Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Co(C8H4O4)(C7H6N2)2]n, the terephthalate dianions bridge CoII ions through terminal carboxyl groups to form polymeric complex chains; one carboxyl group coordinates in a monodentate manner and the other chelates to the Co atom. Two benzimidazole ligands also coordinate to the Co atom to complete a distorted trigonal–bipyramidal coordination geometry. The crystal packing is stabilized by N—H...O hydrogen bonds and π–π stacking involving the benzimidazole ligands, with a face-to-face separation of 3.454 (11) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027765/hb6260sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027765/hb6260Isup2.hkl
Contains datablock I

CCDC reference: 287564

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C)= 0.006 Å
  • R factor = 0.048
  • wR factor = 0.131
  • Data-to-parameter ratio = 12.6

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

ππ Stacking interactions between aromatic rings have attracted much attention because they are correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigations of the nature of ππ stacking (Pan & Xu, 2004, 2005), the title polymeric CoII complex, (I), incorporating terephthalate (tp) dianions and benzimidazole (bzim) ligands, has been prepared and its crystal structure is presented here.

A segment of the polymeric structure of (I) is illustrated in Fig. 1. The CoII ion is coordinated by two tp dianions and two bzim molecules. Each terephthalate bridges two neighboring CoII atoms to form a polymeric chain (Fig. 2).

The Co—O2 distance of 2.515 (3) Å is much longer than the Co–O1 and Co–O3 distances (Table 1), but is probably reasonable for a strained bidentate system. The Co—O1—C1 angle of 102.2 (2)° appears to be compressed to allow Co and O2 to approach each other. The other tp carboxylate group has a more typical Co—O3i—C8i angle of 110.4 (2)° and a much longer Co–O4i bond distance of 2.789 (3) Å, indicating that there is no bonding between Co and O4i [symmetry code: (i) 1/2 + x, 1/2 − y, 1/2 + z]. This is consistent with the situation found in related MnII (Liu et al., 2005) and CuII complexes (Li et al., 2005).

Thus in (I) the two tp carboxyl groups coordinate to the Co atom differently, one in a monodentate mode and the other in a chelating mode. The coordination geometry around the Co atom can be described as distorted trigonal–bipyramidal, with atoms O2 and O3 in the apical sites. The uncoordinated carboxyl O4 atom accepts an N—H···O hydrogen bond from a bzim ligand of a neighboring chain (Table 2).

A partially overlapped arrangement of bzim rings from neighboring polymeric chains is observed in (I) (Fig. 2). The face-to-face separation between neighboring parallel bzim rings, related by an inversion center at (1/2, 1, 1/2), is 3.454 (11) Å, strongly suggesting the existence of ππ stacking.

Experimental top

An aqueous solution (5 ml) containing CoCl2·6H2O (0.24 g, 1 mmol), NaOH (0.08 g, 2 mmol) and terephthalic acid (0.17 g, 1 mmol) was mixed with an ethanol solution (15 ml) of bzim (0.24 g, 2 mmol). The mixture was refluxed for 5 h. After cooling to room temperature, the solution was filtered. Red single crystals of (I) were obtained from the filtrate after two weeks.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were included in the final cycles of refinement as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids for the non-H atoms [symmetry code: (i) 1/2 + x, 1/2 − y, 1/2 + z].
[Figure 2] Fig. 2. Packing diagram for (I), showing the ππ stacking.
catena-Poly[[bis(1H-benzimidazole-κN3)cobalt(II)]- µ-terephthalato-κ3O1,O1':O4] top
Crystal data top
[Co(C8H4O4)(C7H6N2)2]F(000) = 940
Mr = 459.32Dx = 1.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7787 reflections
a = 17.319 (2) Åθ = 2.6–24.0°
b = 7.2711 (7) ŵ = 0.88 mm1
c = 17.8495 (18) ÅT = 295 K
β = 115.002 (3)°Plate, red
V = 2037.1 (4) Å30.30 × 0.21 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3527 independent reflections
Radiation source: fine-focus sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω scansh = 2020
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.762, Tmax = 0.925l = 2121
10571 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.8857P]
where P = (Fo2 + 2Fc2)/3
3527 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(C8H4O4)(C7H6N2)2]V = 2037.1 (4) Å3
Mr = 459.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.319 (2) ŵ = 0.88 mm1
b = 7.2711 (7) ÅT = 295 K
c = 17.8495 (18) Å0.30 × 0.21 × 0.08 mm
β = 115.002 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3527 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2730 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.925Rint = 0.057
10571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.45 e Å3
3527 reflectionsΔρmin = 0.48 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.38836 (3)0.61572 (6)0.63020 (3)0.04267 (18)
N110.42478 (19)1.1337 (4)0.55315 (18)0.0544 (8)
H110.40231.23360.52740.065*
N130.43354 (17)0.8542 (4)0.60434 (16)0.0475 (7)
N210.22068 (19)0.7160 (5)0.7406 (2)0.0635 (9)
H210.17000.73110.73700.076*
N230.32509 (18)0.6723 (4)0.70136 (17)0.0497 (7)
O10.33212 (14)0.4601 (3)0.52735 (14)0.0527 (6)
O20.24824 (16)0.6933 (4)0.51220 (16)0.0621 (7)
O30.00313 (14)0.0102 (3)0.20339 (13)0.0478 (6)
O40.09195 (14)0.2193 (4)0.21237 (14)0.0552 (6)
C10.2618 (2)0.5412 (5)0.4894 (2)0.0479 (8)
C20.1917 (2)0.4450 (5)0.41883 (19)0.0449 (8)
C30.2028 (2)0.2706 (5)0.3934 (2)0.0536 (9)
H30.25600.21450.41750.064*
C40.1353 (2)0.1794 (5)0.3325 (2)0.0522 (9)
H40.14400.06340.31550.063*
C50.0556 (2)0.2577 (5)0.29686 (19)0.0430 (8)
C60.0450 (2)0.4338 (5)0.3215 (2)0.0554 (9)
H60.00810.49020.29710.066*
C70.1121 (2)0.5253 (5)0.3817 (2)0.0557 (9)
H70.10380.64280.39750.067*
C80.0188 (2)0.1566 (5)0.23302 (19)0.0444 (8)
C120.3833 (2)0.9888 (5)0.5628 (2)0.0523 (9)
H120.32420.98330.54210.063*
C140.5954 (2)0.8387 (6)0.6702 (2)0.0574 (10)
H140.60040.72130.69250.069*
C150.6662 (3)0.9416 (7)0.6814 (3)0.0707 (12)
H150.71990.89230.71220.085*
C160.6599 (3)1.1179 (6)0.6478 (3)0.0699 (12)
H160.70941.18230.65650.084*
C170.5821 (3)1.1977 (6)0.6022 (2)0.0640 (10)
H170.57751.31450.57940.077*
C180.5105 (2)1.0947 (5)0.5920 (2)0.0490 (9)
C190.5157 (2)0.9182 (5)0.6239 (2)0.0467 (8)
C220.2424 (2)0.6977 (6)0.6778 (3)0.0600 (10)
H220.20330.70230.62260.072*
C240.4436 (2)0.6624 (5)0.8463 (2)0.0552 (9)
H240.48810.64350.83110.066*
C250.4576 (3)0.6769 (7)0.9278 (3)0.0737 (12)
H250.51310.66770.96850.088*
C260.3917 (3)0.7048 (7)0.9515 (3)0.0816 (13)
H260.40440.71341.00750.098*
C270.3087 (3)0.7201 (6)0.8949 (3)0.0704 (11)
H270.26450.73870.91070.084*
C280.2943 (2)0.7063 (5)0.8123 (2)0.0552 (9)
C290.3596 (2)0.6774 (5)0.7875 (2)0.0482 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0330 (3)0.0472 (3)0.0383 (3)0.00341 (19)0.00586 (19)0.0011 (2)
N110.0585 (19)0.0447 (17)0.0479 (16)0.0058 (14)0.0106 (15)0.0026 (14)
N130.0410 (16)0.0528 (18)0.0397 (14)0.0035 (13)0.0081 (13)0.0027 (13)
N210.0424 (17)0.080 (2)0.070 (2)0.0061 (16)0.0257 (16)0.0079 (18)
N230.0389 (15)0.0602 (18)0.0449 (15)0.0052 (14)0.0129 (13)0.0021 (14)
O10.0417 (13)0.0549 (14)0.0440 (13)0.0014 (12)0.0012 (11)0.0069 (11)
O20.0479 (14)0.0600 (16)0.0615 (16)0.0013 (13)0.0068 (13)0.0175 (14)
O30.0385 (12)0.0490 (14)0.0440 (13)0.0029 (10)0.0059 (10)0.0072 (11)
O40.0338 (12)0.0720 (17)0.0517 (13)0.0021 (12)0.0101 (11)0.0039 (13)
C10.046 (2)0.047 (2)0.0413 (18)0.0005 (16)0.0099 (16)0.0003 (16)
C20.0402 (18)0.0469 (19)0.0390 (17)0.0009 (15)0.0085 (15)0.0013 (15)
C30.0360 (18)0.058 (2)0.052 (2)0.0102 (16)0.0037 (16)0.0090 (17)
C40.0415 (19)0.052 (2)0.052 (2)0.0055 (16)0.0098 (16)0.0091 (17)
C50.0386 (17)0.0478 (19)0.0369 (16)0.0005 (15)0.0105 (14)0.0015 (14)
C60.0390 (18)0.059 (2)0.050 (2)0.0110 (17)0.0015 (16)0.0003 (18)
C70.048 (2)0.049 (2)0.051 (2)0.0099 (17)0.0019 (17)0.0071 (17)
C80.0364 (18)0.057 (2)0.0355 (16)0.0011 (15)0.0108 (14)0.0036 (15)
C120.0444 (19)0.049 (2)0.050 (2)0.0060 (17)0.0075 (16)0.0010 (17)
C140.044 (2)0.071 (3)0.054 (2)0.0061 (18)0.0163 (17)0.0090 (19)
C150.049 (2)0.094 (3)0.065 (3)0.002 (2)0.020 (2)0.002 (2)
C160.058 (3)0.087 (3)0.066 (3)0.021 (2)0.027 (2)0.013 (2)
C170.076 (3)0.059 (2)0.061 (2)0.012 (2)0.031 (2)0.009 (2)
C180.054 (2)0.048 (2)0.0422 (18)0.0009 (17)0.0177 (16)0.0062 (16)
C190.048 (2)0.052 (2)0.0390 (17)0.0024 (16)0.0171 (15)0.0044 (15)
C220.043 (2)0.073 (3)0.060 (2)0.0074 (19)0.0179 (18)0.005 (2)
C240.051 (2)0.058 (2)0.051 (2)0.0015 (17)0.0167 (17)0.0070 (17)
C250.066 (3)0.091 (3)0.054 (2)0.003 (2)0.015 (2)0.005 (2)
C260.089 (3)0.104 (4)0.052 (2)0.009 (3)0.030 (2)0.007 (2)
C270.074 (3)0.079 (3)0.070 (3)0.010 (2)0.043 (2)0.003 (2)
C280.054 (2)0.053 (2)0.059 (2)0.0000 (18)0.0239 (19)0.0057 (18)
C290.0470 (19)0.0449 (19)0.052 (2)0.0002 (15)0.0200 (17)0.0042 (16)
Geometric parameters (Å, º) top
Co—O12.022 (2)C5—C61.392 (5)
Co—O22.515 (3)C5—C81.503 (4)
Co—O3i2.000 (2)C6—C71.375 (5)
Co—N132.034 (3)C6—H60.9300
Co—N232.039 (3)C7—H70.9300
N11—C121.327 (5)C12—H120.9300
N11—C181.377 (5)C14—C151.376 (6)
N11—H110.8600C14—C191.399 (5)
N13—C121.312 (4)C14—H140.9300
N13—C191.394 (4)C15—C161.400 (6)
N21—C221.332 (5)C15—H150.9300
N21—C281.374 (5)C16—C171.373 (6)
N21—H210.8600C16—H160.9300
N23—C221.323 (4)C17—C181.393 (5)
N23—C291.395 (4)C17—H170.9300
C1—O11.262 (4)C18—C191.392 (5)
C1—O21.235 (4)C22—H220.9300
C8—O31.268 (4)C24—C251.375 (5)
C8—O41.246 (4)C24—C291.392 (5)
O3—Coii2.000 (2)C24—H240.9300
C1—C21.502 (5)C25—C261.389 (6)
C2—C71.381 (5)C25—H250.9300
C2—C31.388 (5)C26—C271.369 (6)
C3—C41.382 (5)C26—H260.9300
C3—H30.9300C27—C281.391 (5)
C4—C51.375 (5)C27—H270.9300
C4—H40.9300C28—C291.394 (5)
O1—Co—O256.01 (9)O4—C8—O3123.6 (3)
O1—Co—O3i107.21 (10)O4—C8—C5119.0 (3)
O1—Co—N13110.78 (11)O3—C8—C5117.4 (3)
O1—Co—N23119.93 (11)N13—C12—N11113.6 (3)
O2—Co—O3i163.22 (9)N13—C12—H12123.2
O2—Co—N1386.92 (10)N11—C12—H12123.2
O2—Co—N2383.92 (10)C15—C14—C19117.2 (4)
O3i—Co—N13101.13 (10)C15—C14—H14121.4
O3i—Co—N23106.82 (11)C19—C14—H14121.4
N13—Co—N23109.21 (12)C14—C15—C16122.2 (4)
C12—N11—C18107.4 (3)C14—C15—H15118.9
C12—N11—H11126.3C16—C15—H15118.9
C18—N11—H11126.3C17—C16—C15121.3 (4)
C12—N13—C19104.8 (3)C17—C16—H16119.4
C12—N13—Co122.5 (3)C15—C16—H16119.4
C19—N13—Co132.7 (2)C16—C17—C18116.5 (4)
C22—N21—C28107.3 (3)C16—C17—H17121.7
C22—N21—H21126.3C18—C17—H17121.7
C28—N21—H21126.3N11—C18—C17131.8 (4)
C22—N23—C29104.4 (3)N11—C18—C19105.4 (3)
C22—N23—Co128.6 (3)C17—C18—C19122.8 (4)
C29—N23—Co126.8 (2)C18—C19—N13108.8 (3)
Co—O1—C1102.2 (2)C18—C19—C14120.0 (3)
Co—O2—C179.9 (2)N13—C19—C14131.1 (3)
Coii—O3—C8110.4 (2)N23—C22—N21113.5 (3)
O2—C1—O1121.1 (3)N23—C22—H22123.2
O2—C1—C2119.7 (3)N21—C22—H22123.2
O1—C1—C2119.2 (3)C25—C24—C29116.9 (4)
C7—C2—C3118.5 (3)C25—C24—H24121.5
C7—C2—C1119.6 (3)C29—C24—H24121.5
C3—C2—C1121.7 (3)C24—C25—C26122.2 (4)
C4—C3—C2120.5 (3)C24—C25—H25118.9
C4—C3—H3119.7C26—C25—H25118.9
C2—C3—H3119.7C27—C26—C25121.9 (4)
C5—C4—C3121.0 (3)C27—C26—H26119.0
C5—C4—H4119.5C25—C26—H26119.0
C3—C4—H4119.5C26—C27—C28116.0 (4)
C4—C5—C6118.4 (3)C26—C27—H27122.0
C4—C5—C8121.4 (3)C28—C27—H27122.0
C6—C5—C8120.2 (3)N21—C28—C27131.6 (4)
C7—C6—C5120.7 (3)N21—C28—C29105.7 (3)
C7—C6—H6119.6C27—C28—C29122.8 (4)
C5—C6—H6119.6C24—C29—C28120.1 (3)
C6—C7—C2120.9 (3)C24—C29—N23130.8 (3)
C6—C7—H7119.6C28—C29—N23109.1 (3)
C2—C7—H7119.6
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1iii0.862.052.792 (4)145
N21—H21···O4iv0.861.952.735 (4)151
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H4O4)(C7H6N2)2]
Mr459.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)17.319 (2), 7.2711 (7), 17.8495 (18)
β (°) 115.002 (3)
V3)2037.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.30 × 0.21 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.762, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
10571, 3527, 2730
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.01
No. of reflections3527
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.48

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co—O12.022 (2)C1—O11.262 (4)
Co—O22.515 (3)C1—O21.235 (4)
Co—O3i2.000 (2)C8—O31.268 (4)
Co—N132.034 (3)C8—O41.246 (4)
Co—N232.039 (3)
O1—Co—O256.01 (9)O3i—Co—N13101.13 (10)
O1—Co—O3i107.21 (10)O3i—Co—N23106.82 (11)
O1—Co—N13110.78 (11)N13—Co—N23109.21 (12)
O1—Co—N23119.93 (11)Co—O1—C1102.2 (2)
O2—Co—O3i163.22 (9)Co—O2—C179.9 (2)
O2—Co—N1386.92 (10)Coii—O3—C8110.4 (2)
O2—Co—N2383.92 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1iii0.862.052.792 (4)145
N21—H21···O4iv0.861.952.735 (4)151
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds