organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1656-o1657

2-{1-[2,8-Bis(tri­fluoro­meth­yl)quinolin-4-yl]-3,5,6,7,8,8a-hexa­hydro-1H-1,3-oxazolo[3,4-a]pyridin-3-yl}phenol

aFundação Oswaldo Cruz, Instituto de Tecnologia, em Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, bDepartamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, Brazil, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 June 2011; accepted 9 June 2011; online 18 June 2011)

In the title mefloquine–oxazolidine derivative, C24H20F6N2O2, the oxazoline ring adopts an envelope conformation (the flap atom is N) and the piperidine ring has a chair conformation. The oxazoline and benzene residues lie away from the C6 ring of the quinoline group and, to a first approximation, to one side of the plane through the ten atoms (r.m.s. deviation = 0.025 Å). An intra­molecular O—H⋯N(piperidine) hydrogen bond is present. The crystal packing features C—H⋯O, C—H⋯F and C—H⋯π(hy­droxy­benzene) inter­actions.

Related literature

For background to the anti-mycobacterial activities of quinoline derivatives related to mefloquine, see: Gonçalves et al. (2010[Gonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & da Silva, A. D. (2010). Eur. J. Med. Chem. 45, 6095-6100.]). For additional geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20F6N2O2

  • Mr = 482.42

  • Orthorhombic, F d d 2

  • a = 27.2766 (11) Å

  • b = 34.1005 (9) Å

  • c = 9.4431 (2) Å

  • V = 8783.5 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 120 K

  • 0.40 × 0.20 × 0.16 mm

Data collection
  • Enraf–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.799, Tmax = 1.000

  • 13970 measured reflections

  • 2660 independent reflections

  • 2519 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.10

  • 2660 reflections

  • 308 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring C19–C24.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯N2 0.84 1.93 2.672 (3) 146
C6—H6⋯O1i 0.95 2.52 3.384 (3) 152
C16—H16B⋯F4ii 0.99 2.47 3.043 (3) 116
C18—H18B⋯F1ii 0.99 2.54 3.275 (3) 131
C15—H15BCg1iii 0.99 2.93 3.792 (3) 146
Symmetry codes: (i) [-x+2, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 4}}, -y+{\script{7\over 4}}, z+{\script{3\over 4}}]; (iii) [x-{\script{1\over 4}}, -y+{\script{7\over 4}}, z+{\script{1\over 4}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent publication reported the synthesis and anti-tubercular activity of mefloquine-oxazolidine derivatives (Gonçalves et al., 2010). Subsequently, crystals became available for one of the derivatives, the title compound (I), allowing full characterization by X-ray crystallography.

In (I), Fig. 1, the oxazoline ring adopts an envelope conformation with the flap atom being N2 as seen in the puckering parameters Q(2) = 0.409 (2) Å and ϕ2 = 100.6 (3) ° (Cremer & Pople, 1975). The piperidinyl ring is close to a chair conformation with puckering parameters: Q(2) = 0.060 (3) Å and Q(3) = -0.596 (3) Å, and amplitudes: Q = 0.599 (3) Å, θ = 174.6 (3) ° and ϕ = 214 (3) ° (Cremer & Pople, 1975). The 10 non-hydrogen atom comprising the quinoline residue are co-planar with the r.m.s. deviation being 0.025 Å. With reference to this plane, the oxazolidine residue, with the exception of the O1 atom, lies to one side of the plane. By contrast, the benzene ring is somewhat splayed [forming a dihedral angle of 50.34 (11) °] with half the ring above and the other half below the plane through the quinoline atoms. The oxazolidine and benzene ring are directed away from the C6 ring of the quinoline residue, and the hydroxyl group is orientated to allow the formation of a O—H···N hydrogen bond, Table 1.

Molecules are stabilized in the crystal structure by a combination of C—H···O, C—H···F and C—H···π(hydroxybenzene) interactions, Table 1 and Fig. 2.

Related literature top

For background to the anti-mycobacterial activities of quinoline derivatives related to mefloquine, see: Gonçalves et al. (2010). For additional geometric analysis, see: Cremer & Pople (1975); Spek (2009).

Experimental top

The compound was prepared as reported in the literature (Gonçalves et al., 2010) and was recrystallized from its ethanol solution for the structural study.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O-bound atom was treated similarly with O—H = 0.84 Å, and with Uiso(H) = 1.5Ueq(O). In the absence of significant anomalous scattering effects, 2163 Friedel pairs were averaged in the final refinement. The stereochemistries at the chiral centres were chosen to match the starting mefloquine reagent (Gonçalves et al., 2010).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents of (I) with the C—H···O, C—H···F and C—H···π(hydroxybenzene) interactions shown as orange blue and purple dashed lines, respectively.
2-{1-[2,8-Bis(trifluoromethyl)quinolin-4-yl]-3,5,6,7,8,8a-hexahydro- 1H-1,3-oxazolo[3,4-a]pyridin-3-yl}phenol top
Crystal data top
C24H20F6N2O2F(000) = 3968
Mr = 482.42Dx = 1.459 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 11047 reflections
a = 27.2766 (11) Åθ = 2.9–27.5°
b = 34.1005 (9) ŵ = 0.13 mm1
c = 9.4431 (2) ÅT = 120 K
V = 8783.5 (5) Å3Block, colourless
Z = 160.40 × 0.20 × 0.16 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
2660 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode2519 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.043
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 3532
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 4432
Tmin = 0.799, Tmax = 1.000l = 1112
13970 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0295P)2 + 15.365P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2660 reflectionsΔρmax = 0.20 e Å3
308 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C24H20F6N2O2V = 8783.5 (5) Å3
Mr = 482.42Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 27.2766 (11) ŵ = 0.13 mm1
b = 34.1005 (9) ÅT = 120 K
c = 9.4431 (2) Å0.40 × 0.20 × 0.16 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
2660 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2519 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 1.000Rint = 0.043
13970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0295P)2 + 15.365P]
where P = (Fo2 + 2Fc2)/3
S = 1.10Δρmax = 0.20 e Å3
2660 reflectionsΔρmin = 0.24 e Å3
308 parametersAbsolute structure: nd
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.98349 (6)0.85851 (4)0.25475 (17)0.0325 (3)
F21.03760 (5)0.81329 (5)0.22731 (16)0.0352 (4)
F30.96194 (6)0.80141 (5)0.18235 (15)0.0332 (4)
F40.83400 (6)0.81192 (5)0.47423 (18)0.0387 (4)
F50.85056 (6)0.75173 (5)0.4262 (2)0.0435 (4)
F60.79918 (6)0.76574 (6)0.59082 (19)0.0433 (4)
O11.10450 (6)0.78733 (5)0.67372 (18)0.0214 (3)
O21.10905 (7)0.87646 (6)0.4756 (2)0.0331 (4)
H2O1.09680.87200.55560.050*
N10.93890 (7)0.79834 (6)0.4583 (2)0.0203 (4)
N21.10727 (7)0.85110 (6)0.7433 (2)0.0226 (4)
C10.98410 (8)0.80770 (6)0.4242 (2)0.0187 (4)
C21.02460 (8)0.80730 (6)0.5156 (2)0.0198 (4)
H21.05630.81390.48160.024*
C31.01759 (8)0.79725 (6)0.6548 (2)0.0176 (4)
C40.96894 (8)0.78816 (6)0.7003 (2)0.0189 (4)
C50.95739 (9)0.77823 (7)0.8426 (3)0.0214 (5)
H50.98240.77860.91250.026*
C60.91067 (9)0.76812 (7)0.8798 (3)0.0233 (5)
H60.90340.76160.97530.028*
C70.87321 (9)0.76741 (7)0.7767 (3)0.0242 (5)
H70.84090.76000.80330.029*
C80.88277 (8)0.77726 (7)0.6394 (3)0.0212 (5)
C90.93106 (8)0.78838 (6)0.5973 (2)0.0186 (4)
C100.99188 (8)0.82002 (7)0.2718 (3)0.0236 (5)
C110.84193 (9)0.77694 (8)0.5328 (3)0.0273 (5)
C121.06091 (8)0.79426 (7)0.7548 (2)0.0201 (4)
H121.05560.77190.82180.024*
C131.13849 (8)0.81902 (7)0.6950 (3)0.0231 (5)
H131.16260.81190.77070.028*
C141.07232 (8)0.83156 (7)0.8391 (3)0.0224 (5)
H141.09020.82390.92730.027*
C151.03185 (9)0.85983 (7)0.8790 (3)0.0257 (5)
H15A1.00800.84670.94220.031*
H15B1.01430.86870.79300.031*
C161.05498 (10)0.89492 (8)0.9549 (3)0.0313 (6)
H16A1.02940.91470.97500.038*
H16B1.06900.88621.04630.038*
C171.09526 (10)0.91343 (8)0.8645 (3)0.0341 (6)
H17A1.08030.92580.78010.041*
H17B1.11190.93420.91980.041*
C181.13303 (9)0.88317 (8)0.8172 (3)0.0310 (6)
H18A1.15720.89550.75280.037*
H18B1.15080.87270.90040.037*
C191.16494 (9)0.82626 (7)0.5575 (3)0.0262 (5)
C201.14874 (9)0.85282 (7)0.4556 (3)0.0287 (5)
C211.17304 (11)0.85539 (8)0.3246 (3)0.0372 (7)
H211.16180.87340.25500.045*
C221.21281 (12)0.83207 (9)0.2970 (4)0.0431 (7)
H221.22910.83410.20830.052*
C231.22951 (11)0.80566 (9)0.3970 (4)0.0417 (7)
H231.25700.78950.37700.050*
C241.20596 (10)0.80299 (8)0.5263 (3)0.0331 (6)
H241.21780.78510.59530.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0439 (9)0.0275 (8)0.0262 (8)0.0023 (6)0.0006 (7)0.0088 (6)
F20.0274 (7)0.0554 (10)0.0227 (8)0.0085 (7)0.0077 (6)0.0121 (7)
F30.0377 (9)0.0460 (9)0.0160 (7)0.0085 (7)0.0028 (6)0.0014 (7)
F40.0344 (8)0.0471 (9)0.0347 (9)0.0040 (7)0.0083 (7)0.0118 (8)
F50.0339 (8)0.0578 (11)0.0387 (9)0.0042 (8)0.0057 (8)0.0217 (9)
F60.0202 (7)0.0723 (12)0.0373 (10)0.0094 (7)0.0010 (7)0.0083 (9)
O10.0193 (8)0.0214 (7)0.0236 (8)0.0016 (6)0.0005 (7)0.0004 (7)
O20.0363 (10)0.0313 (9)0.0316 (10)0.0013 (8)0.0036 (8)0.0049 (8)
N10.0217 (9)0.0222 (9)0.0170 (10)0.0002 (7)0.0003 (8)0.0004 (7)
N20.0221 (9)0.0236 (9)0.0222 (10)0.0038 (7)0.0015 (8)0.0026 (8)
C10.0217 (11)0.0182 (10)0.0162 (10)0.0003 (8)0.0000 (9)0.0001 (8)
C20.0211 (10)0.0186 (10)0.0196 (11)0.0006 (8)0.0007 (9)0.0009 (9)
C30.0197 (10)0.0155 (9)0.0175 (11)0.0002 (8)0.0019 (8)0.0010 (8)
C40.0218 (10)0.0166 (9)0.0184 (11)0.0000 (8)0.0015 (9)0.0014 (9)
C50.0266 (12)0.0213 (11)0.0164 (11)0.0000 (9)0.0002 (9)0.0009 (9)
C60.0270 (12)0.0240 (11)0.0188 (11)0.0036 (9)0.0044 (9)0.0026 (9)
C70.0213 (11)0.0238 (11)0.0275 (12)0.0017 (9)0.0054 (10)0.0017 (10)
C80.0205 (11)0.0217 (11)0.0215 (11)0.0003 (9)0.0005 (9)0.0002 (9)
C90.0205 (10)0.0173 (10)0.0180 (11)0.0002 (8)0.0013 (9)0.0008 (8)
C100.0233 (11)0.0278 (12)0.0197 (11)0.0008 (9)0.0010 (10)0.0005 (10)
C110.0210 (11)0.0351 (13)0.0257 (12)0.0012 (10)0.0014 (10)0.0002 (10)
C120.0205 (10)0.0209 (10)0.0189 (11)0.0018 (8)0.0006 (9)0.0014 (9)
C130.0192 (10)0.0248 (11)0.0252 (13)0.0023 (8)0.0043 (9)0.0010 (9)
C140.0223 (11)0.0273 (11)0.0175 (11)0.0033 (9)0.0035 (9)0.0019 (9)
C150.0280 (12)0.0258 (12)0.0232 (12)0.0033 (9)0.0013 (10)0.0053 (10)
C160.0319 (13)0.0308 (13)0.0311 (14)0.0035 (10)0.0018 (11)0.0109 (11)
C170.0362 (14)0.0282 (13)0.0379 (15)0.0092 (10)0.0037 (12)0.0117 (11)
C180.0281 (12)0.0311 (13)0.0338 (14)0.0078 (10)0.0015 (11)0.0068 (11)
C190.0237 (12)0.0261 (12)0.0287 (13)0.0051 (9)0.0027 (10)0.0030 (10)
C200.0310 (13)0.0243 (11)0.0307 (14)0.0067 (9)0.0035 (11)0.0017 (10)
C210.0514 (17)0.0286 (13)0.0316 (15)0.0107 (12)0.0096 (13)0.0003 (12)
C220.0508 (17)0.0393 (16)0.0391 (17)0.0136 (13)0.0220 (14)0.0087 (13)
C230.0344 (15)0.0373 (15)0.0535 (19)0.0066 (13)0.0163 (14)0.0119 (14)
C240.0265 (12)0.0285 (13)0.0444 (16)0.0030 (10)0.0034 (12)0.0038 (12)
Geometric parameters (Å, º) top
F1—C101.342 (3)C8—C91.427 (3)
F2—C101.336 (3)C8—C111.502 (3)
F3—C101.336 (3)C12—C141.532 (3)
F4—C111.332 (3)C12—H121.0000
F5—C111.344 (3)C13—C191.506 (3)
F6—C111.344 (3)C13—H131.0000
O1—C121.434 (3)C14—C151.514 (3)
O1—C131.438 (3)C14—H141.0000
O2—C201.363 (3)C15—C161.530 (3)
O2—H2O0.8400C15—H15A0.9900
N1—C11.314 (3)C15—H15B0.9900
N1—C91.372 (3)C16—C171.528 (4)
N2—C131.460 (3)C16—H16A0.9900
N2—C141.473 (3)C16—H16B0.9900
N2—C181.475 (3)C17—C181.525 (4)
C1—C21.401 (3)C17—H17A0.9900
C1—C101.514 (3)C17—H17B0.9900
C2—C31.372 (3)C18—H18A0.9900
C2—H20.9500C18—H18B0.9900
C3—C41.429 (3)C19—C201.393 (4)
C3—C121.516 (3)C19—C241.403 (4)
C4—C91.419 (3)C20—C211.406 (4)
C4—C51.421 (3)C21—C221.370 (4)
C5—C61.366 (3)C21—H210.9500
C5—H50.9500C22—C231.382 (5)
C6—C71.411 (3)C22—H220.9500
C6—H60.9500C23—C241.382 (4)
C7—C81.364 (3)C23—H230.9500
C7—H70.9500C24—H240.9500
C12—O1—C13109.65 (17)N2—C13—C19115.2 (2)
C20—O2—H2O109.5O1—C13—H13110.0
C1—N1—C9116.2 (2)N2—C13—H13110.0
C13—N2—C14103.32 (18)C19—C13—H13110.0
C13—N2—C18115.18 (19)N2—C14—C15109.69 (19)
C14—N2—C18110.72 (19)N2—C14—C12100.86 (18)
N1—C1—C2125.9 (2)C15—C14—C12120.68 (19)
N1—C1—C10115.6 (2)N2—C14—H14108.3
C2—C1—C10118.5 (2)C15—C14—H14108.3
C3—C2—C1118.8 (2)C12—C14—H14108.3
C3—C2—H2120.6C14—C15—C16108.3 (2)
C1—C2—H2120.6C14—C15—H15A110.0
C2—C3—C4118.1 (2)C16—C15—H15A110.0
C2—C3—C12120.3 (2)C14—C15—H15B110.0
C4—C3—C12121.48 (19)C16—C15—H15B110.0
C9—C4—C5119.2 (2)H15A—C15—H15B108.4
C9—C4—C3118.0 (2)C17—C16—C15111.0 (2)
C5—C4—C3122.8 (2)C17—C16—H16A109.4
C6—C5—C4120.7 (2)C15—C16—H16A109.4
C6—C5—H5119.7C17—C16—H16B109.4
C4—C5—H5119.7C15—C16—H16B109.4
C5—C6—C7120.1 (2)H16A—C16—H16B108.0
C5—C6—H6119.9C18—C17—C16111.7 (2)
C7—C6—H6119.9C18—C17—H17A109.3
C8—C7—C6120.8 (2)C16—C17—H17A109.3
C8—C7—H7119.6C18—C17—H17B109.3
C6—C7—H7119.6C16—C17—H17B109.3
C7—C8—C9120.4 (2)H17A—C17—H17B107.9
C7—C8—C11119.6 (2)N2—C18—C17108.6 (2)
C9—C8—C11120.0 (2)N2—C18—H18A110.0
N1—C9—C4122.9 (2)C17—C18—H18A110.0
N1—C9—C8118.4 (2)N2—C18—H18B110.0
C4—C9—C8118.7 (2)C17—C18—H18B110.0
F3—C10—F2106.9 (2)H18A—C18—H18B108.4
F3—C10—F1106.50 (19)C20—C19—C24118.4 (2)
F2—C10—F1106.81 (19)C20—C19—C13123.4 (2)
F3—C10—C1112.58 (19)C24—C19—C13118.1 (2)
F2—C10—C1112.49 (19)O2—C20—C19122.7 (2)
F1—C10—C1111.2 (2)O2—C20—C21117.4 (2)
F4—C11—F6106.4 (2)C19—C20—C21119.9 (2)
F4—C11—F5106.9 (2)C22—C21—C20120.3 (3)
F6—C11—F5106.0 (2)C22—C21—H21119.9
F4—C11—C8113.1 (2)C20—C21—H21119.9
F6—C11—C8111.8 (2)C21—C22—C23120.6 (3)
F5—C11—C8112.1 (2)C21—C22—H22119.7
O1—C12—C3108.97 (18)C23—C22—H22119.7
O1—C12—C14104.21 (17)C22—C23—C24119.5 (3)
C3—C12—C14115.21 (19)C22—C23—H23120.2
O1—C12—H12109.4C24—C23—H23120.2
C3—C12—H12109.4C23—C24—C19121.2 (3)
C14—C12—H12109.4C23—C24—H24119.4
O1—C13—N2103.34 (18)C19—C24—H24119.4
O1—C13—C19108.15 (19)
C9—N1—C1—C21.9 (3)C2—C3—C12—O123.2 (3)
C9—N1—C1—C10177.92 (19)C4—C3—C12—O1154.04 (19)
N1—C1—C2—C31.7 (3)C2—C3—C12—C1493.5 (3)
C10—C1—C2—C3178.2 (2)C4—C3—C12—C1489.3 (3)
C1—C2—C3—C40.8 (3)C12—O1—C13—N221.6 (2)
C1—C2—C3—C12176.54 (19)C12—O1—C13—C19144.21 (19)
C2—C3—C4—C92.7 (3)C14—N2—C13—O140.1 (2)
C12—C3—C4—C9174.6 (2)C18—N2—C13—O1160.9 (2)
C2—C3—C4—C5178.6 (2)C14—N2—C13—C19157.82 (19)
C12—C3—C4—C54.1 (3)C18—N2—C13—C1981.3 (3)
C9—C4—C5—C61.5 (3)C13—N2—C14—C15170.42 (19)
C3—C4—C5—C6177.2 (2)C18—N2—C14—C1565.7 (2)
C4—C5—C6—C70.0 (4)C13—N2—C14—C1242.1 (2)
C5—C6—C7—C80.9 (4)C18—N2—C14—C12165.92 (19)
C6—C7—C8—C90.2 (4)O1—C12—C14—N228.6 (2)
C6—C7—C8—C11178.9 (2)C3—C12—C14—N290.8 (2)
C1—N1—C9—C40.3 (3)O1—C12—C14—C15149.4 (2)
C1—N1—C9—C8178.9 (2)C3—C12—C14—C1530.1 (3)
C5—C4—C9—N1178.7 (2)N2—C14—C15—C1660.6 (3)
C3—C4—C9—N12.6 (3)C12—C14—C15—C16177.0 (2)
C5—C4—C9—C82.1 (3)C14—C15—C16—C1754.6 (3)
C3—C4—C9—C8176.6 (2)C15—C16—C17—C1853.1 (3)
C7—C8—C9—N1179.5 (2)C13—N2—C18—C17178.2 (2)
C11—C8—C9—N10.4 (3)C14—N2—C18—C1761.5 (3)
C7—C8—C9—C41.3 (3)C16—C17—C18—N255.2 (3)
C11—C8—C9—C4179.6 (2)O1—C13—C19—C2091.1 (3)
N1—C1—C10—F332.8 (3)N2—C13—C19—C2023.9 (3)
C2—C1—C10—F3147.4 (2)O1—C13—C19—C2484.1 (3)
N1—C1—C10—F2153.6 (2)N2—C13—C19—C24160.9 (2)
C2—C1—C10—F226.6 (3)C24—C19—C20—O2179.5 (2)
N1—C1—C10—F186.7 (2)C13—C19—C20—O24.3 (4)
C2—C1—C10—F193.2 (2)C24—C19—C20—C210.8 (4)
C7—C8—C11—F4119.2 (3)C13—C19—C20—C21174.4 (2)
C9—C8—C11—F459.9 (3)O2—C20—C21—C22179.1 (3)
C7—C8—C11—F60.9 (3)C19—C20—C21—C220.4 (4)
C9—C8—C11—F6179.9 (2)C20—C21—C22—C230.2 (5)
C7—C8—C11—F5119.8 (3)C21—C22—C23—C240.4 (5)
C9—C8—C11—F561.0 (3)C22—C23—C24—C190.8 (4)
C13—O1—C12—C3118.85 (19)C20—C19—C24—C231.0 (4)
C13—O1—C12—C144.6 (2)C13—C19—C24—C23174.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring C19–C24.
D—H···AD—HH···AD···AD—H···A
O2—H2O···N20.841.932.672 (3)146
C6—H6···O1i0.952.523.384 (3)152
C16—H16B···F4ii0.992.473.043 (3)116
C18—H18B···F1ii0.992.543.275 (3)131
C15—H15B···Cg1iii0.992.933.792 (3)146
Symmetry codes: (i) x+2, y+3/2, z+1/2; (ii) x+1/4, y+7/4, z+3/4; (iii) x1/4, y+7/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC24H20F6N2O2
Mr482.42
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)120
a, b, c (Å)27.2766 (11), 34.1005 (9), 9.4431 (2)
V3)8783.5 (5)
Z16
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.40 × 0.20 × 0.16
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.799, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13970, 2660, 2519
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.10
No. of reflections2660
No. of parameters308
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0295P)2 + 15.365P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.20, 0.24
Absolute structureNd

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring C19–C24.
D—H···AD—HH···AD···AD—H···A
O2—H2O···N20.841.932.672 (3)146
C6—H6···O1i0.952.523.384 (3)152
C16—H16B···F4ii0.992.473.043 (3)116
C18—H18B···F1ii0.992.543.275 (3)131
C15—H15B···Cg1iii0.992.933.792 (3)146
Symmetry codes: (i) x+2, y+3/2, z+1/2; (ii) x+1/4, y+7/4, z+3/4; (iii) x1/4, y+7/4, z+1/4.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there are gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & da Silva, A. D. (2010). Eur. J. Med. Chem. 45, 6095–6100.  Web of Science PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1656-o1657
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds