organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1248-o1249

(2E)-1-(2-Hy­dr­oxy-5-methyl­phen­yl)-3-(4-meth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India.
*Correspondence e-mail: hkfun@usm.my

(Received 15 April 2011; accepted 21 April 2011; online 29 April 2011)

In the title compound, C17H16O3, the dihedral angle between the aromatic rings is 4.59 (7)° and an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, adjacent mol­ecules are linked by C—H⋯O hydrogen bonds, leading to the formation of [001] supra­molecular chains. Weak C—H⋯π inter­actions consolidate the packing.

Related literature

For a related structure and background references to chalcones, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673-o2674.], 2010[Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312-o313.]); Fun et al. (2009[Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168-o2169.]); Horkaew et al. (2010[Horkaew, J., Suwunwong, T., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o800-o801.]); Lu et al. (2009[Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420-o421.]); Wang et al. (2009[Wang, G.-Z., Fang, B. & Zhou, C.-H. (2009). Acta Cryst. E65, o2619.], 2010[Wang, X.-L., Wang, G.-Z., Geng, R.-X. & Zhou, C.-H. (2010). Acta Cryst. E66, o320.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O3

  • Mr = 268.30

  • Monoclinic, P 21 /c

  • a = 12.6990 (18) Å

  • b = 8.8022 (13) Å

  • c = 13.172 (2) Å

  • β = 105.565 (2)°

  • V = 1418.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.46 × 0.32 × 0.18 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.984

  • 11493 measured reflections

  • 4090 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.02

  • 4090 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.95 (2) 1.65 (2) 2.5112 (18) 149.4 (19)
C11—H11A⋯O3i 0.93 2.60 3.4317 (17) 149
C16—H16CCg1ii 0.96 2.81 3.5800 (18) 138
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our studies on the crystal structures of chalcones (Fun et al., 2010), we now report the synthesis and crystal structure of the title compound, (I). The structures of some related chalcones viz: (Z)-3-(9-anthryl)-1-(4-methoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2009), (Z)-3-(9-anthryl)- 1-(2-thienyl)prop-2-en-1-one (Fun et al., 2009), (E)-3- (anthracen-9-yl)-1-(4-bromophenyl)prop-2-en-1-one (Suwunwong et al., 2009), (Z)-3-(9-anthryl)-1-(4-bromophenyl)-2-(4-nitro-1H- imidazol-1-yl)prop-2-en-1-one (Lu et al., 2009),(Z)-3- (9-anthryl)-2-(4-nitro-1H-imidazol-1-yl)-1-p-tolylprop- 2-en-1-one (Wang et al., 2009), (E)-3-(9-anthryl)-1- (4-fluorophenyl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1-one (Wang et al., 2010), (E)-3-(anthracen-9-yl)-1-(furan-2-yl) prop-2-en-1-one (Horkaew et al., 2010), and an orthorhombic polymorph of (Z)-3-(9-anthryl)-1-(2-thienyl)prop-2-en-1-one (Chantrapromma et al., 2010) and 2(E)-3-(4-hydroxyphenyl)-1-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al.,2011) have been reported.

The molecular structure is shown in Fig. 1. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) stabilizes the molecular structure and forms an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the phenyl (C1–C6) ring and the methoxy-substituted phenyl (C10–C15) ring is 4.59 (7)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chain along the c-axis by intermolecular C11—H11A···O3 hydrogen bonds (Table 1). There are also C—H···π interactions (Table 1) which involves C16 and phenyl ring (Cg1 = C1–C6).

Related literature top

For a related structure and background references to chalcones, see: Fun et al. (2010). For related structures, see: Chantrapromma et al. (2009, 2010); Fun et al. (2009); Horkaew et al. (2010); Lu et al. (2009); Suwunwong et al. (2009); Wang et al. (2009, 2010); Jasinski et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-5-methylacetophenone (1.50 g, 0.01 mol) was mixed with 4-methoxybenzaldehyde (1.36 g, 0.01 mol) and dissolved in ethanol (40 ml). To this solution, 5 ml of KOH (50%) was added at 278 K. The reaction mixture stirred for 6 h and poured on to crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Orange blocks of (I) were grown by the slow evaporation of the solution of the compound in ethyl alcohol (m. p.: 361 K). Composition: Found (Calculated) for C17H16O3, C: 76.10 (76.16); H: 6.01 (6.05).

Refinement top

H1O1 atom attached to the O atom was located from the difference map and refined freely [O–H = 0.94 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the intramolecular bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
(2E)-1-(2-Hydroxy-5-methylphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H16O3F(000) = 568
Mr = 268.30Dx = 1.256 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2769 reflections
a = 12.6990 (18) Åθ = 2.8–28.6°
b = 8.8022 (13) ŵ = 0.09 mm1
c = 13.172 (2) ÅT = 296 K
β = 105.565 (2)°Block, orange
V = 1418.3 (4) Å30.46 × 0.32 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4090 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 29.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.962, Tmax = 0.984k = 1012
11493 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1652P]
where P = (Fo2 + 2Fc2)/3
4090 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H16O3V = 1418.3 (4) Å3
Mr = 268.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6990 (18) ŵ = 0.09 mm1
b = 8.8022 (13) ÅT = 296 K
c = 13.172 (2) Å0.46 × 0.32 × 0.18 mm
β = 105.565 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4090 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2608 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.984Rint = 0.024
11493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
4090 reflectionsΔρmin = 0.16 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13821 (11)0.18686 (15)0.32930 (8)0.0794 (4)
O20.26594 (9)0.35672 (14)0.26545 (7)0.0758 (3)
O30.51456 (8)0.87081 (13)0.15126 (7)0.0666 (3)
C10.03317 (10)0.26022 (14)0.04622 (10)0.0486 (3)
H1A0.05180.31250.00780.058*
C20.06268 (11)0.17724 (16)0.02260 (12)0.0553 (3)
C30.08898 (13)0.10217 (19)0.10552 (15)0.0704 (4)
H3A0.15380.04720.09210.084*
C40.02277 (15)0.10664 (19)0.20568 (15)0.0728 (4)
H4A0.04270.05430.25900.087*
C50.07432 (12)0.18853 (16)0.22906 (11)0.0581 (4)
C60.10376 (10)0.26897 (14)0.14840 (10)0.0468 (3)
C70.20644 (11)0.35632 (16)0.17338 (10)0.0502 (3)
C80.23943 (10)0.44232 (15)0.09183 (10)0.0488 (3)
H8A0.19290.44690.02400.059*
C90.33518 (10)0.51410 (15)0.11356 (10)0.0478 (3)
H9A0.37900.50370.18220.057*
C100.38013 (9)0.60674 (14)0.04375 (9)0.0442 (3)
C110.48166 (10)0.67433 (16)0.08326 (10)0.0501 (3)
H11A0.51880.65890.15360.060*
C120.52938 (10)0.76377 (16)0.02169 (10)0.0504 (3)
H12A0.59730.80810.05040.060*
C130.47519 (10)0.78657 (15)0.08275 (9)0.0477 (3)
C140.37276 (11)0.72165 (17)0.12373 (10)0.0581 (4)
H14A0.33550.73850.19390.070*
C150.32612 (10)0.63348 (16)0.06231 (10)0.0542 (3)
H15A0.25770.59070.09120.065*
C160.13460 (12)0.16543 (19)0.08791 (14)0.0704 (4)
H16A0.10210.22040.13470.106*
H16B0.20510.20770.09110.106*
H16C0.14270.06060.10860.106*
C170.61893 (12)0.93974 (19)0.11419 (12)0.0645 (4)
H17A0.63620.99420.17080.097*
H17B0.67310.86270.08860.097*
H17C0.61811.00900.05810.097*
H1O10.2008 (17)0.245 (2)0.3290 (16)0.107 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1019 (9)0.0879 (9)0.0533 (6)0.0055 (7)0.0295 (6)0.0145 (6)
O20.0760 (7)0.1013 (9)0.0451 (5)0.0174 (6)0.0078 (5)0.0079 (5)
O30.0642 (6)0.0840 (8)0.0509 (5)0.0187 (5)0.0142 (5)0.0088 (5)
C10.0523 (7)0.0438 (7)0.0542 (7)0.0022 (6)0.0222 (6)0.0008 (6)
C20.0514 (7)0.0456 (8)0.0729 (9)0.0012 (6)0.0239 (6)0.0062 (6)
C30.0651 (9)0.0595 (10)0.0961 (13)0.0098 (7)0.0380 (9)0.0011 (9)
C40.0863 (11)0.0626 (10)0.0845 (11)0.0079 (9)0.0488 (10)0.0088 (8)
C50.0756 (9)0.0509 (8)0.0567 (8)0.0042 (7)0.0331 (7)0.0038 (6)
C60.0552 (7)0.0413 (7)0.0496 (7)0.0036 (6)0.0241 (6)0.0015 (5)
C70.0570 (7)0.0503 (8)0.0454 (6)0.0025 (6)0.0172 (6)0.0010 (5)
C80.0537 (7)0.0499 (7)0.0428 (6)0.0015 (6)0.0130 (5)0.0013 (5)
C90.0503 (6)0.0489 (7)0.0435 (6)0.0024 (6)0.0114 (5)0.0028 (5)
C100.0445 (6)0.0453 (7)0.0427 (6)0.0028 (5)0.0113 (5)0.0040 (5)
C110.0458 (6)0.0617 (9)0.0395 (6)0.0009 (6)0.0058 (5)0.0004 (6)
C120.0400 (6)0.0621 (9)0.0462 (6)0.0029 (6)0.0065 (5)0.0027 (6)
C130.0483 (6)0.0521 (8)0.0434 (6)0.0004 (6)0.0135 (5)0.0012 (5)
C140.0554 (7)0.0723 (10)0.0401 (6)0.0100 (7)0.0016 (6)0.0034 (6)
C150.0465 (7)0.0632 (9)0.0481 (7)0.0098 (6)0.0042 (5)0.0018 (6)
C160.0544 (8)0.0657 (10)0.0876 (11)0.0045 (7)0.0131 (8)0.0117 (8)
C170.0614 (8)0.0662 (10)0.0707 (9)0.0104 (7)0.0257 (7)0.0025 (7)
Geometric parameters (Å, º) top
O1—C51.3517 (18)C9—C101.4554 (17)
O1—H1O10.94 (2)C9—H9A0.9300
O2—C71.2449 (15)C10—C111.3881 (17)
O3—C131.3624 (15)C10—C151.4011 (17)
O3—C171.4198 (17)C11—C121.3814 (18)
C1—C21.3815 (18)C11—H11A0.9300
C1—C61.4048 (18)C12—C131.3778 (17)
C1—H1A0.9300C12—H12A0.9300
C2—C31.392 (2)C13—C141.3903 (18)
C2—C161.500 (2)C14—C151.3656 (19)
C3—C41.361 (2)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9300
C4—C51.390 (2)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.4082 (18)C16—H16C0.9600
C6—C71.4729 (18)C17—H17A0.9600
C7—C81.4641 (18)C17—H17B0.9600
C8—C91.3315 (17)C17—H17C0.9600
C8—H8A0.9300
C5—O1—H1O1106.0 (13)C11—C10—C9119.05 (11)
C13—O3—C17118.65 (11)C15—C10—C9123.64 (11)
C2—C1—C6122.82 (12)C12—C11—C10122.26 (11)
C2—C1—H1A118.6C12—C11—H11A118.9
C6—C1—H1A118.6C10—C11—H11A118.9
C1—C2—C3117.18 (14)C13—C12—C11119.26 (11)
C1—C2—C16121.70 (13)C13—C12—H12A120.4
C3—C2—C16121.11 (14)C11—C12—H12A120.4
C4—C3—C2122.06 (15)O3—C13—C12124.53 (11)
C4—C3—H3A119.0O3—C13—C14115.97 (11)
C2—C3—H3A119.0C12—C13—C14119.50 (12)
C3—C4—C5120.69 (14)C15—C14—C13120.86 (12)
C3—C4—H4A119.7C15—C14—H14A119.6
C5—C4—H4A119.7C13—C14—H14A119.6
O1—C5—C4118.37 (13)C14—C15—C10120.80 (12)
O1—C5—C6122.08 (14)C14—C15—H15A119.6
C4—C5—C6119.54 (14)C10—C15—H15A119.6
C1—C6—C5117.70 (12)C2—C16—H16A109.5
C1—C6—C7122.80 (11)C2—C16—H16B109.5
C5—C6—C7119.49 (12)H16A—C16—H16B109.5
O2—C7—C8119.66 (12)C2—C16—H16C109.5
O2—C7—C6119.25 (12)H16A—C16—H16C109.5
C8—C7—C6121.09 (11)H16B—C16—H16C109.5
C9—C8—C7120.81 (12)O3—C17—H17A109.5
C9—C8—H8A119.6O3—C17—H17B109.5
C7—C8—H8A119.6H17A—C17—H17B109.5
C8—C9—C10128.35 (12)O3—C17—H17C109.5
C8—C9—H9A115.8H17A—C17—H17C109.5
C10—C9—H9A115.8H17B—C17—H17C109.5
C11—C10—C15117.30 (12)
C6—C1—C2—C31.0 (2)O2—C7—C8—C93.8 (2)
C6—C1—C2—C16177.83 (13)C6—C7—C8—C9176.22 (12)
C1—C2—C3—C41.3 (2)C7—C8—C9—C10178.59 (12)
C16—C2—C3—C4177.45 (14)C8—C9—C10—C11178.78 (13)
C2—C3—C4—C50.5 (3)C8—C9—C10—C150.7 (2)
C3—C4—C5—O1178.70 (15)C15—C10—C11—C120.5 (2)
C3—C4—C5—C60.7 (2)C9—C10—C11—C12179.97 (12)
C2—C1—C6—C50.22 (19)C10—C11—C12—C130.4 (2)
C2—C1—C6—C7179.43 (12)C17—O3—C13—C120.6 (2)
O1—C5—C6—C1178.32 (12)C17—O3—C13—C14179.83 (13)
C4—C5—C6—C11.1 (2)C11—C12—C13—O3179.21 (13)
O1—C5—C6—C70.9 (2)C11—C12—C13—C141.2 (2)
C4—C5—C6—C7179.72 (13)O3—C13—C14—C15179.21 (13)
C1—C6—C7—O2178.73 (13)C12—C13—C14—C151.2 (2)
C5—C6—C7—O20.47 (19)C13—C14—C15—C100.3 (2)
C1—C6—C7—C81.27 (19)C11—C10—C15—C140.5 (2)
C5—C6—C7—C8179.54 (12)C9—C10—C15—C14179.98 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.95 (2)1.65 (2)2.5112 (18)149.4 (19)
C11—H11A···O3i0.932.603.4317 (17)149
C16—H16C···Cg1ii0.962.813.5800 (18)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC17H16O3
Mr268.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6990 (18), 8.8022 (13), 13.172 (2)
β (°) 105.565 (2)
V3)1418.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.32 × 0.18
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11493, 4090, 2608
Rint0.024
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.02
No. of reflections4090
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.95 (2)1.65 (2)2.5112 (18)149.4 (19)
C11—H11A···O3i0.932.603.4317 (17)149.4
C16—H16C···Cg1ii0.962.813.5800 (18)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the award of a research scholarship. VMK also thanks P. A. College of Engineering for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673–o2674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312–o313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHorkaew, J., Suwunwong, T., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o800–o801.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G.-Z., Fang, B. & Zhou, C.-H. (2009). Acta Cryst. E65, o2619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X.-L., Wang, G.-Z., Geng, R.-X. & Zhou, C.-H. (2010). Acta Cryst. E66, o320.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1248-o1249
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds