organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(methylammonium thiocyanurate) monohydrate

aHenan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bKey Laboratory of Polymer Materials of Gansu Province, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China
*Correspondence e-mail: yangyx80@nwnu.edu.cn

(Received 18 November 2010; accepted 1 December 2010; online 8 December 2010)

In the title compound, 3[(CH3)3HN+]·3C3H2N3S3·H2O, two independent trithio­cyanurate anions construct a planar hydrogen-bonded ribbon with two N—H⋯S hydrogen bonds linking each pair of adjacent anions in the chain. The third independent anion and the water mol­ecule form a chain by way of N—H⋯S and O—H⋯S contacts, which propagates parallel to the ribbon. The chains and ribbons are cross-linked by O—H⋯S hydrogen bonds, generating sheets. The three independent trimethyl­ammonium cations are contained between the sheets by way of various N—H⋯S and N—H⋯N contacts.

Related literature

For hydrogen-bond formation in the compounds of trithio­cyanuric acid, see: Dean et al. (2004[Dean, P. A. W., Jennings, M., Houle, T. M., Craig, D. C., Dance, I. G., Hook, J. M. & Scudder, M. L. (2004). CrystEngComm, 6, 543-548.]).

[Scheme 1]

Experimental

Crystal data
  • 3C3H10N+·3C3H2N3S3·H2O

  • Mr = 727.23

  • Triclinic, [P \overline 1]

  • a = 11.3466 (1) Å

  • b = 12.6474 (1) Å

  • c = 12.8135 (1) Å

  • α = 76.950 (1)°

  • β = 84.762 (1)°

  • γ = 82.274 (1)°

  • V = 1771.51 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 296 K

  • 0.55 × 0.40 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.]) Tmin = 0.735, Tmax = 0.948

  • 14356 measured reflections

  • 6243 independent reflections

  • 5406 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.05

  • 6243 reflections

  • 388 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯S3 0.86 2.57 3.284 (2) 140
O1W—H1WB⋯S9i 0.87 2.52 3.355 (2) 161
N2—H2⋯S4ii 0.85 (1) 2.48 (1) 3.3196 (17) 168 (2)
N3—H3⋯S6iii 0.85 (1) 2.48 (1) 3.3203 (17) 168 (2)
N4—H4⋯S2ii 0.86 (1) 2.45 (1) 3.2962 (17) 169 (2)
N5—H5⋯S1iii 0.86 (1) 2.49 (1) 3.3316 (17) 167 (2)
N7—H7⋯O1W 0.86 (1) 2.03 (1) 2.878 (3) 172 (3)
N9—H9⋯S8iv 0.86 (1) 2.63 (1) 3.470 (2) 167 (3)
N10—H10⋯N6 0.87 (1) 1.95 (1) 2.804 (3) 168 (3)
N11—H11⋯N1 0.86 (1) 1.95 (1) 2.795 (2) 164 (3)
N12—H12⋯S7v 0.85 (1) 2.69 (2) 3.439 (2) 148 (3)
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y+2, -z+1; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Trithiocyanuric acid, which can be regarded as the polymer of three thiourea molecules, have a strong tendency to form various hydrogen bonds (Dean et al. 2004). Here we report the crystal structure of the title ammonium water-trithiocyanurate, 3[(CH3)3HN+].3C3H2N3S3-.H2O, (I). In this structure, two independent trithiocyanurate anions containing S1 and S4 atoms firstly form the hydrogen-bonded ribbon parallel to (010) plane by four N—H···S hydrogen bonds, and then between two planar ribbons, there exist a totally different waving ribbon composed of the third trithiocyanurate anion and the only water molecule, in which the anion links the water molecule with varied N—H···S and O—H···S contacts (Fig. 2). With the existence of one independent O—H···S interaction between the aforementioned planar hydrogen-bonded ribbon and the waving ribbon, two planar ribbons and one waving ribbon can yield the larger hydrogen-bonded unit as shown in Fig. 3. The ammonium cations, with the existence of N—H···S and N—H···N interactions, are stably accommodated to the intervals of these separated units to form the stable crystal structure.

Related literature top

For hydrogen-bond formation in the compounds of trithiocyanuric acid, see: Dean et al. (2004).

Experimental top

Trithiocyanuric acid (0.044 g, 0.25 mmol) was dissolved in a water-ethanol (1:2 v/v) mixture and a 33% solution of trimethyl amine was added to neutralize the acid. Colorless block crystals separated after several weeks.

Refinement top

Nitrogen-bound H-atoms were placed in calculated positions (N—H 0.86 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.5U(N). The water H-atom was similarly treated.

Structure description top

Trithiocyanuric acid, which can be regarded as the polymer of three thiourea molecules, have a strong tendency to form various hydrogen bonds (Dean et al. 2004). Here we report the crystal structure of the title ammonium water-trithiocyanurate, 3[(CH3)3HN+].3C3H2N3S3-.H2O, (I). In this structure, two independent trithiocyanurate anions containing S1 and S4 atoms firstly form the hydrogen-bonded ribbon parallel to (010) plane by four N—H···S hydrogen bonds, and then between two planar ribbons, there exist a totally different waving ribbon composed of the third trithiocyanurate anion and the only water molecule, in which the anion links the water molecule with varied N—H···S and O—H···S contacts (Fig. 2). With the existence of one independent O—H···S interaction between the aforementioned planar hydrogen-bonded ribbon and the waving ribbon, two planar ribbons and one waving ribbon can yield the larger hydrogen-bonded unit as shown in Fig. 3. The ammonium cations, with the existence of N—H···S and N—H···N interactions, are stably accommodated to the intervals of these separated units to form the stable crystal structure.

For hydrogen-bond formation in the compounds of trithiocyanuric acid, see: Dean et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded linking pattern of the separated unit in the crystal structure of the title compound.
[Figure 3] Fig. 3. Packing diagram of the title compound; all hydrogen atoms bonded to carbon and carbon atoms of the trimethylammonium cations are omitted for clarity and the cations are represented with the hatched spheres.
Tris(methylammonium thiocyanurate) monohydrate top
Crystal data top
3C3H10N+·3C3H2N3S3·H2OZ = 2
Mr = 727.23F(000) = 764
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3466 (1) ÅCell parameters from 8448 reflections
b = 12.6474 (1) Åθ = 2.4–27.6°
c = 12.8135 (1) ŵ = 0.60 mm1
α = 76.950 (1)°T = 296 K
β = 84.762 (1)°Block, colorless
γ = 82.274 (1)°0.55 × 0.40 × 0.09 mm
V = 1771.51 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6243 independent reflections
Radiation source: fine-focus sealed tube5406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
SADABS (Bruker, 2007)
h = 1313
Tmin = 0.735, Tmax = 0.948k = 1514
14356 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.8093P]
where P = (Fo2 + 2Fc2)/3
6243 reflections(Δ/σ)max = 0.002
388 parametersΔρmax = 0.43 e Å3
12 restraintsΔρmin = 0.28 e Å3
Crystal data top
3C3H10N+·3C3H2N3S3·H2Oγ = 82.274 (1)°
Mr = 727.23V = 1771.51 (3) Å3
Triclinic, P1Z = 2
a = 11.3466 (1) ÅMo Kα radiation
b = 12.6474 (1) ŵ = 0.60 mm1
c = 12.8135 (1) ÅT = 296 K
α = 76.950 (1)°0.55 × 0.40 × 0.09 mm
β = 84.762 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6243 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2007)
5406 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.948Rint = 0.016
14356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03612 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
6243 reflectionsΔρmin = 0.28 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56389 (5)0.64769 (5)0.12395 (4)0.04362 (14)
N10.55437 (14)0.63614 (14)0.08580 (12)0.0364 (4)
C10.49478 (16)0.64115 (15)0.00121 (15)0.0339 (4)
O1W0.0658 (2)0.88067 (19)0.01243 (17)0.0861 (6)
H1WA0.10880.81890.01160.129*
H1WB0.09520.92800.06510.129*
S20.56375 (5)0.62637 (5)0.29317 (4)0.04494 (15)
N20.37391 (14)0.62546 (14)0.18974 (13)0.0370 (4)
H20.335 (2)0.624 (2)0.2500 (12)0.055*
C20.49461 (17)0.62957 (15)0.18250 (15)0.0343 (4)
S30.16216 (5)0.63313 (6)0.11585 (5)0.05253 (16)
N30.37320 (14)0.64138 (14)0.01016 (13)0.0377 (4)
H30.337 (2)0.646 (2)0.0466 (13)0.057*
C30.30893 (17)0.63316 (16)0.10501 (15)0.0364 (4)
S40.80586 (5)0.34932 (6)0.59567 (4)0.05156 (16)
N40.61463 (14)0.35390 (15)0.49243 (13)0.0407 (4)
H40.577 (2)0.361 (2)0.5519 (13)0.061*
C40.73630 (17)0.34937 (17)0.48581 (16)0.0381 (4)
S50.40260 (5)0.35735 (6)0.42068 (5)0.05557 (17)
N50.61589 (15)0.34088 (15)0.31875 (13)0.0404 (4)
H50.581 (2)0.343 (2)0.2620 (14)0.061*
C50.54998 (17)0.35067 (17)0.41032 (16)0.0380 (4)
S60.80673 (5)0.33438 (7)0.18635 (5)0.0681 (2)
N60.79689 (14)0.34433 (16)0.39149 (13)0.0428 (4)
C60.73742 (18)0.34035 (19)0.30705 (16)0.0424 (5)
N101.04639 (17)0.32035 (19)0.3879 (2)0.0643 (6)
H100.9696 (10)0.331 (3)0.398 (3)0.096*
C101.0768 (4)0.4212 (3)0.3201 (4)0.1236 (17)
H10A1.05680.47920.35800.185*
H10B1.03320.43720.25650.185*
H10C1.16070.41450.30040.185*
N110.79117 (16)0.68045 (18)0.06442 (19)0.0581 (5)
H110.7233 (16)0.655 (2)0.078 (3)0.087*
C111.1012 (3)0.2929 (4)0.4905 (3)0.1159 (16)
H11A1.08250.35280.52600.174*
H11B1.18600.27870.47860.174*
H11C1.07110.22890.53450.174*
N120.50621 (19)0.00292 (17)0.28412 (18)0.0569 (5)
H120.4444 (18)0.015 (3)0.262 (2)0.085*
C121.0776 (4)0.2293 (4)0.3325 (4)0.1397 (19)
H12A1.04150.24730.26480.210*
H12B1.04890.16450.37590.210*
H12C1.16260.21690.32050.210*
C130.8621 (3)0.6173 (3)0.0050 (3)0.0944 (11)
H13A0.82580.62980.07220.142*
H13B0.86670.54100.02860.142*
H13C0.94090.63920.01750.142*
C140.8474 (3)0.6615 (3)0.1690 (3)0.0917 (11)
H14A0.79980.70310.21500.137*
H14B0.92580.68410.15660.137*
H14C0.85270.58520.20260.137*
C150.7683 (4)0.7964 (3)0.0190 (4)0.1141 (15)
H15A0.73200.80740.04800.171*
H15B0.84200.82800.00720.171*
H15C0.71560.83080.06780.171*
C160.4718 (3)0.0885 (2)0.3457 (3)0.0755 (8)
H16A0.42100.06120.40730.113*
H16B0.43000.15110.30120.113*
H16C0.54200.10900.36870.113*
C170.5840 (3)0.0438 (3)0.1878 (3)0.0974 (11)
H17A0.60510.01250.14790.146*
H17B0.65510.06390.20980.146*
H17C0.54230.10660.14340.146*
C180.5605 (3)0.0983 (2)0.3525 (3)0.0858 (10)
H18A0.50620.12180.41270.129*
H18B0.63310.08500.37760.129*
H18C0.57750.15410.31160.129*
N70.12163 (19)0.92130 (18)0.18856 (17)0.0574 (5)
H70.107 (3)0.916 (3)0.1258 (13)0.086*
S70.34408 (7)0.92115 (7)0.10863 (6)0.0737 (2)
C70.2383 (2)0.92934 (19)0.2065 (2)0.0538 (6)
S80.19623 (6)0.96108 (6)0.50398 (6)0.06475 (19)
N80.26245 (17)0.94371 (16)0.30300 (17)0.0542 (5)
C80.1747 (2)0.95025 (18)0.3790 (2)0.0514 (5)
S90.11137 (7)0.92925 (8)0.23683 (7)0.0800 (2)
N90.05886 (18)0.94998 (17)0.35405 (17)0.0529 (5)
H90.0012 (19)0.964 (2)0.3986 (19)0.079*
C90.0290 (2)0.9339 (2)0.2601 (2)0.0539 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0367 (3)0.0641 (3)0.0296 (3)0.0079 (2)0.0031 (2)0.0103 (2)
N10.0296 (8)0.0493 (10)0.0317 (8)0.0075 (7)0.0002 (6)0.0106 (7)
C10.0329 (9)0.0372 (10)0.0318 (10)0.0057 (8)0.0009 (8)0.0073 (8)
O1W0.0859 (15)0.0935 (15)0.0732 (13)0.0028 (12)0.0087 (11)0.0124 (11)
S20.0367 (3)0.0688 (4)0.0331 (3)0.0108 (2)0.0038 (2)0.0153 (2)
N20.0309 (8)0.0528 (10)0.0290 (8)0.0096 (7)0.0027 (6)0.0114 (7)
C20.0327 (9)0.0379 (10)0.0334 (10)0.0064 (8)0.0011 (8)0.0091 (8)
S30.0302 (3)0.0844 (4)0.0445 (3)0.0137 (3)0.0001 (2)0.0138 (3)
N30.0314 (8)0.0541 (10)0.0287 (8)0.0080 (7)0.0024 (7)0.0095 (7)
C30.0330 (10)0.0435 (11)0.0339 (10)0.0084 (8)0.0005 (8)0.0092 (8)
S40.0354 (3)0.0880 (4)0.0377 (3)0.0090 (3)0.0046 (2)0.0251 (3)
N40.0304 (8)0.0639 (11)0.0310 (9)0.0094 (8)0.0018 (7)0.0164 (8)
C40.0321 (10)0.0489 (11)0.0354 (10)0.0077 (8)0.0004 (8)0.0127 (9)
S50.0297 (3)0.0942 (5)0.0464 (3)0.0143 (3)0.0000 (2)0.0197 (3)
N50.0323 (8)0.0617 (11)0.0308 (9)0.0107 (8)0.0010 (7)0.0150 (8)
C50.0337 (10)0.0475 (11)0.0344 (10)0.0096 (8)0.0011 (8)0.0102 (8)
S60.0400 (3)0.1345 (7)0.0371 (3)0.0152 (3)0.0055 (2)0.0340 (4)
N60.0305 (8)0.0669 (12)0.0346 (9)0.0093 (8)0.0005 (7)0.0176 (8)
C60.0351 (10)0.0594 (13)0.0351 (11)0.0085 (9)0.0001 (8)0.0143 (9)
N100.0338 (10)0.0679 (14)0.0813 (15)0.0089 (10)0.0012 (10)0.0042 (11)
C100.101 (3)0.090 (3)0.164 (4)0.046 (2)0.049 (3)0.041 (3)
N110.0320 (9)0.0626 (13)0.0851 (15)0.0111 (9)0.0005 (10)0.0259 (11)
C110.0499 (17)0.194 (4)0.083 (2)0.014 (2)0.0008 (16)0.011 (3)
N120.0542 (12)0.0575 (12)0.0608 (13)0.0030 (10)0.0084 (10)0.0165 (10)
C120.128 (4)0.116 (3)0.172 (5)0.047 (3)0.033 (3)0.048 (3)
C130.0535 (17)0.131 (3)0.116 (3)0.0040 (18)0.0003 (17)0.068 (2)
C140.0481 (16)0.145 (3)0.091 (2)0.0186 (18)0.0029 (15)0.040 (2)
C150.092 (3)0.065 (2)0.185 (4)0.0214 (18)0.031 (3)0.011 (2)
C160.086 (2)0.0609 (16)0.082 (2)0.0163 (15)0.0168 (16)0.0243 (15)
C170.097 (3)0.110 (3)0.072 (2)0.010 (2)0.0189 (18)0.0126 (19)
C180.092 (2)0.0576 (17)0.106 (3)0.0014 (15)0.032 (2)0.0100 (16)
N70.0571 (12)0.0642 (13)0.0535 (12)0.0103 (10)0.0052 (10)0.0158 (10)
S70.0663 (4)0.0802 (5)0.0686 (4)0.0057 (4)0.0147 (3)0.0129 (4)
C70.0520 (13)0.0428 (12)0.0649 (15)0.0075 (10)0.0010 (11)0.0089 (11)
S80.0578 (4)0.0798 (5)0.0621 (4)0.0077 (3)0.0098 (3)0.0245 (3)
N80.0469 (11)0.0538 (11)0.0646 (13)0.0095 (9)0.0011 (9)0.0174 (10)
C80.0485 (13)0.0445 (12)0.0630 (15)0.0089 (10)0.0031 (11)0.0136 (11)
S90.0556 (4)0.1196 (7)0.0727 (5)0.0239 (4)0.0104 (3)0.0271 (5)
N90.0463 (11)0.0605 (12)0.0567 (12)0.0117 (9)0.0006 (9)0.0200 (10)
C90.0527 (14)0.0547 (14)0.0558 (14)0.0122 (11)0.0021 (11)0.0122 (11)
Geometric parameters (Å, º) top
S1—C11.6819 (19)C11—H11C0.9600
N1—C11.341 (2)N12—C161.470 (3)
N1—C21.348 (2)N12—C181.471 (4)
C1—N31.374 (2)N12—C171.486 (4)
O1W—H1WA0.8619N12—H120.851 (10)
O1W—H1WB0.8691C12—H12A0.9600
S2—C21.6723 (19)C12—H12B0.9600
N2—C31.346 (3)C12—H12C0.9600
N2—C21.371 (2)C13—H13A0.9600
N2—H20.850 (10)C13—H13B0.9600
S3—C31.6585 (19)C13—H13C0.9600
N3—C31.349 (2)C14—H14A0.9600
N3—H30.854 (10)C14—H14B0.9600
S4—C41.675 (2)C14—H14C0.9600
N4—C51.347 (3)C15—H15A0.9600
N4—C41.370 (2)C15—H15B0.9600
N4—H40.857 (10)C15—H15C0.9600
C4—N61.345 (3)C16—H16A0.9600
S5—C51.658 (2)C16—H16B0.9600
N5—C51.354 (3)C16—H16C0.9600
N5—C61.373 (3)C17—H17A0.9600
N5—H50.855 (10)C17—H17B0.9600
S6—C61.682 (2)C17—H17C0.9600
N6—C61.340 (3)C18—H18A0.9600
N10—C101.436 (4)C18—H18B0.9600
N10—C111.456 (4)C18—H18C0.9600
N10—C121.473 (5)N7—C91.347 (3)
N10—H100.865 (10)N7—C71.385 (3)
C10—H10A0.9600N7—H70.856 (10)
C10—H10B0.9600S7—C71.666 (3)
C10—H10C0.9600C7—N81.346 (3)
N11—C131.447 (4)S8—C81.680 (3)
N11—C151.448 (4)N8—C81.336 (3)
N11—C141.493 (4)C8—N91.381 (3)
N11—H110.863 (10)S9—C91.658 (3)
C11—H11A0.9600N9—C91.346 (3)
C11—H11B0.9600N9—H90.857 (10)
C1—N1—C2119.69 (16)C18—N12—H12105 (2)
N1—C1—N3118.93 (16)C17—N12—H12107 (2)
N1—C1—S1122.20 (14)N10—C12—H12A109.5
N3—C1—S1118.87 (14)N10—C12—H12B109.5
H1WA—O1W—H1WB106.8H12A—C12—H12B109.5
C3—N2—C2124.13 (16)N10—C12—H12C109.5
C3—N2—H2116.5 (17)H12A—C12—H12C109.5
C2—N2—H2119.1 (17)H12B—C12—H12C109.5
N1—C2—N2118.82 (17)N11—C13—H13A109.5
N1—C2—S2121.75 (14)N11—C13—H13B109.5
N2—C2—S2119.43 (14)H13A—C13—H13B109.5
C3—N3—C1124.00 (16)N11—C13—H13C109.5
C3—N3—H3118.8 (18)H13A—C13—H13C109.5
C1—N3—H3117.2 (18)H13B—C13—H13C109.5
N2—C3—N3114.34 (17)N11—C14—H14A109.5
N2—C3—S3122.95 (14)N11—C14—H14B109.5
N3—C3—S3122.71 (15)H14A—C14—H14B109.5
C5—N4—C4124.14 (17)N11—C14—H14C109.5
C5—N4—H4117.5 (18)H14A—C14—H14C109.5
C4—N4—H4118.4 (18)H14B—C14—H14C109.5
N6—C4—N4119.15 (17)N11—C15—H15A109.5
N6—C4—S4121.71 (15)N11—C15—H15B109.5
N4—C4—S4119.14 (14)H15A—C15—H15B109.5
C5—N5—C6123.76 (17)N11—C15—H15C109.5
C5—N5—H5119.5 (18)H15A—C15—H15C109.5
C6—N5—H5116.3 (18)H15B—C15—H15C109.5
N4—C5—N5114.15 (17)N12—C16—H16A109.5
N4—C5—S5122.96 (15)N12—C16—H16B109.5
N5—C5—S5122.90 (15)H16A—C16—H16B109.5
C6—N6—C4119.38 (17)N12—C16—H16C109.5
N6—C6—N5119.31 (17)H16A—C16—H16C109.5
N6—C6—S6122.21 (15)H16B—C16—H16C109.5
N5—C6—S6118.48 (15)N12—C17—H17A109.5
C10—N10—C11113.8 (3)N12—C17—H17B109.5
C10—N10—C12110.8 (4)H17A—C17—H17B109.5
C11—N10—C12109.4 (3)N12—C17—H17C109.5
C10—N10—H10104 (2)H17A—C17—H17C109.5
C11—N10—H10110 (2)H17B—C17—H17C109.5
C12—N10—H10108 (2)N12—C18—H18A109.5
N10—C10—H10A109.5N12—C18—H18B109.5
N10—C10—H10B109.5H18A—C18—H18B109.5
H10A—C10—H10B109.5N12—C18—H18C109.5
N10—C10—H10C109.5H18A—C18—H18C109.5
H10A—C10—H10C109.5H18B—C18—H18C109.5
H10B—C10—H10C109.5C9—N7—C7123.6 (2)
C13—N11—C15115.1 (3)C9—N7—H7118 (2)
C13—N11—C14109.7 (2)C7—N7—H7118 (2)
C15—N11—C14110.3 (3)N8—C7—N7118.7 (2)
C13—N11—H11107 (2)N8—C7—S7122.06 (19)
C15—N11—H11108 (2)N7—C7—S7119.2 (2)
C14—N11—H11107 (2)C8—N8—C7120.0 (2)
N10—C11—H11A109.5N8—C8—N9118.8 (2)
N10—C11—H11B109.5N8—C8—S8123.78 (19)
H11A—C11—H11B109.5N9—C8—S8117.46 (18)
N10—C11—H11C109.5C9—N9—C8123.9 (2)
H11A—C11—H11C109.5C9—N9—H9116 (2)
H11B—C11—H11C109.5C8—N9—H9119 (2)
C16—N12—C18111.1 (2)N9—C9—N7114.7 (2)
C16—N12—C17110.3 (2)N9—C9—S9121.64 (19)
C18—N12—C17112.8 (3)N7—C9—S9123.69 (19)
C16—N12—H12110 (2)
C2—N1—C1—N31.1 (3)N4—C4—N6—C62.1 (3)
C2—N1—C1—S1179.13 (15)S4—C4—N6—C6177.44 (17)
C1—N1—C2—N21.6 (3)C4—N6—C6—N50.4 (3)
C1—N1—C2—S2178.39 (15)C4—N6—C6—S6179.78 (17)
C3—N2—C2—N13.5 (3)C5—N5—C6—N63.4 (3)
C3—N2—C2—S2176.45 (16)C5—N5—C6—S6176.76 (17)
N1—C1—N3—C32.3 (3)C9—N7—C7—N84.3 (4)
S1—C1—N3—C3177.94 (16)C9—N7—C7—S7175.60 (19)
C2—N2—C3—N32.4 (3)N7—C7—N8—C80.2 (3)
C2—N2—C3—S3177.34 (16)S7—C7—N8—C8179.74 (18)
C1—N3—C3—N20.6 (3)C7—N8—C8—N94.6 (3)
C1—N3—C3—S3179.71 (15)C7—N8—C8—S8176.47 (18)
C5—N4—C4—N61.9 (3)N8—C8—N9—C96.1 (4)
C5—N4—C4—S4177.66 (17)S8—C8—N9—C9174.96 (19)
C4—N4—C5—N50.9 (3)C8—N9—C9—N72.2 (3)
C4—N4—C5—S5179.48 (17)C8—N9—C9—S9177.35 (18)
C6—N5—C5—N43.5 (3)C7—N7—C9—N93.1 (4)
C6—N5—C5—S5176.84 (17)C7—N7—C9—S9177.44 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···S30.862.573.284 (2)140
O1W—H1WB···S9i0.872.523.355 (2)161
N2—H2···S4ii0.85 (1)2.48 (1)3.3196 (17)168 (2)
N3—H3···S6iii0.85 (1)2.48 (1)3.3203 (17)168 (2)
N4—H4···S2ii0.86 (1)2.45 (1)3.2962 (17)169 (2)
N5—H5···S1iii0.86 (1)2.49 (1)3.3316 (17)167 (2)
N7—H7···O1W0.86 (1)2.03 (1)2.878 (3)172 (3)
N9—H9···S8iv0.86 (1)2.63 (1)3.470 (2)167 (3)
N10—H10···N60.87 (1)1.95 (1)2.804 (3)168 (3)
N11—H11···N10.86 (1)1.95 (1)2.795 (2)164 (3)
N12—H12···S7v0.85 (1)2.69 (2)3.439 (2)148 (3)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+2, z+1; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula3C3H10N+·3C3H2N3S3·H2O
Mr727.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.3466 (1), 12.6474 (1), 12.8135 (1)
α, β, γ (°)76.950 (1), 84.762 (1), 82.274 (1)
V3)1771.51 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.55 × 0.40 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
SADABS (Bruker, 2007)
Tmin, Tmax0.735, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
14356, 6243, 5406
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.05
No. of reflections6243
No. of parameters388
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···S30.862.573.284 (2)140
O1W—H1WB···S9i0.872.523.355 (2)161
N2—H2···S4ii0.850 (10)2.483 (11)3.3196 (17)168 (2)
N3—H3···S6iii0.854 (10)2.481 (11)3.3203 (17)168 (2)
N4—H4···S2ii0.857 (10)2.450 (11)3.2962 (17)169 (2)
N5—H5···S1iii0.855 (10)2.494 (12)3.3316 (17)167 (2)
N7—H7···O1W0.856 (10)2.028 (11)2.878 (3)172 (3)
N9—H9···S8iv0.857 (10)2.631 (12)3.470 (2)167 (3)
N10—H10···N60.865 (10)1.952 (13)2.804 (3)168 (3)
N11—H11···N10.863 (10)1.954 (13)2.795 (2)164 (3)
N12—H12···S7v0.851 (10)2.686 (19)3.439 (2)148 (3)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+2, z+1; (v) x, y1, z.
 

Acknowledgements

We thank Northwest Normal University for supporting this study.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationDean, P. A. W., Jennings, M., Houle, T. M., Craig, D. C., Dance, I. G., Hook, J. M. & Scudder, M. L. (2004). CrystEngComm, 6, 543–548.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds