Download citation
Download citation
link to html
The structure of trans-[Cu(nbs)2(en)2] [nbs is the p-nitro­benzoxasulfamate anion (C6H3N2O5S) and en is ethyl­enedi­amine, C2H8N2] consists of neutral mol­ecules. The Cu2+ ion occupies an inversion centre and exhibits an elongated distorted octahedral geometry, with two monodentate nbs anions and two bidentate en ligands. Both nbs ligands are O-coordinated via an O atom of the nitro group. The crystal structure is stabilized by hydrogen bonds and weak aromatic π–π stacking interactions between the benzene rings of nbs ligands, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804008773/hb6033sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804008773/hb6033Isup2.hkl
Contains datablock I

CCDC reference: 239062

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.035
  • wR factor = 0.091
  • Data-to-parameter ratio = 12.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... O1 PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... O3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

trans-Bis(ethylenediamine)bis(p-nitrobenzoxasulfamato)copper(II) top
Crystal data top
[Cu(C6H3N2O5S)2(C2H8N2)2]F(000) = 1260
Mr = 614.08Dx = 1.788 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 14720 reflections
a = 10.2967 (11) Åθ = 2.4–29.4°
b = 14.4563 (9) ŵ = 1.21 mm1
c = 15.3929 (14) ÅT = 293 K
β = 95.429 (8)°Plate, brown
V = 2281.0 (4) Å30.6 × 0.3 × 0.07 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
2132 independent reflections
Radiation source: fine-focus sealed tube1472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 2.4°
rotation method scansh = 1212
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 017
Tmin = 0.652, Tmax = 0.919l = 018
2132 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
2132 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.76 e Å3
4 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.03196 (18)
S10.77516 (9)0.36324 (6)0.73605 (6)0.0363 (2)
N10.0191 (3)0.63429 (19)0.46840 (19)0.0388 (7)
H1A0.05870.65800.45790.047*
H1B0.07450.64090.42000.047*
N20.0031 (3)0.5453 (2)0.62321 (18)0.0359 (7)
H2A0.07510.52400.64550.043*
H2B0.06710.52360.65620.043*
N30.3199 (3)0.5700 (2)0.5456 (2)0.0446 (8)
N40.6292 (2)0.35022 (16)0.68446 (17)0.0288 (6)
O10.2486 (3)0.5052 (2)0.51681 (18)0.0564 (7)
O20.2922 (3)0.6511 (2)0.5301 (2)0.0743 (10)
O30.7804 (3)0.47299 (18)0.7409 (2)0.0560 (7)
O40.8651 (3)0.3247 (2)0.68252 (18)0.0580 (8)
O50.7716 (3)0.32032 (18)0.81904 (16)0.0490 (7)
C10.0699 (5)0.6830 (3)0.5420 (2)0.0543 (11)
H1C0.16320.67290.54110.065*
H1D0.05470.74900.53720.065*
C20.0026 (5)0.6474 (3)0.6254 (3)0.0520 (10)
H2C0.08650.67000.63260.062*
H2D0.04720.66910.67430.062*
C30.4390 (3)0.5476 (2)0.5972 (2)0.0329 (8)
C40.5194 (4)0.6185 (2)0.6314 (2)0.0384 (8)
H40.49510.67990.62140.046*
C50.6347 (3)0.5980 (2)0.6798 (2)0.0378 (8)
H50.68910.64530.70230.045*
C60.6694 (3)0.5065 (2)0.6949 (2)0.0320 (7)
C70.5823 (3)0.4375 (2)0.6614 (2)0.0296 (7)
C80.4685 (3)0.4548 (2)0.6127 (2)0.0335 (8)
H80.41340.40750.59080.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0395 (3)0.0272 (3)0.0281 (3)0.0029 (3)0.0025 (2)0.0006 (3)
S10.0365 (5)0.0338 (4)0.0372 (5)0.0054 (4)0.0040 (4)0.0016 (4)
N10.0488 (18)0.0319 (15)0.0349 (15)0.0037 (14)0.0007 (13)0.0020 (12)
N20.0392 (16)0.0359 (16)0.0317 (15)0.0015 (13)0.0013 (13)0.0023 (13)
N30.0428 (18)0.052 (2)0.0385 (17)0.0086 (16)0.0005 (14)0.0004 (15)
N40.0332 (12)0.0116 (10)0.0395 (15)0.0000 (10)0.0072 (11)0.0024 (11)
O10.0400 (14)0.0654 (19)0.0611 (17)0.0040 (15)0.0099 (12)0.0030 (16)
O20.077 (2)0.0532 (19)0.086 (2)0.0238 (16)0.0279 (18)0.0067 (17)
O30.0528 (16)0.0387 (9)0.0725 (19)0.0009 (12)0.0150 (13)0.0001 (13)
O40.0558 (17)0.0654 (18)0.0533 (17)0.0195 (14)0.0066 (14)0.0099 (15)
O50.0623 (17)0.0409 (14)0.0424 (14)0.0056 (13)0.0028 (13)0.0072 (12)
C10.082 (3)0.037 (2)0.044 (2)0.017 (2)0.005 (2)0.0029 (18)
C20.074 (3)0.037 (2)0.044 (2)0.001 (2)0.002 (2)0.0065 (18)
C30.0315 (18)0.037 (2)0.0303 (18)0.0054 (15)0.0009 (15)0.0015 (14)
C40.049 (2)0.0263 (18)0.040 (2)0.0042 (15)0.0040 (17)0.0027 (15)
C50.045 (2)0.0230 (16)0.045 (2)0.0065 (15)0.0015 (16)0.0008 (15)
C60.0360 (15)0.0300 (16)0.0301 (16)0.0056 (14)0.0039 (12)0.0024 (15)
C70.0360 (18)0.0180 (13)0.0344 (17)0.0035 (12)0.0007 (14)0.0015 (13)
C80.0312 (18)0.0347 (19)0.0340 (19)0.0020 (14)0.0003 (15)0.0048 (15)
Geometric parameters (Å, º) top
Cu1—N1i2.007 (3)N3—C31.434 (4)
Cu1—N12.007 (3)N4—C71.385 (4)
Cu1—N2i2.010 (3)O3—C61.374 (4)
Cu1—N22.010 (3)C1—C21.491 (5)
Cu1—O1i2.550 (3)C1—H1C0.9700
Cu1—O12.550 (3)C1—H1D0.9700
S1—O41.412 (3)C2—H2C0.9700
S1—O51.424 (3)C2—H2D0.9700
S1—O31.589 (3)C3—C81.391 (5)
S1—N41.643 (3)C3—C41.390 (5)
N1—C11.472 (5)C4—C51.373 (5)
N1—H1A0.9000C4—H40.9300
N1—H1B0.9000C5—C61.385 (5)
N2—C21.476 (5)C5—H50.9300
N2—H2A0.9000C6—C71.406 (4)
N2—H2B0.9000C7—C81.354 (5)
N3—O21.223 (4)C8—H80.9300
N3—O11.246 (4)
N1—Cu1—N1i180.00 (16)O2—N3—O1122.1 (3)
N1i—Cu1—N2i84.46 (12)O2—N3—C3119.7 (3)
N1—Cu1—N2i95.54 (12)O1—N3—C3118.1 (3)
N1i—Cu1—N295.54 (12)C7—N4—S1107.5 (2)
N1—Cu1—N284.46 (12)C6—O3—S1107.7 (2)
N1—Cu1—O1i85.89 (12)N1—C1—C2109.1 (3)
N2i—Cu1—N2180.00 (16)N1—C1—H1C109.9
N2—Cu1—O1i90.00 (11)C2—C1—H1C109.9
O1i—Cu1—O1180.00 (16)N1—C1—H1D109.9
O1—Cu1—N194.11 (12)C2—C1—H1D109.9
O1—Cu1—N1i85.89 (12)H1C—C1—H1D108.3
O1i—Cu1—N1i94.11 (12)N2—C2—C1109.0 (3)
O1—Cu1—N290.00 (11)N2—C2—H2C109.9
O1—Cu1—N2i90.00 (11)C1—C2—H2C109.9
O1i—Cu1—N2i90.00 (11)N2—C2—H2D109.9
O1—N3—O2122.05 (17)C1—C2—H2D109.9
O1—N3—C3118.11 (17)H2C—C2—H2D108.3
O4—S1—O5115.20 (17)C8—C3—C4122.3 (3)
O4—S1—O3113.57 (19)C8—C3—N3118.3 (3)
O5—S1—O3113.39 (17)C4—C3—N3119.3 (3)
O4—S1—N4107.06 (16)C5—C4—C3120.0 (3)
O5—S1—N4106.49 (15)C5—C4—H4120.0
O3—S1—N499.36 (14)C3—C4—H4120.0
C1—N1—Cu1108.1 (2)C4—C5—C6119.6 (3)
C1—N1—H1A110.1C4—C5—H5120.2
Cu1—N1—H1A110.1C6—C5—H5120.2
Cu1—O1—N3127.6 (2)O3—C6—C5127.7 (3)
C1—N1—H1B110.1O3—C6—C7114.2 (3)
Cu1—N1—H1B110.1C5—C6—C7118.1 (3)
H1A—N1—H1B108.4C8—C7—N4124.9 (3)
C2—N2—Cu1110.3 (2)C8—C7—C6124.1 (3)
C2—N2—H2A109.6N4—C7—C6111.0 (3)
Cu1—N2—H2A109.6C7—C8—C3115.9 (3)
C2—N2—H2B109.6C7—C8—H8122.1
Cu1—N2—H2B109.6C3—C8—H8122.1
H2A—N2—H2B108.1
O1i—Cu1—N1—C170.8 (3)O2—N3—C3—C8179.1 (4)
O1—N3—C3—C4178.9 (3)O1—N3—C3—C80.2 (5)
O1—Cu1—N1—C1109.2 (3)O2—N3—C3—C42.1 (5)
O1i—Cu1—N2—C292.0 (3)O2—N3—O1—Cu137.8 (5)
O1—N3—C3—C80.2 (4)O1—N3—C3—C4179.0 (3)
O1—Cu1—N2—C288.0 (3)C8—C3—C4—C52.2 (5)
N2i—Cu1—N1—C1160.4 (3)N3—C3—C4—C5179.0 (3)
N2i—Cu1—N1—C1160.4 (3)C3—C4—C5—C60.5 (5)
N2—Cu1—N1—C119.6 (3)C3—N3—O1—Cu1143.3 (2)
N2—Cu1—O1—N349.0 (3)S1—O3—C6—C5178.2 (3)
N2i—Cu1—O1—N3131.0 (3)S1—O3—C6—C73.0 (4)
N1i—Cu1—N2—C2173.9 (3)C4—C5—C6—O3179.5 (3)
N1—Cu1—O1—N335.4 (3)C4—C5—C6—C71.7 (5)
N1—Cu1—N2—C26.1 (3)S1—N4—C7—C8175.2 (3)
N1i—Cu1—O1—N3144.6 (3)S1—N4—C7—C64.2 (3)
O4—S1—N4—C7112.9 (2)O3—C6—C7—C8178.5 (3)
O5—S1—N4—C7123.4 (2)C5—C6—C7—C82.5 (5)
O3—S1—N4—C75.5 (3)O3—C6—C7—N40.9 (4)
O4—S1—O3—C6108.4 (2)C5—C6—C7—N4178.0 (3)
O5—S1—O3—C6117.5 (2)N4—C7—C8—C3179.7 (3)
N4—S1—O3—C64.9 (3)C6—C7—C8—C30.9 (5)
Cu1—N1—C1—C241.7 (4)C4—C3—C8—C71.5 (5)
Cu1—N2—C2—C130.4 (4)N3—C3—C8—C7179.7 (3)
N1—C1—C2—N247.7 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5ii0.902.183.069 (4)168
N1—H1A···O4iii0.902.382.993 (4)125
N1—H1A···O20.902.553.265 (5)136
N2—H2A···O3iv0.902.313.178 (4)163
N2—H2B···O3v0.902.243.134 (4)169
Symmetry codes: (ii) x1, y+1, z1/2; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds