Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Fe83-O)22-OH)12(C6H12N3)6]Br8·8H2O, which crystallizes as an octa­hydrate, has a different arrangement of cations, anions and water molecules from the known nonahydrate [Wieghardt, Pohl, Jibril & Huttner (1984). Angew. Chem. Int. Ed. Engl. 23, 77–78.]. In the present phase, the cluster is generated by inversion symmetry and the bromide ions display substantial positional disorder.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028436/hb6243sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028436/hb6243Isup2.hkl
Contains datablock I

CCDC reference: 287559

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • H-atom completeness 87%
  • Disorder in solvent or counterion
  • R factor = 0.059
  • wR factor = 0.209
  • Data-to-parameter ratio = 28.0

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) ....... O1W
Author Response: H-atoms for the solvent water molecules could not be located in the Fourier differences map.
PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) .......        O2W
Author Response: H-atoms for the solvent water molecules could not be located in the Fourier differences map.
PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) .......        O3W
Author Response: H-atoms for the solvent water molecules could not be located in the Fourier differences map.
PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) .......        O4W
Author Response: H-atoms for the solvent water molecules could not be located in the Fourier differences map.
PLAT431_ALERT_2_A Short Inter HL..A Contact  Br3    ..  Br4     ..       3.08 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.

Alert level B PLAT430_ALERT_2_B Short Inter D...A Contact O2W .. O4W .. 2.71 Ang. PLAT431_ALERT_2_B Short Inter HL..A Contact Br2 .. O2W .. 2.96 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.

Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.142 0.241 Tmin and Tmax expected: 0.119 0.242 RR = 1.196 Please check that your absorption correction is appropriate. PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.17 PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.45 PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.41 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C23 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C25 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C26 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C43 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 31.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 12 PLAT416_ALERT_2_C Short Intra D-H..H-D H3 .. H41 .. 1.90 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N31 - H31 ... ? PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. O1W .. 3.15 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.
PLAT431_ALERT_2_C Short Inter HL..A Contact  Br4    ..  O3W     ..       3.23 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.
PLAT431_ALERT_2_C Short Inter HL..A Contact  Br4    ..  O4W     ..       3.36 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.
PLAT431_ALERT_2_C Short Inter HL..A Contact  Br5    ..  O3W     ..       3.36 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.
PLAT431_ALERT_2_C Short Inter HL..A Contact  Br5    ..  Br5     ..       3.56 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.
PLAT431_ALERT_2_C Short Inter HL..A Contact  Br7    ..  O4W     ..       3.24 Ang.
Author Response: As the sum of the occupancy factors of both atoms is 1, this short distance can be explained by the disorder in the Br atom positions.
PLAT480_ALERT_4_C Long H...A H-Bond Reported H24    ..  BR8     ..       2.96 Ang.
PLAT480_ALERT_4_C Long H...A H-Bond Reported H31    ..  BR1     ..       2.94 Ang.
PLAT480_ALERT_4_C Long H...A H-Bond Reported H37    ..  BR2     ..       3.00 Ang.
PLAT480_ALERT_4_C Long H...A H-Bond Reported H41    ..  BR3     ..       3.08 Ang.

Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C36 H118 Br8 Fe8 N18 O22 Atom count from the _atom_site data: C36 H102 Br8.002 Fe8 N18 O22 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C36 H118 Br8 Fe8 N18 O22 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 36.00 36.00 0.00 H 118.00 102.00 16.00 Br 8.00 8.00 0.00 Fe 8.00 8.00 0.00 N 18.00 18.00 0.00 O 22.00 22.00 0.00
5 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 27 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 21 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

As in the previously reported nonahydrate structure (Wieghardt et al., 1985 or/?? 1984), there is one [(C6N3H12)6Fe83-O)22-OH)12]8+ cluster per unit cell of the title compound, (I) (Fig. 1). The two structures present a similar conformation of the cluster but a completely different distribution of bromide ions and water molecules. In (I), the cluster is generated by inversion symmetry (Table 1), whereas in the nonahydrate, the cluster possesses no symmetry.

According to charge balance, four Br ions per asymmetric unit should be present to compensate the positive charge of the cluster. There is substantial disorder in the positions of the anions, and the four Br ions appear distributed over nine sites with occupancy factors ranging from 0.181 (2) to 0.838 (2). The bromide ions in six of these sites act as acceptors for one or two hydrogen bonds with the OH groups, forming µ2-hydroxo bridges, and with the N atoms in the cyclic amine ligands. The sum of the occupancy factors of the six bromide sites hydrogen bonded to the cluster is 2.97, that is, each cluster is linked by hydrogen bonds to 5.94 Br atoms on average. The bromide ions in the remaining three sites, together with the solvent water molecules, fill the space between the clusters, forming a complex network of hydrogen bonds which crosslinks the clusters and gives cohesion to the crystal.

This distribution of hydrogen bonds is very different from that observed in the previously reported nonahydrate structure. In that case, there were seven bromide ions and one water molecule acting as acceptors for hydrogen bonds between solvent water molecules and the cluster. Owing to the disorder in the bromide positions in (I), the unit-cell volume is larger in this case [2163.0 (8) Å3 versus 1959 Å3], in spite of containing one fewer water molecule.

Experimental top

Crystals of (I) were obtainedwhile following the literature procedure to grow crystals of the known nonahydrate pseudopolymorph (Wieghardt et al., 1985 or?? 1984).

Refinement top

H atoms in the cluster were placed in calculated positions (C—H = 0.97 Å, N—H = 0.91 Å and O—H = 0.93 Å) and refined as riding with the constraint Uiso(H) = 1.2Ueq(carrier) applied. The H atoms of the solvent water molecules could not be located in difference Fourier maps.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the cluster in (I), showing 50% probability displacement ellipsoids for the non-H atoms. Unlabelled atoms are generated from the labelled atoms by the symmetry operation (1 − x, 1 − y, 1 − z).
[Figure 2] Fig. 2. Molecular packing in (I) viewed along the a axis. H atoms have been omitted for clarity. Colour key: Fe green, C black, N blue, O red, Br yellow. Fe—N and Fe—O bonds are shown as dashed lines. [Please provide correct Fig. 2]
dodeca-µ2-hydroxo-di-µ3-oxo-hexakis(1,4,7-triazacyclononane- κ3N,N',N'')octairon(III) octabromide octahydrate top
Crystal data top
[Fe8O2(OH)12(C6H12N3)6]Br8·8H2OZ = 1
Mr = 2241.56F(000) = 1124
Triclinic, P1Dx = 1.721 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.257 (2) ÅCell parameters from 15 reflections
b = 13.564 (1) Åθ = 10.8–12.6°
c = 14.831 (4) ŵ = 5.06 mm1
α = 108.15 (1)°T = 293 K
β = 113.34 (1)°Prism, colourless
γ = 101.43 (1)°0.5 × 0.37 × 0.28 mm
V = 2163.0 (8) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
8217 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.029
Graphite monochromatorθmax = 30.4°, θmin = 2.4°
non–profiled ω/2θ scansh = 018
Absorption correction: ψ scan
(North et al., 1968)
k = 1918
Tmin = 0.142, Tmax = 0.241l = 2119
13602 measured reflections3 standard reflections every 90 reflections
13085 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.116P)2 + 2.3967P]
where P = (Fo2 + 2Fc2)/3
13085 reflections(Δ/σ)max = 0.048
467 parametersΔρmax = 2.53 e Å3
39 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Fe8O2(OH)12(C6H12N3)6]Br8·8H2Oγ = 101.43 (1)°
Mr = 2241.56V = 2163.0 (8) Å3
Triclinic, P1Z = 1
a = 13.257 (2) ÅMo Kα radiation
b = 13.564 (1) ŵ = 5.06 mm1
c = 14.831 (4) ÅT = 293 K
α = 108.15 (1)°0.5 × 0.37 × 0.28 mm
β = 113.34 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
8217 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.142, Tmax = 0.2413 standard reflections every 90 reflections
13602 measured reflections intensity decay: none
13085 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05939 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.12Δρmax = 2.53 e Å3
13085 reflectionsΔρmin = 1.03 e Å3
467 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.38470 (5)0.41654 (5)0.45841 (4)0.02143 (14)
Fe30.17949 (5)0.37903 (5)0.24373 (5)0.02466 (14)
Fe40.46203 (5)0.42176 (5)0.26224 (5)0.02378 (14)
Fe20.37002 (6)0.28676 (5)0.59163 (5)0.02721 (15)
Br10.14652 (10)0.03211 (6)0.18139 (7)0.0703 (3)0.818 (2)
Br20.28821 (7)0.55595 (10)0.05697 (9)0.0798 (4)0.842 (2)
Br30.95535 (13)0.59745 (13)0.48690 (12)0.0614 (3)0.5
Br40.14384 (18)0.80749 (17)0.5326 (2)0.0904 (6)0.5
Br50.6200 (2)0.1003 (2)0.0123 (3)0.1045 (14)0.355 (3)
Br60.6718 (8)0.2531 (8)0.5427 (5)0.078 (2)0.193 (4)
Br70.7576 (2)0.2517 (2)0.7566 (2)0.0673 (9)0.304 (3)
Br80.6862 (4)0.2526 (4)0.5888 (7)0.118 (3)0.307 (4)
Br90.3279 (8)0.9238 (13)0.2042 (11)0.203 (6)0.182 (2)
N210.2714 (4)0.2378 (4)0.6676 (4)0.0389 (9)
H210.25220.2960.69670.047*
C220.3545 (7)0.2210 (7)0.7575 (5)0.0654 (19)
H22A0.31220.18770.78770.078*
H22B0.41420.29260.81480.078*
C230.4116 (7)0.1483 (8)0.7194 (8)0.081 (2)
H23A0.3570.07130.68120.097*
H23B0.48010.15490.78190.097*
N240.4497 (5)0.1767 (4)0.6448 (5)0.0574 (14)
H240.52980.21080.68080.069*
C250.4121 (9)0.0782 (6)0.5427 (9)0.091 (3)
H25A0.45280.09910.50580.109*
H25B0.43490.02020.56060.109*
C260.2833 (10)0.0337 (5)0.4686 (8)0.088 (3)
H26A0.26540.01480.3960.105*
H26B0.24360.01060.49350.105*
N270.2383 (5)0.1243 (4)0.4638 (4)0.0518 (13)
H270.2220.12540.39860.062*
C280.1306 (6)0.1135 (6)0.4728 (5)0.0641 (19)
H28A0.07280.03830.42440.077*
H28B0.09670.1650.45130.077*
C290.1604 (6)0.1388 (5)0.5898 (5)0.0542 (15)
H29A0.09620.15270.60070.065*
H29B0.16950.07480.60340.065*
N310.0464 (4)0.2338 (3)0.0927 (3)0.0362 (9)
H310.07860.18090.08110.043*
C320.0611 (5)0.1845 (5)0.0954 (5)0.0537 (15)
H32A0.08510.10390.06450.064*
H32B0.12480.20270.05170.064*
C330.0388 (6)0.2283 (6)0.2101 (5)0.0610 (17)
H33A0.00720.19260.24830.073*
H33B0.11330.21130.21020.073*
N340.0268 (4)0.3516 (4)0.2666 (4)0.0454 (11)
H340.05250.37460.33910.054*
C350.0454 (5)0.4157 (6)0.2277 (5)0.0624 (19)
H35A0.06820.44990.28060.075*
H35B0.11680.36520.15950.075*
C360.0222 (6)0.5046 (5)0.2110 (6)0.0568 (16)
H36A0.03180.53170.16810.068*
H36B0.07920.56680.2810.068*
N370.0846 (4)0.4594 (3)0.1540 (3)0.0381 (9)
H370.13770.51730.15850.046*
C380.0040 (5)0.3795 (5)0.0365 (4)0.0487 (13)
H38A0.0150.41460.00840.058*
H38B0.07730.36290.02110.058*
C390.0254 (5)0.2721 (5)0.0063 (4)0.0446 (12)
H39A0.04260.21540.06150.054*
H39B0.09340.28320.00470.054*
N410.6287 (4)0.4085 (4)0.2840 (4)0.0400 (10)
H410.68640.4740.33960.048*
C420.6394 (6)0.3212 (6)0.3224 (6)0.0622 (18)
H42A0.65330.3490.39660.075*
H42B0.70640.30290.32220.075*
C430.5302 (7)0.2193 (6)0.2515 (7)0.0684 (19)
H43A0.52710.17460.29080.082*
H43B0.53350.17540.18780.082*
N440.4207 (4)0.2446 (3)0.2154 (3)0.0380 (9)
H440.38160.22380.24890.046*
C450.3415 (6)0.1840 (5)0.0975 (5)0.0558 (16)
H45A0.26340.18540.08080.067*
H45B0.33490.10670.07390.067*
C460.3842 (6)0.2330 (5)0.0368 (5)0.0618 (18)
H46A0.31880.20940.03540.074*
H46B0.44340.2050.02830.074*
N470.4359 (4)0.3564 (4)0.0928 (3)0.0413 (10)
H470.38490.38270.05410.05*
C480.6458 (6)0.3927 (7)0.1890 (6)0.0625 (18)
H48A0.64950.31950.16060.075*
H48B0.72070.44790.2120.075*
C490.5495 (6)0.4026 (7)0.1005 (6)0.0657 (19)
H49A0.56670.48060.11490.079*
H49B0.54570.36320.03160.079*
O10.4947 (2)0.4541 (2)0.4054 (2)0.0224 (5)
O20.4408 (3)0.3007 (2)0.5006 (3)0.0293 (6)
H20.48710.26440.48190.035*
O30.2873 (3)0.3726 (3)0.5304 (3)0.0294 (6)
H30.22330.38920.53250.035*
O40.2782 (3)0.4932 (2)0.3937 (2)0.0270 (6)
H40.27680.56320.42650.032*
O50.2535 (3)0.2935 (2)0.3108 (3)0.0319 (7)
H50.23450.21670.28340.038*
O60.2930 (3)0.4050 (3)0.1919 (3)0.0300 (6)
H60.26410.41010.12590.036*
O70.5151 (3)0.5772 (3)0.2746 (3)0.0318 (7)
H70.48190.58570.21060.038*
O1W0.9176 (6)0.9244 (5)0.1886 (5)0.099 (2)
O2W0.2056 (6)0.3635 (6)0.8483 (10)0.164 (5)
O3W0.7496 (10)0.0277 (6)0.2135 (9)0.167 (5)
O4W0.0220 (10)0.7811 (8)0.2762 (9)0.160 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0206 (3)0.0220 (3)0.0210 (3)0.0072 (2)0.0102 (2)0.0090 (2)
Fe30.0191 (3)0.0276 (3)0.0237 (3)0.0076 (2)0.0087 (2)0.0099 (2)
Fe40.0229 (3)0.0278 (3)0.0214 (3)0.0105 (2)0.0127 (2)0.0083 (2)
Fe20.0299 (3)0.0265 (3)0.0305 (3)0.0106 (2)0.0171 (3)0.0153 (2)
Br10.1024 (7)0.0303 (4)0.0613 (5)0.0157 (4)0.0392 (5)0.0069 (3)
Br20.0480 (5)0.1350 (9)0.0900 (7)0.0354 (5)0.0309 (4)0.0911 (7)
Br30.0626 (8)0.0739 (9)0.0590 (7)0.0334 (7)0.0387 (7)0.0255 (7)
Br40.0940 (13)0.0914 (12)0.1360 (17)0.0513 (10)0.0736 (13)0.0751 (12)
Br50.0651 (15)0.0779 (17)0.125 (2)0.0240 (12)0.0501 (16)0.0118 (15)
Br60.065 (3)0.094 (5)0.075 (3)0.026 (3)0.032 (2)0.041 (3)
Br70.0614 (14)0.0700 (16)0.0581 (14)0.0233 (12)0.0175 (11)0.0296 (12)
Br80.051 (2)0.055 (2)0.263 (8)0.0326 (17)0.068 (4)0.089 (4)
Br90.098 (6)0.312 (16)0.198 (10)0.091 (8)0.056 (6)0.123 (11)
N210.041 (2)0.039 (2)0.042 (2)0.0108 (18)0.0264 (19)0.0193 (19)
C220.073 (4)0.087 (5)0.048 (3)0.022 (4)0.031 (3)0.046 (4)
C230.064 (4)0.107 (6)0.112 (6)0.042 (4)0.040 (4)0.092 (6)
N240.051 (3)0.057 (3)0.097 (4)0.030 (2)0.043 (3)0.056 (3)
C250.119 (7)0.050 (4)0.177 (9)0.057 (4)0.118 (7)0.060 (5)
C260.146 (9)0.031 (3)0.109 (7)0.029 (4)0.093 (7)0.019 (4)
N270.072 (3)0.032 (2)0.039 (2)0.000 (2)0.029 (2)0.0120 (19)
C280.046 (3)0.057 (4)0.056 (4)0.012 (3)0.011 (3)0.022 (3)
C290.050 (3)0.052 (3)0.064 (4)0.009 (3)0.037 (3)0.024 (3)
N310.031 (2)0.0305 (19)0.034 (2)0.0061 (16)0.0099 (17)0.0105 (16)
C320.035 (3)0.043 (3)0.057 (4)0.003 (2)0.018 (3)0.008 (3)
C330.041 (3)0.070 (4)0.059 (4)0.002 (3)0.025 (3)0.026 (3)
N340.028 (2)0.061 (3)0.039 (2)0.009 (2)0.0172 (18)0.016 (2)
C350.034 (3)0.091 (5)0.051 (3)0.033 (3)0.020 (3)0.013 (3)
C360.049 (3)0.047 (3)0.061 (4)0.029 (3)0.018 (3)0.012 (3)
N370.030 (2)0.035 (2)0.041 (2)0.0141 (17)0.0094 (17)0.0152 (18)
C380.038 (3)0.058 (3)0.037 (3)0.020 (3)0.005 (2)0.022 (3)
C390.042 (3)0.048 (3)0.031 (2)0.013 (2)0.011 (2)0.013 (2)
N410.030 (2)0.041 (2)0.039 (2)0.0163 (18)0.0150 (18)0.0061 (18)
C420.052 (4)0.068 (4)0.066 (4)0.038 (3)0.021 (3)0.029 (3)
C430.068 (4)0.053 (4)0.089 (5)0.039 (3)0.035 (4)0.031 (4)
N440.046 (2)0.031 (2)0.038 (2)0.0147 (18)0.0256 (19)0.0098 (17)
C450.060 (4)0.040 (3)0.044 (3)0.004 (3)0.024 (3)0.001 (2)
C460.062 (4)0.055 (4)0.037 (3)0.005 (3)0.021 (3)0.002 (3)
N470.040 (2)0.052 (3)0.032 (2)0.013 (2)0.0216 (18)0.0147 (19)
C480.044 (3)0.086 (5)0.067 (4)0.025 (3)0.040 (3)0.026 (4)
C490.052 (4)0.096 (5)0.052 (4)0.019 (4)0.037 (3)0.028 (4)
O10.0209 (13)0.0246 (13)0.0190 (12)0.0067 (11)0.0095 (11)0.0075 (11)
O20.0330 (16)0.0292 (15)0.0370 (17)0.0164 (13)0.0223 (14)0.0178 (13)
O30.0266 (15)0.0359 (16)0.0341 (16)0.0140 (13)0.0180 (13)0.0196 (13)
O40.0239 (14)0.0260 (14)0.0255 (14)0.0104 (12)0.0093 (12)0.0076 (12)
O50.0335 (16)0.0201 (14)0.0280 (15)0.0057 (12)0.0072 (13)0.0070 (12)
O60.0234 (14)0.0426 (17)0.0275 (15)0.0116 (13)0.0138 (12)0.0181 (13)
O70.0288 (16)0.0327 (16)0.0285 (15)0.0077 (13)0.0104 (13)0.0142 (13)
O1W0.075 (4)0.084 (4)0.081 (4)0.023 (3)0.013 (3)0.007 (3)
O2W0.074 (4)0.091 (5)0.263 (12)0.038 (4)0.073 (6)0.009 (6)
O3W0.251 (12)0.061 (4)0.223 (10)0.010 (5)0.188 (10)0.036 (5)
O4W0.179 (10)0.125 (7)0.184 (10)0.057 (7)0.096 (8)0.067 (7)
Geometric parameters (Å, º) top
Fe1—O1i1.959 (3)C32—H32A0.97
Fe1—O11.967 (3)C32—H32B0.97
Fe1—O22.030 (3)C33—N341.493 (8)
Fe1—O42.031 (3)C33—H33A0.97
Fe1—O52.040 (3)C33—H33B0.97
Fe1—O32.084 (3)N34—C351.487 (9)
Fe1—Fe1i2.9193 (12)N34—H340.91
Fe3—O51.922 (3)C35—C361.500 (11)
Fe3—O41.950 (3)C35—H35A0.97
Fe3—O61.964 (3)C35—H35B0.97
Fe3—N372.159 (4)C36—N371.485 (8)
Fe3—N342.161 (4)C36—H36A0.97
Fe3—N312.181 (4)C36—H36B0.97
Fe4—O11.872 (3)N37—C381.498 (7)
Fe4—O61.989 (3)N37—H370.91
Fe4—O72.011 (3)C38—C391.503 (8)
Fe4—N412.156 (4)C38—H38A0.97
Fe4—N442.167 (4)C38—H38B0.97
Fe4—N472.241 (4)C39—H39A0.97
Fe2—O31.939 (3)C39—H39B0.97
Fe2—O21.957 (3)N41—C481.471 (8)
Fe2—O7i1.967 (3)N41—C421.473 (8)
Fe2—N242.160 (5)N41—H410.91
Fe2—N212.170 (4)C42—C431.486 (10)
Fe2—N272.179 (5)C42—H42A0.97
N21—C221.473 (8)C42—H42B0.97
N21—C291.485 (7)C43—N441.486 (8)
N21—H210.91C43—H43A0.97
C22—C231.468 (12)C43—H43B0.97
C22—H22A0.97N44—C451.463 (7)
C22—H22B0.97N44—H440.91
C23—N241.503 (9)C45—C461.484 (9)
C23—H23A0.97C45—H45A0.97
C23—H23B0.97C45—H45B0.97
N24—C251.485 (11)C46—N471.480 (8)
N24—H240.91C46—H46A0.97
C25—C261.477 (14)C46—H46B0.97
C25—H25A0.97N47—C491.455 (7)
C25—H25B0.97N47—H470.91
C26—N271.477 (10)C48—C491.490 (10)
C26—H26A0.97C48—H48A0.97
C26—H26B0.97C48—H48B0.97
N27—C281.469 (9)C49—H49A0.97
N27—H270.91C49—H49B0.97
C28—C291.522 (9)O1—Fe1i1.959 (3)
C28—H28A0.97O2—H20.93
C28—H28B0.97O3—H30.93
C29—H29A0.97O4—H40.93
C29—H29B0.97O5—H50.93
N31—C321.471 (7)O6—H60.93
N31—C391.475 (7)O7—Fe2i1.967 (3)
N31—H310.91O7—H70.93
C32—C331.496 (9)
O1i—Fe1—O183.91 (12)Fe3—N31—H31108
O1i—Fe1—O295.91 (13)N31—C32—C33110.2 (4)
O1—Fe1—O296.38 (12)N31—C32—H32A109.6
O1i—Fe1—O498.71 (12)C33—C32—H32A109.6
O1—Fe1—O495.91 (12)N31—C32—H32B109.6
O2—Fe1—O4161.78 (13)C33—C32—H32B109.6
O1i—Fe1—O5173.99 (13)H32A—C32—H32B108.1
O1—Fe1—O594.96 (13)C32—C33—N34109.6 (5)
O2—Fe1—O590.08 (13)C32—C33—H33A109.7
O4—Fe1—O575.50 (12)N34—C33—H33A109.7
O1i—Fe1—O392.34 (12)C32—C33—H33B109.7
O1—Fe1—O3171.78 (12)N34—C33—H33B109.7
O2—Fe1—O376.68 (12)H33A—C33—H33B108.2
O4—Fe1—O391.88 (12)C35—N34—C33113.8 (5)
O5—Fe1—O389.51 (13)C35—N34—Fe3112.0 (4)
O1i—Fe1—Fe1i42.06 (8)C33—N34—Fe3106.0 (4)
O1—Fe1—Fe1i41.85 (8)C35—N34—H34108.3
O2—Fe1—Fe1i98.28 (9)C33—N34—H34108.3
O4—Fe1—Fe1i99.85 (9)Fe3—N34—H34108.3
O5—Fe1—Fe1i136.52 (10)N34—C35—C36111.1 (5)
O3—Fe1—Fe1i133.97 (9)N34—C35—H35A109.4
O5—Fe3—O480.12 (13)C36—C35—H35A109.4
O5—Fe3—O691.56 (14)N34—C35—H35B109.4
O4—Fe3—O698.27 (13)C36—C35—H35B109.4
O5—Fe3—N37174.22 (14)H35A—C35—H35B108
O4—Fe3—N37105.55 (14)N37—C36—C35110.3 (5)
O6—Fe3—N3788.72 (16)N37—C36—H36A109.6
O5—Fe3—N3499.76 (18)C35—C36—H36A109.6
O4—Fe3—N3490.68 (15)N37—C36—H36B109.6
O6—Fe3—N34166.65 (16)C35—C36—H36B109.6
N37—Fe3—N3479.30 (18)H36A—C36—H36B108.1
O5—Fe3—N3194.51 (14)C36—N37—C38113.8 (4)
O4—Fe3—N31166.15 (15)C36—N37—Fe3105.7 (4)
O6—Fe3—N3194.61 (15)C38—N37—Fe3110.9 (3)
N37—Fe3—N3179.71 (16)C36—N37—H37108.8
N34—Fe3—N3177.58 (17)C38—N37—H37108.8
O1—Fe4—O6101.07 (13)Fe3—N37—H37108.8
O1—Fe4—O7100.17 (13)N37—C38—C39112.8 (4)
O6—Fe4—O791.81 (13)N37—C38—H38A109
O1—Fe4—N4196.46 (15)C39—C38—H38A109
O6—Fe4—N41161.28 (15)N37—C38—H38B109
O7—Fe4—N4191.53 (16)C39—C38—H38B109
O1—Fe4—N4493.52 (15)H38A—C38—H38B107.8
O6—Fe4—N4493.53 (16)N31—C39—C38110.8 (5)
O7—Fe4—N44164.07 (15)N31—C39—H39A109.5
N41—Fe4—N4478.78 (17)C38—C39—H39A109.5
O1—Fe4—N47168.91 (16)N31—C39—H39B109.5
O6—Fe4—N4785.47 (15)C38—C39—H39B109.5
O7—Fe4—N4788.46 (15)H39A—C39—H39B108.1
N41—Fe4—N4776.20 (17)C48—N41—C42114.8 (5)
N44—Fe4—N4777.03 (17)C48—N41—Fe4114.9 (4)
O3—Fe2—O281.87 (13)C42—N41—Fe4105.8 (4)
O3—Fe2—O7i90.92 (14)C48—N41—H41106.9
O2—Fe2—O7i98.43 (14)C42—N41—H41106.9
O3—Fe2—N24174.30 (19)Fe4—N41—H41106.9
O2—Fe2—N2497.05 (17)N41—C42—C43110.7 (5)
O7i—Fe2—N2494.8 (2)N41—C42—H42A109.5
O3—Fe2—N21100.72 (16)C43—C42—H42A109.5
O2—Fe2—N21168.66 (15)N41—C42—H42B109.5
O7i—Fe2—N2192.59 (15)C43—C42—H42B109.5
N24—Fe2—N2179.26 (19)H42A—C42—H42B108.1
O3—Fe2—N2795.36 (18)C42—C43—N44112.9 (5)
O2—Fe2—N2790.87 (16)C42—C43—H43A109
O7i—Fe2—N27169.44 (16)N44—C43—H43A109
N24—Fe2—N2779.0 (2)C42—C43—H43B109
N21—Fe2—N2777.93 (18)N44—C43—H43B109
C22—N21—C29113.4 (5)H43A—C43—H43B107.8
C22—N21—Fe2105.5 (4)C45—N44—C43112.6 (5)
C29—N21—Fe2113.1 (3)C45—N44—Fe4108.8 (4)
C22—N21—H21108.2C43—N44—Fe4111.0 (4)
C29—N21—H21108.2C45—N44—H44108.1
Fe2—N21—H21108.2C43—N44—H44108.1
N21—C22—C23110.9 (6)Fe4—N44—H44108.1
N21—C22—H22A109.5N44—C45—C46112.0 (5)
C23—C22—H22A109.5N44—C45—H45A109.2
N21—C22—H22B109.5C46—C45—H45A109.2
C23—C22—H22B109.5N44—C45—H45B109.2
H22A—C22—H22B108.1C46—C45—H45B109.2
C22—C23—N24112.4 (5)H45A—C45—H45B107.9
C22—C23—H23A109.1C45—C46—N47112.2 (5)
N24—C23—H23A109.1C45—C46—H46A109.2
C22—C23—H23B109.1N47—C46—H46A109.2
N24—C23—H23B109.1C45—C46—H46B109.2
H23A—C23—H23B107.8N47—C46—H46B109.2
C25—N24—C23113.4 (6)H46A—C46—H46B107.9
C25—N24—Fe2104.8 (5)C49—N47—C46113.0 (5)
C23—N24—Fe2110.7 (4)C49—N47—Fe4107.5 (4)
C25—N24—H24109.3C46—N47—Fe4111.9 (4)
C23—N24—H24109.3C49—N47—H47108.1
Fe2—N24—H24109.3C46—N47—H47108.1
C26—C25—N24112.2 (6)Fe4—N47—H47108.1
C26—C25—H25A109.2N41—C48—C49112.7 (5)
N24—C25—H25A109.2N41—C48—H48A109
C26—C25—H25B109.2C49—C48—H48A109
N24—C25—H25B109.2N41—C48—H48B109
H25A—C25—H25B107.9C49—C48—H48B109
N27—C26—C25111.5 (6)H48A—C48—H48B107.8
N27—C26—H26A109.3N47—C49—C48111.0 (6)
C25—C26—H26A109.3N47—C49—H49A109.4
N27—C26—H26B109.3C48—C49—H49A109.4
C25—C26—H26B109.3N47—C49—H49B109.4
H26A—C26—H26B108C48—C49—H49B109.4
C28—N27—C26115.4 (5)H49A—C49—H49B108
C28—N27—Fe2106.6 (4)Fe4—O1—Fe1i129.53 (15)
C26—N27—Fe2111.7 (5)Fe4—O1—Fe1128.80 (15)
C28—N27—H27107.6Fe1i—O1—Fe196.09 (12)
C26—N27—H27107.6Fe2—O2—Fe1100.32 (13)
Fe2—N27—H27107.6Fe2—O2—H2129.8
N27—C28—C29109.6 (5)Fe1—O2—H2129.8
N27—C28—H28A109.8Fe2—O3—Fe199.07 (14)
C29—C28—H28A109.8Fe2—O3—H3130.5
N27—C28—H28B109.8Fe1—O3—H3130.5
C29—C28—H28B109.8Fe3—O4—Fe1100.53 (13)
H28A—C28—H28B108.2Fe3—O4—H4129.7
N21—C29—C28110.7 (5)Fe1—O4—H4129.7
N21—C29—H29A109.5Fe3—O5—Fe1101.18 (14)
C28—C29—H29A109.5Fe3—O5—H5129.4
N21—C29—H29B109.5Fe1—O5—H5129.4
C28—C29—H29B109.5Fe3—O6—Fe4128.36 (16)
H29A—C29—H29B108.1Fe3—O6—H6115.8
C32—N31—C39114.0 (4)Fe4—O6—H6115.8
C32—N31—Fe3113.4 (3)Fe2i—O7—Fe4126.63 (17)
C39—N31—Fe3105.2 (3)Fe2i—O7—H7116.7
C32—N31—H31108Fe4—O7—H7116.7
C39—N31—H31108
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···Br10.932.243.142 (3)165
O6—H6···Br20.932.523.271 (3)139
O7—H7···Br20.932.523.306 (3)143
O3—H3···Br3i0.932.323.242 (3)171
O2—H2···Br60.932.313.116 (10)145
O4—H4···Br6i0.932.293.123 (10)149
O2—H2···Br80.932.553.274 (5)135
O4—H4···Br8i0.932.553.298 (5)138
N24—H24···Br70.912.643.519 (6)164
N24—H24···Br80.912.963.591 (8)128
N27—H27···Br10.912.723.562 (5)155
N31—H31···Br10.912.943.643 (4)136
N34—H34···Br3i0.912.543.403 (5)159
N37—H37···Br7i0.912.793.578 (5)146
N37—H37···Br20.913.003.731 (5)139
N41—H41···Br30.913.083.853 (5)144
N47—H47···Br20.912.893.689 (5)148
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe8O2(OH)12(C6H12N3)6]Br8·8H2O
Mr2241.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)13.257 (2), 13.564 (1), 14.831 (4)
α, β, γ (°)108.15 (1), 113.34 (1), 101.43 (1)
V3)2163.0 (8)
Z1
Radiation typeMo Kα
µ (mm1)5.06
Crystal size (mm)0.5 × 0.37 × 0.28
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.142, 0.241
No. of measured, independent and
observed [I > 2σ(I)] reflections
13602, 13085, 8217
Rint0.029
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.209, 1.12
No. of reflections13085
No. of parameters467
No. of restraints39
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.53, 1.03

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Fe1—O1i1.959 (3)Fe4—O11.872 (3)
Fe1—O11.967 (3)Fe4—O61.989 (3)
Fe1—O22.030 (3)Fe4—O72.011 (3)
Fe1—O42.031 (3)Fe4—N412.156 (4)
Fe1—O52.040 (3)Fe4—N442.167 (4)
Fe1—O32.084 (3)Fe4—N472.241 (4)
Fe3—O51.922 (3)Fe2—O31.939 (3)
Fe3—O41.950 (3)Fe2—O21.957 (3)
Fe3—O61.964 (3)Fe2—N242.160 (5)
Fe3—N372.159 (4)Fe2—N212.170 (4)
Fe3—N342.161 (4)Fe2—N272.179 (5)
Fe3—N312.181 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···Br10.932.243.142 (3)165
O6—H6···Br20.932.523.271 (3)139
O7—H7···Br20.932.523.306 (3)143
O3—H3···Br3i0.932.323.242 (3)171
O2—H2···Br60.932.313.116 (10)145
O4—H4···Br6i0.932.293.123 (10)149
O2—H2···Br80.932.553.274 (5)135
O4—H4···Br8i0.932.553.298 (5)138
N24—H24···Br70.912.643.519 (6)164
N24—H24···Br80.912.963.591 (8)128
N27—H27···Br10.912.723.562 (5)155
N31—H31···Br10.912.943.643 (4)136
N34—H34···Br3i0.912.543.403 (5)159
N37—H37···Br7i0.912.793.578 (5)146
N37—H37···Br20.913.003.731 (5)139
N41—H41···Br30.913.083.853 (5)144
N47—H47···Br20.912.893.689 (5)148
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds