol) were dissolved in ethanol (20 ml). To this solution, en (1.50 mmol) and an ethanol mixture (30 ml) of CdSO4 (1.00 mmol) and NiSO4 (0.50 mmol) were added dropwise at 313 K. The mixture was stirred for 6 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and left in air for about 20 days. Large green block-like crystals of (I) suitable for X-ray analysis were obtained. Analysis found: C 25.75, H 3.96, N 21.38, S 19.58%; calculated for C14H26CdN10NiOS4: C 25.88, H 4.03, N 21.55, S 19.74%.

Refinement top

The water H atoms were found in difference maps. The O—H distances were restrained to 0.90 (1) Å and the Uiso(H) values were allowed to refine. Please check s.u. values in Table 2; they do not correspond to those in CIF. All other H atoms were placed in idealized positions (C—H = 0.97 Å and N—H = 0.90 Å) and refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker,1997); cell refinement: SAINT (Bruker,1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the asymmetric atoms of (I), showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The chain-like structure for the complex anion of (I).
[Figure 3] Fig. 3. Packing diagram for (I), viewed down a, with hydrogen-bonded interactions indicated by dashed lines.
catena-Poly[bis(ethylenediamine-κ2N,N')copper(II) (2,3-dimercaptobutenedinitrile-κ2S,S')(2,3-dimercaptobutenedinitrile- κ4S,S',N,N')cuprate(II)] top
Crystal data top
[Ni(C2H8N2)3][Cd(C4N2S2)2]·H2OF(000) = 1312
Mr = 649.80Dx = 1.749 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1561 reflections
a = 7.5796 (15) Åθ = 2.4–19.6°
b = 19.255 (4) ŵ = 1.99 mm1
c = 17.201 (4) ÅT = 293 K
β = 100.509 (4)°Block, green
V = 2468.3 (9) Å30.30 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4346 independent reflections
Radiation source: fine-focus sealed tube2220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 98
Tmin = 0.587, Tmax = 0.796k = 2216
12887 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difmap and geom
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0141P)2]
where P = (Fo2 + 2Fc2)/3
4346 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.88 e Å3
4 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ni(C2H8N2)3][Cd(C4N2S2)2]·H2OV = 2468.3 (9) Å3
Mr = 649.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5796 (15) ŵ = 1.99 mm1
b = 19.255 (4) ÅT = 293 K
c = 17.201 (4) Å0.30 × 0.15 × 0.12 mm
β = 100.509 (4)°
Data collection top
Bruker SMART CCD
diffractometer
4346 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2220 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.796Rint = 0.069
12887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.88 e Å3
4346 reflectionsΔρmin = 0.77 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.74918 (10)0.03798 (4)1.00912 (4)0.0590 (3)
Ni10.11839 (14)0.29140 (5)0.96600 (5)0.0294 (3)
N11.1518 (12)0.1300 (5)1.3106 (5)0.093 (3)
N21.1703 (12)0.0685 (5)1.3014 (5)0.088 (3)
N30.3509 (12)0.0100 (5)0.6924 (5)0.089 (3)
N40.4554 (16)0.1840 (5)0.7199 (5)0.122 (4)
N50.2319 (9)0.1972 (3)1.0178 (4)0.050 (2)
H5A0.14440.16871.02770.060*
H5B0.29220.17540.98440.060*
N60.3339 (9)0.3348 (4)1.0519 (4)0.059 (2)
H6A0.39230.36781.02960.071*
H6B0.29080.35371.09250.071*
N70.0792 (9)0.2953 (3)1.0410 (4)0.056 (2)
H7A0.15000.25751.03240.067*
H7B0.02400.29491.09190.067*
N80.0089 (10)0.3936 (3)0.9380 (4)0.059 (2)
H8A0.09700.42350.93230.071*
H8B0.07130.39250.89250.071*
N90.0619 (9)0.2407 (4)0.8724 (4)0.059 (2)
H9A0.09710.19960.88920.070*
H9B0.16000.26720.85690.070*
N100.2792 (9)0.2982 (3)0.8752 (4)0.062 (2)
H10A0.33300.34000.87660.074*
H10B0.36440.26510.88210.074*
O10.4310 (11)0.4543 (5)0.9367 (5)0.106 (3)
S10.9130 (3)0.12532 (12)1.10874 (14)0.0522 (7)
S20.9539 (3)0.05198 (11)1.09359 (12)0.0465 (7)
S30.5457 (3)0.03029 (12)0.90052 (12)0.0478 (7)
S40.5892 (3)0.14580 (12)0.92933 (13)0.0473 (7)
C11.0891 (12)0.1025 (5)1.2544 (6)0.055 (3)
C21.0132 (11)0.0692 (5)1.1819 (5)0.041 (2)
C31.0272 (10)0.0002 (5)1.1759 (4)0.038 (2)
C41.1077 (12)0.0390 (5)1.2463 (5)0.057 (3)
C50.4170 (13)0.0101 (5)0.7528 (6)0.060 (3)
C60.4939 (10)0.0350 (5)0.8301 (4)0.044 (2)
C70.5163 (11)0.1045 (5)0.8403 (5)0.044 (2)
C80.4785 (16)0.1491 (5)0.7722 (6)0.078 (4)
C90.3558 (12)0.2142 (5)1.0927 (5)0.056 (3)
H9C0.28840.22191.13470.067*
H9D0.43880.17621.10800.067*
C100.4539 (13)0.2770 (5)1.0794 (5)0.060 (3)
H10C0.52840.26741.04040.072*
H10D0.53230.29011.12820.072*
C110.1887 (12)0.3577 (4)1.0255 (5)0.057 (3)
H11A0.23550.37041.07240.069*
H11B0.28950.34890.98310.069*
C120.0780 (12)0.4157 (5)1.0028 (6)0.064 (3)
H12A0.15370.45570.98650.077*
H12B0.01210.42911.04780.077*
C130.0323 (14)0.2301 (5)0.8062 (5)0.072 (3)
H13A0.05500.22510.75770.086*
H13B0.10140.18750.81460.086*
C140.1531 (14)0.2882 (5)0.7976 (5)0.076 (3)
H14A0.08410.33020.78340.091*
H14B0.22060.27810.75620.091*
H10.534 (5)0.460 (4)0.962 (4)0.080*
H20.370 (11)0.476 (4)0.899 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0687 (5)0.0490 (5)0.0497 (5)0.0014 (4)0.0145 (4)0.0023 (4)
Ni10.0350 (6)0.0320 (6)0.0224 (6)0.0019 (6)0.0088 (5)0.0017 (5)
N10.092 (8)0.116 (8)0.060 (6)0.010 (6)0.011 (6)0.034 (6)
N20.099 (8)0.111 (8)0.048 (6)0.008 (6)0.003 (6)0.024 (5)
N30.099 (8)0.118 (8)0.048 (6)0.001 (6)0.005 (6)0.025 (6)
N40.232 (13)0.089 (8)0.050 (6)0.047 (8)0.035 (8)0.027 (6)
N50.054 (5)0.055 (5)0.049 (5)0.021 (4)0.027 (4)0.014 (4)
N60.075 (6)0.059 (6)0.044 (5)0.013 (5)0.013 (4)0.005 (4)
N70.070 (6)0.036 (5)0.059 (5)0.003 (5)0.005 (4)0.011 (4)
N80.074 (6)0.063 (6)0.048 (5)0.014 (5)0.031 (5)0.000 (4)
N90.062 (6)0.067 (6)0.050 (5)0.001 (4)0.021 (4)0.011 (4)
N100.070 (6)0.039 (5)0.078 (6)0.001 (5)0.019 (5)0.003 (5)
O10.102 (7)0.097 (7)0.102 (7)0.002 (6)0.031 (5)0.010 (5)
S10.0634 (19)0.0404 (16)0.0494 (16)0.0092 (13)0.0009 (14)0.0005 (12)
S20.0556 (17)0.0438 (16)0.0374 (14)0.0044 (13)0.0009 (12)0.0014 (12)
S30.0546 (17)0.0475 (16)0.0399 (14)0.0072 (14)0.0046 (12)0.0017 (13)
S40.0567 (17)0.0421 (15)0.0428 (15)0.0057 (13)0.0085 (13)0.0007 (12)
C10.054 (7)0.062 (8)0.047 (7)0.008 (6)0.002 (6)0.003 (6)
C20.042 (6)0.047 (6)0.036 (6)0.009 (5)0.008 (5)0.009 (5)
C30.035 (6)0.052 (6)0.029 (5)0.004 (5)0.012 (4)0.001 (5)
C40.054 (7)0.076 (8)0.040 (6)0.002 (6)0.011 (5)0.008 (6)
C50.065 (8)0.067 (8)0.047 (7)0.012 (6)0.006 (6)0.001 (6)
C60.040 (6)0.061 (7)0.031 (5)0.004 (5)0.003 (4)0.005 (5)
C70.051 (6)0.048 (6)0.037 (6)0.013 (5)0.018 (5)0.003 (5)
C80.134 (11)0.065 (8)0.038 (7)0.038 (8)0.019 (7)0.003 (6)
C90.065 (7)0.050 (7)0.052 (6)0.002 (6)0.009 (5)0.001 (6)
C100.080 (8)0.048 (7)0.054 (7)0.015 (6)0.018 (6)0.008 (5)
C110.066 (8)0.048 (7)0.059 (7)0.005 (6)0.017 (6)0.011 (5)
C120.065 (8)0.052 (7)0.080 (8)0.004 (6)0.023 (6)0.003 (6)
C130.104 (9)0.062 (8)0.047 (7)0.038 (7)0.005 (6)0.013 (6)
C140.097 (9)0.089 (9)0.048 (7)0.003 (8)0.028 (6)0.000 (7)
Geometric parameters (Å, º) top
Cd1—S12.555 (2)N10—C141.506 (9)
Cd1—S32.558 (2)N10—H10A0.9000
Cd1—S22.588 (2)N10—H10B0.9000
Cd1—S42.657 (2)O1—H10.83 (3)
Cd1—S3i2.949 (3)O1—H20.84 (3)
Cd1—S2ii3.116 (3)S1—C21.725 (9)
Ni1—N52.133 (6)S2—C31.742 (8)
Ni1—N92.147 (7)S3—C61.739 (8)
Ni1—N72.149 (7)S3—Cd1i2.949 (2)
Ni1—N102.153 (7)S4—C71.725 (8)
Ni1—N82.156 (7)C1—C21.427 (11)
Ni1—N62.161 (6)C2—C31.339 (10)
N1—C11.128 (10)C3—C41.462 (11)
N2—C41.133 (10)C5—C61.434 (11)
N3—C51.136 (10)C6—C71.357 (11)
N4—C81.111 (11)C7—C81.438 (12)
N5—C91.485 (9)C9—C101.459 (10)
N5—H5A0.9000C9—H9C0.9700
N5—H5B0.9000C9—H9D0.9700
N6—C101.460 (9)C10—H10C0.9700
N6—H6A0.9000C10—H10D0.9700
N6—H6B0.9000C11—C121.492 (11)
N7—C111.457 (9)C11—H11A0.9700
N7—H7A0.9000C11—H11B0.9700
N7—H7B0.9000C12—H12A0.9700
N8—C121.457 (10)C12—H12B0.9700
N8—H8A0.9000C13—C141.470 (11)
N8—H8B0.9000C13—H13A0.9700
N9—C131.464 (10)C13—H13B0.9700
N9—H9A0.9000C14—H14A0.9700
N9—H9B0.9000C14—H14B0.9700
S1—Cd1—S3169.19 (8)C14—N10—H10B110.4
S1—Cd1—S284.01 (7)Ni1—N10—H10B110.4
S3—Cd1—S2106.61 (7)H10A—N10—H10B108.6
S1—Cd1—S487.27 (8)H1—O1—H2132 (10)
S3—Cd1—S482.34 (7)C2—S1—Cd199.9 (3)
S2—Cd1—S4169.62 (8)C3—S2—Cd198.0 (3)
S1—Cd1—S3i90.12 (8)C6—S3—Cd199.6 (3)
S3—Cd1—S3i86.85 (7)C6—S3—Cd1i107.9 (3)
S2—Cd1—S3i96.03 (8)Cd1—S3—Cd1i93.15 (7)
S4—Cd1—S3i89.60 (7)C7—S4—Cd198.1 (3)
S1—Cd1—S2ii90.60 (8)N1—C1—C2178.0 (12)
S3—Cd1—S2ii91.83 (7)C3—C2—C1119.2 (8)
S2—Cd1—S2ii87.42 (7)C3—C2—S1126.6 (7)
S4—Cd1—S2ii87.04 (7)C1—C2—S1114.2 (7)
S3i—Cd1—S2ii176.53 (6)C2—C3—C4118.4 (8)
N5—Ni1—N994.6 (3)C2—C3—S2128.1 (7)
N5—Ni1—N792.9 (2)C4—C3—S2113.5 (7)
N9—Ni1—N792.8 (3)N2—C4—C3179.1 (11)
N5—Ni1—N1096.7 (3)N3—C5—C6177.8 (12)
N9—Ni1—N1081.4 (3)C7—C6—C5118.0 (8)
N7—Ni1—N10169.1 (3)C7—C6—S3128.0 (7)
N5—Ni1—N8168.4 (2)C5—C6—S3114.0 (7)
N9—Ni1—N894.6 (3)C6—C7—C8118.9 (8)
N7—Ni1—N879.6 (3)C6—C7—S4125.6 (7)
N10—Ni1—N891.6 (3)C8—C7—S4115.6 (7)
N5—Ni1—N681.1 (3)N4—C8—C7177.6 (15)
N9—Ni1—N6170.7 (3)C10—C9—N5107.9 (7)
N7—Ni1—N695.7 (3)C10—C9—H9C110.1
N10—Ni1—N690.9 (3)N5—C9—H9C110.1
N8—Ni1—N690.7 (3)C10—C9—H9D110.1
C9—N5—Ni1108.5 (5)N5—C9—H9D110.1
C9—N5—H5A110.0H9C—C9—H9D108.4
Ni1—N5—H5A110.0C9—C10—N6112.1 (8)
C9—N5—H5B110.0C9—C10—H10C109.2
Ni1—N5—H5B110.0N6—C10—H10C109.2
H5A—N5—H5B108.4C9—C10—H10D109.2
C10—N6—Ni1106.0 (5)N6—C10—H10D109.2
C10—N6—H6A110.5H10C—C10—H10D107.9
Ni1—N6—H6A110.5N7—C11—C12109.7 (8)
C10—N6—H6B110.5N7—C11—H11A109.7
Ni1—N6—H6B110.5C12—C11—H11A109.7
H6A—N6—H6B108.7N7—C11—H11B109.7
C11—N7—Ni1110.8 (5)C12—C11—H11B109.7
C11—N7—H7A109.5H11A—C11—H11B108.2
Ni1—N7—H7A109.5N8—C12—C11109.6 (8)
C11—N7—H7B109.5N8—C12—H12A109.7
Ni1—N7—H7B109.5C11—C12—H12A109.7
H7A—N7—H7B108.1N8—C12—H12B109.7
C12—N8—Ni1107.7 (5)C11—C12—H12B109.7
C12—N8—H8A110.2H12A—C12—H12B108.2
Ni1—N8—H8A110.2N9—C13—C14111.9 (8)
C12—N8—H8B110.2N9—C13—H13A109.2
Ni1—N8—H8B110.2C14—C13—H13A109.2
H8A—N8—H8B108.5N9—C13—H13B109.2
C13—N9—Ni1108.2 (5)C14—C13—H13B109.2
C13—N9—H9A110.1H13A—C13—H13B107.9
Ni1—N9—H9A110.1C13—C14—N10108.3 (8)
C13—N9—H9B110.1C13—C14—H14A110.0
Ni1—N9—H9B110.1N10—C14—H14A110.0
H9A—N9—H9B108.4C13—C14—H14B110.0
C14—N10—Ni1106.5 (5)N10—C14—H14B110.0
C14—N10—H10A110.4H14A—C14—H14B108.4
Ni1—N10—H10A110.4
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1iii0.83 (5)2.38 (7)2.847 (13)116 (5)
O1—H2···N3iv0.84 (7)2.10 (8)2.870 (12)154 (8)
N5—H5A···S1v0.902.573.404 (7)154
N5—H5B···S40.902.663.483 (7)153
N6—H6A···O10.902.363.209 (12)157
N6—H6B···N2vi0.902.343.141 (11)149
N7—H7A···S1v0.902.863.478 (6)127
N7—H7B···N4vii0.902.273.066 (11)147
N8—H8A···O10.902.593.410 (11)152
N8—H8A···N3iv0.902.593.237 (11)129
N8—H8B···N1viii0.902.343.189 (11)156
N9—H9A···S4v0.902.793.498 (8)136
N9—H9B···N1viii0.902.483.346 (12)160
N10—H10A···O10.902.493.322 (11)154
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z+3/2; (v) x1, y, z; (vi) x+3/2, y+1/2, z+5/2; (vii) x1/2, y+1/2, z+1/2; (viii) x3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3][Cd(C4N2S2)2]·H2O
Mr649.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.5796 (15), 19.255 (4), 17.201 (4)
β (°) 100.509 (4)
V3)2468.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.30 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.587, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
12887, 4346, 2220
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.083, 1.00
No. of reflections4346
No. of parameters286
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.77

Computer programs: SMART (Bruker,1997), SAINT (Bruker,1997), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected bond lengths (Å) top
Cd1—S12.555 (2)Ni1—N52.133 (6)
Cd1—S32.558 (2)Ni1—N92.147 (7)
Cd1—S22.588 (2)Ni1—N72.149 (7)
Cd1—S42.657 (2)Ni1—N102.153 (7)
Cd1—S3i2.949 (3)Ni1—N82.156 (7)
Cd1—S2ii3.116 (3)Ni1—N62.161 (6)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1iii0.83 (5)2.38 (7)2.847 (13)116 (5)
O1—H2···N3iv0.84 (7)2.10 (8)2.870 (12)154 (8)
N5—H5A···S1v0.902.573.404 (7)154
N5—H5B···S40.902.663.483 (7)153
N6—H6A···O10.902.363.209 (12)157
N6—H6B···N2vi0.902.343.141 (11)149
N7—H7A···S1v0.902.863.478 (6)127
N7—H7B···N4vii0.902.273.066 (11)147
N8—H8A···O10.902.593.410 (11)152
N8—H8A···N3iv0.902.593.237 (11)129
N8—H8B···N1viii0.902.343.189 (11)156
N9—H9A···S4v0.902.793.498 (8)136
N9—H9B···N1viii0.902.483.346 (12)160
N10—H10A···O10.902.493.322 (11)154
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z+3/2; (v) x1, y, z; (vi) x+3/2, y+1/2, z+5/2; (vii) x1/2, y+1/2, z+1/2; (viii) x3/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds