metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­tris­­(μ3-hexa­methyl­ene­tetra­mine-κ3N,N′,N′′)tris­­(p-toluene­sulfonato-κO)tris­­ilver(I)] trihydrate]

aHeilongjiang Agricultural Vocational and Technical College, JiaMuSi, HeiLongJiang 154007, People's Republic of China
*Correspondence e-mail: hljwuhua@yahoo.com.cn

(Received 11 November 2010; accepted 22 November 2010; online 27 November 2010)

There are three AgI cations, three p-toluene­sulfonate (pts) anions, three hexa­methyl­ene­tetra­mine (hmt) mol­ecules and four water mol­ecules in the asymmetric unit of the title coordination polymer, {[Ag3(C7H7O3S)3(C6H12N4)3(H2O)]·3H2O}n. Two of the pts anions show positional disorder of their O atoms in 0.60:0.40 and 0.50:0.50 ratios. The AgI ion is coordinated by three hmt mol­ecules in an approximate trigonal–planar AgN3 arrangement. In each case, longer Ag—O bonds to a water mol­ecule and a pts anion complete a distorted trigonal–bipyramidal AgN3O2 geometry for the metal ion. In the crystal, the bridging hmt mol­ecules and pts ions generate a wave-like layer parallel to (001) and O—H⋯O hydrogen-bonding inter­actions consolidate the packing.

Related literature

For background to metal-coordination networks containing both sulfonate anions and N-bonded ligands, see: Côté & Shimizu (2003[Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev., 245, 49-64.]); Zhang et al. (2001[Zhang, S.-L., Tong, M.-L., Fu, R.-W., Cheng, X.-M. & Ng, S.-W. (2001). Inorg. Chem. 40, 3562-3569.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag3(C7H7O3S)3(C6H12N4)3(H2O)]·3H2O

  • Mr = 1329.82

  • Monoclinic, P 21 /n

  • a = 17.3181 (5) Å

  • b = 10.7028 (3) Å

  • c = 26.9110 (11) Å

  • β = 95.657 (3)°

  • V = 4963.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.672, Tmax = 0.728

  • 21413 measured reflections

  • 11446 independent reflections

  • 7890 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 0.99

  • 11446 reflections

  • 650 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.362 (2)
Ag1—N9i 2.367 (3)
Ag1—N10ii 2.388 (3)
Ag2—N5 2.347 (2)
Ag2—N7ii 2.365 (3)
Ag2—N4 2.374 (2)
Ag3—N3ii 2.315 (3)
Ag3—N8 2.358 (3)
Ag3—N11 2.394 (2)
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O8ii 0.87 (2) 1.92 (2) 2.782 (5) 175 (4)
O1W—H1WB⋯O6ii 0.82 (2) 2.10 (2) 2.907 (4) 166 (4)
O2W—H2WA⋯O5iii 0.83 (2) 2.16 (2) 2.958 (4) 163 (4)
O2W—H2WB⋯O1iv 0.84 (2) 1.83 (3) 2.612 (6) 155 (4)
O3W—H3WA⋯O2v 0.80 (2) 2.45 (3) 3.096 (7) 139 (4)
O3W—H3WB⋯O5 0.80 (2) 2.15 (2) 2.908 (5) 160 (4)
O4W—H4WB⋯O7iii 0.88 (2) 1.99 (3) 2.838 (7) 160 (4)
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal sulfonate complexes modified by different nitrogen-containing secondary ligands have been of great interest due to their abilities to form various structures, possible extended supramolecular system and good properties (Côté & Shimizu, 2003). Currently, there are some AgI sulfonate coordination polymers building from hexamethylenetetramine ligand because of its multidentate coordination mode (Zhang et al., 2001).

In the crystal structure of the title compound, C39H65Ag3N12O13S3, there are three AgI cations, three p-toluenesulfonate anions, three hexamethylenetetramine and four water molecules (Fig. 1). Ag1 cation is four-coordinated by three N atoms from three different hexamethylenetetramine ligands [Ag1—N1 = 2.362 (2), Ag1—N9i = 2.367 (2), and Ag1—N10ii = 2.388 (3)] and one O atom from one p-toluenesulfonate ligand [Ag1—O = 2.644 (6) Å] in a distorted tetrahedral coordination geometry. Ag2 cation is five-coordinated by three N atoms from three different hexamethylenetetramine ligands [Ag2—N5 = 2.347 (2), Ag2—N4 = 2.374 (2) and Ag2—N7ii = 2.365 (2) Å], one O atom from one p-toluenesulfonate ligand and one water molecule [Ag2—O4 = 2.622 (3) and Ag2—O1W = 2.622 (4) Å] in a trigonalbiyramid coordination geometry. Ag3 cation is also four-coordinated by three N atoms from hexamethylenetetramine ligands [Ag3—N3ii = 2.315 (3), Ag3—N8 = 2.358 (3), and Ag3—N11 = 2.394 (2) Å] and one p-toluenesulfonate ligand [Ag3—O9 = 2.438 (5) Å] in a distorted tetrahedral coordination geometry. The AgI cations are bridged by hexamethylenetetramine molecules in tridentate modes to generate a two dimensional wave like layer with the p-toluenesulfonate ligands hanged up and down (Fig. 2). The intermoleclar hydrogen bonding interactions consolidate the layer.

Related literature top

For background to metal-coordination networks containing both sulfonate anions and N-bonded ligands, see: Côté & Shimizu (2003); Zhang et al. (2001).

Experimental top

An aqueous solution (10 ml) of p-toluenesulfonic acid (0.038 g, 0.3 mmol) was added to solid Ag2CO3 (0.041 g, 0.15 mmol) and stirred for several stirred for several minutes until no further CO2 was given off; and hexamethylenetetramine (0.028 g, 0.2 mmol) was added in. The white precipitate was dissolved by dropwise addition of an aqueous solution of NH3 (14 M). Colourless blocks were obtained by evaporation of the solution for several days at room temperature.

Refinement top

The disordered O atoms (O1, O2, O3, O7, and O9) of p-toluenesulfonate ligands split over two sites with a total ocuupancy of 1. C–bound H–atoms were geometrically positioned (C—H 0.93 Å) and refined using a riding model, with Uiso = 1.2Ueq (C). The water H atoms were located in a difference Fourier map and refined with Uiso(H)= 1.5Ueq(O).

Structure description top

Metal sulfonate complexes modified by different nitrogen-containing secondary ligands have been of great interest due to their abilities to form various structures, possible extended supramolecular system and good properties (Côté & Shimizu, 2003). Currently, there are some AgI sulfonate coordination polymers building from hexamethylenetetramine ligand because of its multidentate coordination mode (Zhang et al., 2001).

In the crystal structure of the title compound, C39H65Ag3N12O13S3, there are three AgI cations, three p-toluenesulfonate anions, three hexamethylenetetramine and four water molecules (Fig. 1). Ag1 cation is four-coordinated by three N atoms from three different hexamethylenetetramine ligands [Ag1—N1 = 2.362 (2), Ag1—N9i = 2.367 (2), and Ag1—N10ii = 2.388 (3)] and one O atom from one p-toluenesulfonate ligand [Ag1—O = 2.644 (6) Å] in a distorted tetrahedral coordination geometry. Ag2 cation is five-coordinated by three N atoms from three different hexamethylenetetramine ligands [Ag2—N5 = 2.347 (2), Ag2—N4 = 2.374 (2) and Ag2—N7ii = 2.365 (2) Å], one O atom from one p-toluenesulfonate ligand and one water molecule [Ag2—O4 = 2.622 (3) and Ag2—O1W = 2.622 (4) Å] in a trigonalbiyramid coordination geometry. Ag3 cation is also four-coordinated by three N atoms from hexamethylenetetramine ligands [Ag3—N3ii = 2.315 (3), Ag3—N8 = 2.358 (3), and Ag3—N11 = 2.394 (2) Å] and one p-toluenesulfonate ligand [Ag3—O9 = 2.438 (5) Å] in a distorted tetrahedral coordination geometry. The AgI cations are bridged by hexamethylenetetramine molecules in tridentate modes to generate a two dimensional wave like layer with the p-toluenesulfonate ligands hanged up and down (Fig. 2). The intermoleclar hydrogen bonding interactions consolidate the layer.

For background to metal-coordination networks containing both sulfonate anions and N-bonded ligands, see: Côté & Shimizu (2003); Zhang et al. (2001).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 3/2, y - 1/2, -z + 3/2].
[Figure 2] Fig. 2. The two dimensional wave like layer of the title compound.
Poly[[aquatris(µ3-hexamethylenetetramine- κ3N,N',N'')tris(p-toluenesulfonato- κO)trisilver(I)] trihydrate] top
Crystal data top
[Ag3(C7H7O3S)3(C6H12N4)3(H2O)]·3H2OF(000) = 2704
Mr = 1329.82Dx = 1.779 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11446 reflections
a = 17.3181 (5) Åθ = 3.0–29.3°
b = 10.7028 (3) ŵ = 1.37 mm1
c = 26.9110 (11) ÅT = 293 K
β = 95.657 (3)°Block, colorless
V = 4963.7 (3) Å30.30 × 0.25 × 0.22 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
11446 independent reflections
Radiation source: fine-focus sealed tube7890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.0 pixels mm-1θmax = 29.3°, θmin = 3.0°
ω scansh = 2319
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 138
Tmin = 0.672, Tmax = 0.728l = 2436
21413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
11446 reflections(Δ/σ)max = 0.002
650 parametersΔρmax = 0.90 e Å3
12 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Ag3(C7H7O3S)3(C6H12N4)3(H2O)]·3H2OV = 4963.7 (3) Å3
Mr = 1329.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.3181 (5) ŵ = 1.37 mm1
b = 10.7028 (3) ÅT = 293 K
c = 26.9110 (11) Å0.30 × 0.25 × 0.22 mm
β = 95.657 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
11446 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
7890 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.728Rint = 0.021
21413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03812 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.90 e Å3
11446 reflectionsΔρmin = 1.05 e Å3
650 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.314657 (14)0.08332 (2)0.713161 (11)0.03692 (8)
Ag20.667686 (12)0.06405 (2)0.717069 (11)0.03702 (8)
Ag31.009181 (14)0.07397 (3)0.816707 (13)0.04627 (9)
C10.10904 (18)0.1984 (3)0.57691 (13)0.0351 (8)
C20.1425 (2)0.1533 (4)0.53604 (14)0.0463 (9)
H20.19550.13700.53830.056*
C30.0967 (3)0.1325 (4)0.49154 (15)0.0538 (11)
H30.11990.10210.46420.065*
C40.0182 (3)0.1555 (4)0.48654 (15)0.0530 (11)
C50.0141 (2)0.1996 (4)0.52791 (17)0.0565 (11)
H50.06720.21490.52560.068*
C60.0298 (2)0.2218 (4)0.57274 (15)0.0469 (10)
H60.00640.25230.60000.056*
C70.0295 (3)0.1341 (5)0.43795 (17)0.0801 (16)
H7A0.08270.15420.44140.120*
H7B0.02570.04800.42850.120*
H7C0.01080.18630.41270.120*
C81.03065 (19)0.2536 (4)0.96495 (12)0.0377 (8)
C91.0778 (2)0.1596 (4)0.98513 (14)0.0471 (10)
H91.06120.07690.98300.057*
C101.1501 (2)0.1887 (5)1.00856 (15)0.0591 (12)
H101.18160.12521.02270.071*
C111.1766 (2)0.3103 (6)1.01136 (16)0.0645 (13)
C121.1281 (3)0.4044 (5)0.99292 (17)0.0628 (12)
H121.14430.48710.99600.075*
C131.0550 (2)0.3767 (4)0.96963 (15)0.0506 (10)
H131.02230.44070.95720.061*
C141.2587 (3)0.3412 (8)1.0342 (2)0.105 (2)
H14A1.26690.42981.03280.157*
H14B1.29570.29921.01570.157*
H14C1.26510.31401.06830.157*
C150.6257 (2)0.1507 (3)0.89555 (14)0.0399 (8)
C160.5692 (2)0.0757 (4)0.91222 (15)0.0472 (9)
H160.52220.06510.89280.057*
C170.5822 (3)0.0165 (4)0.95755 (16)0.0578 (11)
H170.54340.03380.96850.069*
C180.6505 (3)0.0297 (4)0.98689 (17)0.0608 (12)
C190.7078 (3)0.1047 (5)0.96987 (19)0.0638 (12)
H190.75470.11480.98940.077*
C200.6959 (2)0.1644 (4)0.92434 (16)0.0514 (10)
H200.73490.21360.91310.062*
C210.6636 (4)0.0304 (6)1.03776 (19)0.0922 (18)
H21A0.71480.01041.05260.138*
H21B0.65850.11941.03440.138*
H21C0.62590.00031.05860.138*
C220.42034 (16)0.3050 (3)0.68223 (13)0.0289 (7)
H22A0.42360.32020.71790.035*
H22B0.37270.34260.66720.035*
C230.41350 (18)0.1495 (3)0.61824 (13)0.0340 (8)
H23A0.41170.06050.61130.041*
H23B0.36610.18660.60260.041*
C240.55120 (18)0.1488 (3)0.61999 (13)0.0369 (8)
H24A0.59520.18550.60570.044*
H24B0.55100.05980.61310.044*
C250.55931 (16)0.3047 (3)0.68477 (13)0.0290 (7)
H25A0.60390.34280.67160.035*
H25B0.56370.31890.72050.035*
C260.49138 (16)0.1145 (3)0.69615 (13)0.0302 (7)
H26A0.49580.12930.73190.036*
H26B0.49070.02490.69080.036*
C270.48138 (19)0.3383 (3)0.60693 (13)0.0386 (8)
H27A0.43450.37640.59100.046*
H27B0.52530.37550.59270.046*
C280.77641 (16)0.2991 (3)0.73890 (13)0.0299 (7)
H28A0.75710.29350.77150.036*
H28B0.73820.34380.71690.036*
C290.84460 (16)0.1052 (3)0.75281 (14)0.0316 (7)
H29A0.82640.09770.78560.038*
H29B0.85150.02160.74000.038*
C300.81468 (19)0.1839 (3)0.66969 (14)0.0384 (8)
H30A0.82110.10120.65590.046*
H30B0.77670.22830.64740.046*
C310.94465 (18)0.1821 (3)0.70622 (15)0.0424 (9)
H31A0.99430.22450.70800.051*
H31B0.95150.09900.69290.051*
C320.90727 (17)0.2980 (3)0.77631 (14)0.0347 (8)
H32A0.95630.34260.77970.042*
H32B0.88920.29160.80920.042*
C330.87806 (19)0.3752 (3)0.69322 (14)0.0385 (8)
H33A0.84090.42130.67090.046*
H33B0.92700.41990.69520.046*
C341.17915 (16)0.1141 (3)0.78134 (13)0.0294 (7)
H34A1.15040.12470.74880.035*
H34B1.18540.02520.78750.035*
C351.29800 (17)0.1580 (3)0.83154 (13)0.0333 (8)
H35A1.30520.06970.83880.040*
H35B1.34890.19600.83220.040*
C361.24515 (17)0.3086 (3)0.77130 (12)0.0267 (7)
H36A1.29530.34880.77110.032*
H36B1.21700.32020.73870.032*
C371.18014 (18)0.1554 (3)0.86903 (13)0.0340 (8)
H37A1.15160.19210.89460.041*
H37B1.18710.06720.87650.041*
C381.12622 (16)0.3044 (3)0.80919 (13)0.0297 (7)
H38A1.09740.31540.77670.036*
H38B1.09660.34260.83390.036*
C391.24502 (18)0.3481 (3)0.85897 (13)0.0334 (8)
H39A1.29530.38830.85970.040*
H39B1.21700.38650.88450.040*
O1'0.1480 (4)0.3411 (7)0.6499 (3)0.0744 (19)*0.50
O10.1172 (3)0.2996 (5)0.66542 (19)0.0419 (12)*0.50
O2'0.1309 (5)0.1218 (9)0.6678 (3)0.108 (3)*0.50
O20.1813 (3)0.1080 (5)0.6571 (2)0.0513 (14)*0.50
O1W0.70784 (18)0.0600 (3)0.63965 (14)0.0704 (10)
O3'0.2382 (4)0.1850 (9)0.6303 (3)0.096 (2)*0.50
O30.2377 (3)0.2902 (6)0.6240 (2)0.0566 (14)*0.50
O2W1.06791 (15)0.4929 (3)0.71250 (11)0.0543 (7)
O40.6619 (2)0.1634 (3)0.80569 (12)0.0881 (12)
O3W0.4316 (2)0.4268 (4)0.79689 (14)0.0760 (10)
O50.53010 (19)0.2102 (3)0.81959 (11)0.0735 (10)
O4W0.6873 (2)0.4746 (4)0.62992 (15)0.0830 (11)
O60.63193 (17)0.3562 (3)0.84465 (11)0.0600 (8)
O7'0.8959 (6)0.1405 (12)0.9688 (4)0.109 (3)*0.40
O70.9210 (3)0.0947 (5)0.9404 (2)0.0670 (14)*0.60
O80.89252 (18)0.3193 (4)0.93192 (15)0.0903 (12)
O90.9709 (3)0.2271 (5)0.8767 (2)0.0475 (13)*0.50
O9'0.9462 (6)0.1437 (11)0.8920 (4)0.124 (3)*0.50
S10.16466 (5)0.22358 (10)0.63466 (4)0.0441 (2)
S20.61121 (6)0.22628 (9)0.83691 (4)0.0481 (2)
S30.94276 (6)0.21884 (11)0.92946 (5)0.0599 (3)
N10.41778 (13)0.1693 (2)0.67309 (10)0.0260 (6)
N20.47982 (16)0.2043 (3)0.59677 (11)0.0382 (7)
N30.48729 (13)0.3647 (2)0.66152 (10)0.0280 (6)
N40.55957 (13)0.1691 (2)0.67493 (10)0.0262 (6)
N50.78586 (13)0.1722 (2)0.71920 (10)0.0280 (6)
N60.88871 (15)0.2504 (3)0.67246 (11)0.0395 (7)
N70.85025 (13)0.3702 (2)0.74346 (11)0.0298 (6)
N80.91990 (13)0.1713 (2)0.75711 (11)0.0331 (7)
N91.25674 (13)0.1725 (2)0.78090 (10)0.0258 (6)
N101.20165 (13)0.3685 (2)0.80957 (10)0.0253 (5)
N111.13457 (13)0.1694 (2)0.81992 (10)0.0276 (6)
N121.25592 (14)0.2151 (3)0.87016 (10)0.0328 (6)
H1WA0.6786 (17)0.097 (4)0.6160 (12)0.049*
H1WB0.7504 (15)0.094 (4)0.6411 (14)0.049*
H2WA1.042 (2)0.549 (3)0.6976 (14)0.049*
H2WB1.088 (2)0.448 (3)0.6915 (13)0.049*
H3WA0.425 (2)0.485 (3)0.8145 (14)0.049*
H3WB0.460 (2)0.375 (3)0.8101 (15)0.049*
H4WA0.7258 (14)0.504 (4)0.6231 (15)0.049*
H4WB0.6512 (16)0.522 (4)0.6144 (14)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03300 (13)0.02596 (14)0.05419 (18)0.00300 (10)0.01635 (12)0.00403 (12)
Ag20.02446 (12)0.02352 (13)0.06195 (19)0.00263 (9)0.00151 (11)0.00299 (13)
Ag30.03051 (13)0.02299 (14)0.0846 (2)0.00125 (10)0.00192 (13)0.00676 (14)
C10.0398 (17)0.0307 (19)0.034 (2)0.0014 (14)0.0005 (15)0.0044 (16)
C20.048 (2)0.045 (2)0.046 (2)0.0009 (18)0.0078 (18)0.0004 (19)
C30.082 (3)0.047 (3)0.034 (2)0.019 (2)0.012 (2)0.0011 (19)
C40.074 (3)0.037 (2)0.045 (3)0.019 (2)0.012 (2)0.0112 (19)
C50.041 (2)0.063 (3)0.062 (3)0.0016 (19)0.014 (2)0.005 (2)
C60.0402 (18)0.053 (3)0.046 (2)0.0076 (17)0.0029 (17)0.001 (2)
C70.113 (4)0.068 (4)0.052 (3)0.034 (3)0.027 (3)0.017 (3)
C80.0446 (18)0.041 (2)0.0289 (19)0.0084 (16)0.0097 (15)0.0040 (17)
C90.050 (2)0.051 (3)0.041 (2)0.0123 (18)0.0073 (18)0.0049 (19)
C100.054 (2)0.082 (4)0.042 (2)0.026 (2)0.0055 (19)0.010 (2)
C110.053 (2)0.101 (4)0.040 (3)0.002 (3)0.006 (2)0.001 (3)
C120.069 (3)0.063 (3)0.057 (3)0.020 (2)0.012 (2)0.000 (2)
C130.057 (2)0.045 (2)0.050 (2)0.0084 (19)0.0067 (19)0.009 (2)
C140.070 (3)0.159 (7)0.083 (4)0.020 (4)0.004 (3)0.016 (4)
C150.052 (2)0.0293 (19)0.040 (2)0.0067 (16)0.0141 (17)0.0023 (17)
C160.060 (2)0.041 (2)0.041 (2)0.0041 (18)0.0108 (18)0.0017 (19)
C170.084 (3)0.045 (3)0.047 (3)0.002 (2)0.018 (2)0.011 (2)
C180.089 (3)0.046 (3)0.048 (3)0.026 (2)0.013 (2)0.008 (2)
C190.068 (3)0.055 (3)0.066 (3)0.022 (2)0.008 (2)0.000 (2)
C200.051 (2)0.046 (2)0.059 (3)0.0081 (18)0.013 (2)0.002 (2)
C210.141 (5)0.075 (4)0.058 (3)0.022 (4)0.001 (3)0.029 (3)
C220.0247 (14)0.0204 (16)0.043 (2)0.0010 (12)0.0083 (14)0.0054 (14)
C230.0317 (16)0.0312 (19)0.038 (2)0.0032 (14)0.0018 (15)0.0071 (16)
C240.0321 (16)0.036 (2)0.045 (2)0.0018 (14)0.0124 (15)0.0059 (17)
C250.0249 (14)0.0228 (16)0.0388 (19)0.0020 (12)0.0007 (13)0.0013 (15)
C260.0277 (15)0.0214 (16)0.042 (2)0.0001 (12)0.0031 (14)0.0052 (15)
C270.0376 (17)0.036 (2)0.041 (2)0.0004 (15)0.0019 (16)0.0133 (17)
C280.0247 (14)0.0209 (16)0.045 (2)0.0018 (12)0.0051 (14)0.0032 (15)
C290.0284 (15)0.0175 (15)0.049 (2)0.0039 (12)0.0036 (14)0.0021 (15)
C300.0391 (17)0.0300 (19)0.047 (2)0.0062 (14)0.0077 (16)0.0074 (17)
C310.0277 (16)0.0317 (19)0.070 (3)0.0022 (14)0.0169 (17)0.0070 (19)
C320.0290 (15)0.0192 (16)0.054 (2)0.0006 (12)0.0035 (15)0.0016 (16)
C330.0324 (16)0.0243 (17)0.060 (2)0.0059 (14)0.0101 (16)0.0052 (17)
C340.0310 (15)0.0217 (16)0.0355 (19)0.0044 (12)0.0032 (14)0.0023 (14)
C350.0260 (15)0.0293 (18)0.044 (2)0.0036 (13)0.0010 (14)0.0061 (16)
C360.0279 (14)0.0200 (16)0.0319 (18)0.0024 (12)0.0017 (13)0.0038 (14)
C370.0413 (18)0.0284 (18)0.0333 (19)0.0011 (14)0.0083 (15)0.0053 (15)
C380.0249 (14)0.0253 (17)0.0388 (19)0.0015 (12)0.0022 (13)0.0016 (15)
C390.0340 (16)0.0301 (18)0.036 (2)0.0040 (14)0.0019 (14)0.0043 (16)
O1W0.0576 (18)0.065 (2)0.087 (3)0.0022 (16)0.0022 (17)0.0355 (19)
O2W0.0479 (16)0.061 (2)0.0547 (19)0.0042 (14)0.0067 (13)0.0006 (16)
O40.155 (3)0.054 (2)0.067 (2)0.031 (2)0.069 (2)0.0153 (17)
O3W0.072 (2)0.080 (3)0.072 (3)0.0049 (19)0.0161 (19)0.003 (2)
O50.088 (2)0.079 (2)0.0488 (18)0.0349 (19)0.0164 (16)0.0206 (17)
O4W0.064 (2)0.089 (3)0.098 (3)0.003 (2)0.018 (2)0.047 (2)
O60.088 (2)0.0288 (15)0.0622 (19)0.0083 (14)0.0010 (15)0.0022 (14)
O80.0663 (19)0.076 (3)0.123 (3)0.0312 (18)0.021 (2)0.020 (2)
S10.0402 (5)0.0503 (6)0.0398 (5)0.0153 (4)0.0062 (4)0.0039 (5)
S20.0757 (6)0.0340 (5)0.0365 (5)0.0147 (5)0.0151 (5)0.0004 (4)
S30.0599 (6)0.0515 (7)0.0640 (7)0.0196 (5)0.0161 (5)0.0143 (6)
N10.0223 (11)0.0190 (13)0.0370 (16)0.0010 (10)0.0041 (11)0.0018 (12)
N20.0402 (15)0.0409 (18)0.0337 (16)0.0007 (13)0.0051 (13)0.0021 (14)
N30.0253 (12)0.0176 (13)0.0416 (17)0.0008 (10)0.0059 (11)0.0019 (12)
N40.0200 (11)0.0194 (13)0.0393 (16)0.0001 (10)0.0037 (11)0.0003 (12)
N50.0218 (11)0.0210 (13)0.0412 (17)0.0042 (10)0.0027 (11)0.0024 (12)
N60.0364 (14)0.0339 (17)0.0500 (19)0.0061 (13)0.0140 (13)0.0014 (15)
N70.0211 (12)0.0187 (13)0.0487 (18)0.0009 (10)0.0002 (12)0.0014 (13)
N80.0220 (12)0.0204 (14)0.057 (2)0.0025 (10)0.0030 (12)0.0024 (13)
N90.0237 (12)0.0189 (13)0.0351 (16)0.0001 (10)0.0049 (11)0.0012 (12)
N100.0238 (11)0.0223 (13)0.0295 (15)0.0006 (10)0.0011 (11)0.0004 (12)
N110.0242 (12)0.0230 (14)0.0358 (16)0.0018 (10)0.0036 (11)0.0014 (12)
N120.0312 (13)0.0338 (16)0.0325 (16)0.0013 (12)0.0016 (12)0.0067 (13)
Geometric parameters (Å, º) top
Ag1—N12.362 (2)C28—N71.483 (4)
Ag1—N9i2.367 (3)C28—H28A0.9700
Ag1—N10ii2.388 (3)C28—H28B0.9700
Ag2—N52.347 (2)C29—N81.478 (4)
Ag2—N7ii2.365 (3)C29—N51.478 (4)
Ag2—N42.374 (2)C29—H29A0.9700
Ag3—N3ii2.315 (3)C29—H29B0.9700
Ag3—N82.358 (3)C30—N61.462 (4)
Ag3—N112.394 (2)C30—N51.474 (4)
Ag3—O92.438 (5)C30—H30A0.9700
Ag3—O9'2.507 (11)C30—H30B0.9700
C1—C21.380 (5)C31—N61.458 (5)
C1—C61.389 (5)C31—N81.479 (5)
C1—S11.767 (3)C31—H31A0.9700
C2—C31.388 (6)C31—H31B0.9700
C2—H20.9300C32—N81.475 (4)
C3—C41.375 (6)C32—N71.477 (4)
C3—H30.9300C32—H32A0.9700
C4—C51.378 (6)C32—H32B0.9700
C4—C71.494 (6)C33—N61.467 (4)
C5—C61.381 (6)C33—N71.480 (4)
C5—H50.9300C33—H33A0.9700
C6—H60.9300C33—H33B0.9700
C7—H7A0.9600C34—N111.477 (4)
C7—H7B0.9600C34—N91.483 (4)
C7—H7C0.9600C34—H34A0.9700
C8—C91.374 (5)C34—H34B0.9700
C8—C131.385 (5)C35—N121.461 (4)
C8—S31.755 (4)C35—N91.483 (4)
C9—C101.381 (6)C35—H35A0.9700
C9—H90.9300C35—H35B0.9700
C10—C111.379 (7)C36—N101.481 (4)
C10—H100.9300C36—N91.489 (4)
C11—C121.372 (7)C36—H36A0.9700
C11—C141.529 (6)C36—H36B0.9700
C12—C131.388 (6)C37—N121.458 (4)
C12—H120.9300C37—N111.479 (4)
C13—H130.9300C37—H37A0.9700
C14—H14A0.9600C37—H37B0.9700
C14—H14B0.9600C38—N101.475 (4)
C14—H14C0.9600C38—N111.477 (4)
C15—C161.374 (5)C38—H38A0.9700
C15—C201.384 (5)C38—H38B0.9700
C15—S21.769 (4)C39—N121.463 (4)
C16—C171.373 (6)C39—N101.477 (4)
C16—H160.9300C39—H39A0.9700
C17—C181.364 (6)C39—H39B0.9700
C17—H170.9300O1'—O10.837 (7)
C18—C191.388 (7)O1'—S11.363 (7)
C18—C211.509 (6)O1—S11.469 (5)
C19—C201.379 (6)O2'—O20.956 (9)
C19—H190.9300O2'—S11.558 (10)
C20—H200.9300O2—S11.394 (6)
C21—H21A0.9600O2—O3'1.520 (10)
C21—H21B0.9600O1W—H1WA0.87 (2)
C21—H21C0.9600O1W—H1WB0.82 (2)
C22—N11.473 (4)O3'—O31.139 (9)
C22—N31.480 (4)O3'—S11.354 (8)
C22—H22A0.9700O3—S11.504 (6)
C22—H22B0.9700O2W—H2WA0.83 (2)
C23—N21.459 (4)O2W—H2WB0.84 (2)
C23—N11.486 (4)O4—S21.441 (3)
C23—H23A0.9700O3W—H3WA0.80 (2)
C23—H23B0.9700O3W—H3WB0.80 (2)
C24—N21.456 (4)O5—S21.446 (3)
C24—N41.487 (4)O4W—H4WA0.78 (2)
C24—H24A0.9700O4W—H4WB0.88 (2)
C24—H24B0.9700O6—S21.446 (3)
C25—N41.476 (4)O7'—O71.036 (11)
C25—N31.485 (4)O7'—S31.628 (12)
C25—H25A0.9700O7—S31.420 (6)
C25—H25B0.9700O7—O9'1.509 (12)
C26—N41.481 (4)O8—S31.389 (3)
C26—N11.482 (4)O9—O9'1.089 (11)
C26—H26A0.9700O9—S31.549 (5)
C26—H26B0.9700O9'—S31.296 (11)
C27—N21.460 (5)N3—Ag3iii2.315 (3)
C27—N31.489 (4)N7—Ag2iii2.365 (3)
C27—H27A0.9700N9—Ag1iv2.367 (2)
C27—H27B0.9700N10—Ag1iii2.388 (3)
C28—N51.474 (4)
N1—Ag1—N9i126.27 (9)N9—C34—H34B109.2
N1—Ag1—N10ii109.49 (8)H34A—C34—H34B107.9
N9i—Ag1—N10ii122.48 (8)N12—C35—N9112.4 (2)
N5—Ag2—N7ii125.05 (9)N12—C35—H35A109.1
N5—Ag2—N4115.03 (9)N9—C35—H35A109.1
N7ii—Ag2—N4119.83 (8)N12—C35—H35B109.1
N3ii—Ag3—N8126.79 (9)N9—C35—H35B109.1
N3ii—Ag3—N11113.74 (8)H35A—C35—H35B107.9
N8—Ag3—N11111.58 (9)N10—C36—N9111.9 (2)
N3ii—Ag3—O9119.04 (15)N10—C36—H36A109.2
N8—Ag3—O987.16 (14)N9—C36—H36A109.2
N11—Ag3—O989.64 (14)N10—C36—H36B109.2
N3ii—Ag3—O9'94.9 (3)N9—C36—H36B109.2
N8—Ag3—O9'96.3 (2)H36A—C36—H36B107.9
N11—Ag3—O9'108.0 (3)N12—C37—N11112.0 (3)
O9—Ag3—O9'25.4 (3)N12—C37—H37A109.2
C2—C1—C6119.2 (3)N11—C37—H37A109.2
C2—C1—S1121.3 (3)N12—C37—H37B109.2
C6—C1—S1119.5 (3)N11—C37—H37B109.2
C1—C2—C3119.6 (4)H37A—C37—H37B107.9
C1—C2—H2120.2N10—C38—N11112.6 (2)
C3—C2—H2120.2N10—C38—H38A109.1
C4—C3—C2122.1 (4)N11—C38—H38A109.1
C4—C3—H3119.0N10—C38—H38B109.1
C2—C3—H3119.0N11—C38—H38B109.1
C3—C4—C5117.3 (4)H38A—C38—H38B107.8
C3—C4—C7121.0 (4)N12—C39—N10111.9 (3)
C5—C4—C7121.7 (4)N12—C39—H39A109.2
C4—C5—C6122.2 (4)N10—C39—H39A109.2
C4—C5—H5118.9N12—C39—H39B109.2
C6—C5—H5118.9N10—C39—H39B109.2
C5—C6—C1119.5 (4)H39A—C39—H39B107.9
C5—C6—H6120.2O1—O1'—S179.9 (7)
C1—C6—H6120.2O1'—O1—S166.0 (6)
C4—C7—H7A109.5O2—O2'—S162.0 (7)
C4—C7—H7B109.5O2'—O2—S180.7 (7)
H7A—C7—H7B109.5O2'—O2—O3'135.4 (9)
C4—C7—H7C109.5S1—O2—O3'55.2 (4)
H7A—C7—H7C109.5H1WA—O1W—H1WB107 (3)
H7B—C7—H7C109.5O3—O3'—S173.6 (6)
C9—C8—C13119.8 (4)O3—O3'—O2127.6 (7)
C9—C8—S3120.6 (3)S1—O3'—O257.7 (4)
C13—C8—S3119.4 (3)O3'—O3—S159.8 (5)
C8—C9—C10119.4 (4)H2WA—O2W—H2WB109 (3)
C8—C9—H9120.3H3WA—O3W—H3WB113 (4)
C10—C9—H9120.3H4WA—O4W—H4WB104 (3)
C11—C10—C9121.3 (4)O7—O7'—S359.6 (7)
C11—C10—H10119.4O7'—O7—S381.4 (8)
C9—C10—H10119.4O7'—O7—O9'130.5 (10)
C12—C11—C10119.0 (4)S3—O7—O9'52.4 (5)
C12—C11—C14119.9 (6)O9'—O9—S355.6 (6)
C10—C11—C14121.1 (5)O9'—O9—Ag380.9 (7)
C11—C12—C13120.3 (5)S3—O9—Ag3134.4 (3)
C11—C12—H12119.9O9—O9'—S380.5 (8)
C13—C12—H12119.9O9—O9'—O7140.3 (10)
C8—C13—C12120.0 (4)S3—O9'—O760.2 (5)
C8—C13—H13120.0O9—O9'—Ag373.7 (6)
C12—C13—H13120.0S3—O9'—Ag3150.6 (7)
C11—C14—H14A109.5O7—O9'—Ag3141.3 (7)
C11—C14—H14B109.5O3'—S1—O1'122.4 (5)
H14A—C14—H14B109.5O3'—S1—O267.1 (4)
C11—C14—H14C109.5O1'—S1—O2136.8 (4)
H14A—C14—H14C109.5O3'—S1—O1143.2 (4)
H14B—C14—H14C109.5O1'—S1—O134.1 (3)
C16—C15—C20119.6 (4)O2—S1—O1110.5 (3)
C16—C15—S2121.0 (3)O3'—S1—O346.6 (4)
C20—C15—S2119.4 (3)O1'—S1—O380.0 (4)
C17—C16—C15120.0 (4)O2—S1—O3111.2 (3)
C17—C16—H16120.0O1—S1—O3111.8 (3)
C15—C16—H16120.0O3'—S1—O2'104.2 (5)
C18—C17—C16121.5 (4)O1'—S1—O2'111.7 (5)
C18—C17—H17119.2O2—S1—O2'37.3 (3)
C16—C17—H17119.2O1—S1—O2'78.6 (4)
C17—C18—C19118.4 (4)O3—S1—O2'144.1 (4)
C17—C18—C21121.7 (5)O3'—S1—C1108.2 (4)
C19—C18—C21119.8 (5)O1'—S1—C1107.0 (3)
C20—C19—C18120.9 (4)O2—S1—C1108.5 (3)
C20—C19—H19119.6O1—S1—C1107.1 (2)
C18—C19—H19119.6O3—S1—C1107.5 (2)
C19—C20—C15119.6 (4)O2'—S1—C1101.2 (4)
C19—C20—H20120.2O4—S2—O5112.7 (2)
C15—C20—H20120.2O4—S2—O6112.10 (18)
C18—C21—H21A109.5O5—S2—O6112.3 (2)
C18—C21—H21B109.5O4—S2—C15105.4 (2)
H21A—C21—H21B109.5O5—S2—C15106.32 (17)
C18—C21—H21C109.5O6—S2—C15107.46 (17)
H21A—C21—H21C109.5O9'—S3—O8126.5 (5)
H21B—C21—H21C109.5O9'—S3—O767.3 (6)
N1—C22—N3112.0 (2)O8—S3—O7122.3 (3)
N1—C22—H22A109.2O9'—S3—O943.9 (5)
N3—C22—H22A109.2O8—S3—O9104.8 (3)
N1—C22—H22B109.2O7—S3—O9111.0 (3)
N3—C22—H22B109.2O9'—S3—O7'104.5 (7)
H22A—C22—H22B107.9O8—S3—O7'90.8 (5)
N2—C23—N1111.8 (3)O7—S3—O7'39.0 (4)
N2—C23—H23A109.2O9—S3—O7'147.9 (5)
N1—C23—H23A109.2O9'—S3—C8116.8 (4)
N2—C23—H23B109.2O8—S3—C8108.9 (2)
N1—C23—H23B109.2O7—S3—C8108.6 (3)
H23A—C23—H23B107.9O9—S3—C898.7 (2)
N2—C24—N4111.3 (2)O7'—S3—C8102.5 (4)
N2—C24—H24A109.4C22—N1—C26108.0 (2)
N4—C24—H24A109.4C22—N1—C23107.7 (3)
N2—C24—H24B109.4C26—N1—C23108.4 (2)
N4—C24—H24B109.4C22—N1—Ag1108.63 (17)
H24A—C24—H24B108.0C26—N1—Ag1108.22 (18)
N4—C25—N3111.5 (2)C23—N1—Ag1115.60 (18)
N4—C25—H25A109.3C24—N2—C23109.5 (3)
N3—C25—H25A109.3C24—N2—C27108.7 (3)
N4—C25—H25B109.3C23—N2—C27108.8 (3)
N3—C25—H25B109.3C22—N3—C25108.1 (2)
H25A—C25—H25B108.0C22—N3—C27108.0 (2)
N4—C26—N1111.6 (2)C25—N3—C27107.9 (2)
N4—C26—H26A109.3C22—N3—Ag3iii108.95 (17)
N1—C26—H26A109.3C25—N3—Ag3iii108.15 (18)
N4—C26—H26B109.3C27—N3—Ag3iii115.50 (19)
N1—C26—H26B109.3C25—N4—C26107.6 (2)
H26A—C26—H26B108.0C25—N4—C24108.7 (3)
N2—C27—N3111.7 (3)C26—N4—C24108.8 (2)
N2—C27—H27A109.3C25—N4—Ag2113.34 (17)
N3—C27—H27A109.3C26—N4—Ag2104.51 (18)
N2—C27—H27B109.3C24—N4—Ag2113.63 (18)
N3—C27—H27B109.3C30—N5—C28107.9 (2)
H27A—C27—H27B107.9C30—N5—C29108.7 (2)
N5—C28—N7112.2 (2)C28—N5—C29108.7 (2)
N5—C28—H28A109.2C30—N5—Ag2113.08 (18)
N7—C28—H28A109.2C28—N5—Ag2109.63 (16)
N5—C28—H28B109.2C29—N5—Ag2108.77 (18)
N7—C28—H28B109.2C31—N6—C30108.2 (3)
H28A—C28—H28B107.9C31—N6—C33108.7 (3)
N8—C29—N5111.4 (2)C30—N6—C33108.7 (2)
N8—C29—H29A109.4C32—N7—C33107.9 (2)
N5—C29—H29A109.4C32—N7—C28107.5 (2)
N8—C29—H29B109.4C33—N7—C28107.4 (3)
N5—C29—H29B109.4C32—N7—Ag2iii107.44 (19)
H29A—C29—H29B108.0C33—N7—Ag2iii116.58 (19)
N6—C30—N5111.6 (3)C28—N7—Ag2iii109.70 (17)
N6—C30—H30A109.3C32—N8—C29107.9 (2)
N5—C30—H30A109.3C32—N8—C31108.6 (3)
N6—C30—H30B109.3C29—N8—C31107.4 (3)
N5—C30—H30B109.3C32—N8—Ag3106.1 (2)
H30A—C30—H30B108.0C29—N8—Ag3110.9 (2)
N6—C31—N8112.4 (2)C31—N8—Ag3115.70 (18)
N6—C31—H31A109.1C34—N9—C35107.7 (2)
N8—C31—H31A109.1C34—N9—C36107.9 (2)
N6—C31—H31B109.1C35—N9—C36107.8 (2)
N8—C31—H31B109.1C34—N9—Ag1iv106.83 (18)
H31A—C31—H31B107.9C35—N9—Ag1iv117.58 (17)
N8—C32—N7112.6 (3)C36—N9—Ag1iv108.72 (18)
N8—C32—H32A109.1C38—N10—C39108.0 (2)
N7—C32—H32A109.1C38—N10—C36107.7 (2)
N8—C32—H32B109.1C39—N10—C36108.3 (2)
N7—C32—H32B109.1C38—N10—Ag1iii111.35 (17)
H32A—C32—H32B107.8C39—N10—Ag1iii114.17 (19)
N6—C33—N7112.3 (3)C36—N10—Ag1iii107.13 (18)
N6—C33—H33A109.1C34—N11—C38107.6 (2)
N7—C33—H33A109.1C34—N11—C37108.5 (2)
N6—C33—H33B109.1C38—N11—C37107.9 (2)
N7—C33—H33B109.1C34—N11—Ag3109.81 (18)
H33A—C33—H33B107.9C38—N11—Ag3109.83 (16)
N11—C34—N9111.9 (2)C37—N11—Ag3113.03 (18)
N11—C34—H34A109.2C37—N12—C35108.2 (3)
N9—C34—H34A109.2C37—N12—C39109.0 (2)
N11—C34—H34B109.2C35—N12—C39108.9 (3)
C6—C1—C2—C30.2 (6)O7—O7'—S3—O926.1 (12)
S1—C1—C2—C3178.8 (3)O7—O7'—S3—C8104.2 (6)
C1—C2—C3—C40.0 (6)C9—C8—S3—O9'54.3 (7)
C2—C3—C4—C50.5 (6)C13—C8—S3—O9'121.2 (6)
C2—C3—C4—C7179.1 (4)C9—C8—S3—O8154.4 (3)
C3—C4—C5—C60.8 (7)C13—C8—S3—O830.1 (4)
C7—C4—C5—C6178.8 (4)C9—C8—S3—O719.1 (4)
C4—C5—C6—C10.5 (7)C13—C8—S3—O7165.4 (4)
C2—C1—C6—C50.0 (6)C9—C8—S3—O996.6 (4)
S1—C1—C6—C5178.6 (3)C13—C8—S3—O978.9 (4)
C13—C8—C9—C102.0 (5)C9—C8—S3—O7'59.2 (5)
S3—C8—C9—C10173.5 (3)C13—C8—S3—O7'125.3 (5)
C8—C9—C10—C111.2 (6)N3—C22—N1—C2658.5 (3)
C9—C10—C11—C123.7 (6)N3—C22—N1—C2358.4 (3)
C9—C10—C11—C14175.8 (4)N3—C22—N1—Ag1175.7 (2)
C10—C11—C12—C133.1 (7)N4—C26—N1—C2259.4 (3)
C14—C11—C12—C13176.4 (4)N4—C26—N1—C2357.0 (3)
C9—C8—C13—C122.5 (6)N4—C26—N1—Ag1176.8 (2)
S3—C8—C13—C12173.0 (3)N2—C23—N1—C2259.0 (3)
C11—C12—C13—C80.0 (6)N2—C23—N1—C2657.7 (3)
C20—C15—C16—C171.0 (6)N2—C23—N1—Ag1179.3 (2)
S2—C15—C16—C17179.0 (3)N9i—Ag1—N1—C2222.2 (2)
C15—C16—C17—C180.2 (6)N10ii—Ag1—N1—C22172.70 (19)
C16—C17—C18—C190.3 (7)N9i—Ag1—N1—C2694.8 (2)
C16—C17—C18—C21177.1 (4)N10ii—Ag1—N1—C2670.3 (2)
C17—C18—C19—C200.1 (7)N9i—Ag1—N1—C23143.4 (2)
C21—C18—C19—C20177.5 (4)N10ii—Ag1—N1—C2351.5 (2)
C18—C19—C20—C150.8 (6)N4—C24—N2—C2359.0 (4)
C16—C15—C20—C191.3 (6)N4—C24—N2—C2759.8 (3)
S2—C15—C20—C19179.4 (3)N1—C23—N2—C2459.1 (4)
S1—O2'—O2—O3'7.9 (10)N1—C23—N2—C2759.7 (3)
O2'—O2—O3'—O315.1 (17)N3—C27—N2—C2460.2 (3)
S1—O2—O3'—O324.6 (8)N3—C27—N2—C2359.0 (3)
O2'—O2—O3'—S19.5 (12)N1—C22—N3—C2558.4 (3)
O2—O3'—O3—S121.5 (6)N1—C22—N3—C2758.1 (3)
S3—O7'—O7—O9'19.8 (9)N1—C22—N3—Ag3iii175.7 (2)
N3ii—Ag3—O9—O9'20.0 (6)N4—C25—N3—C2259.0 (3)
N8—Ag3—O9—O9'111.2 (6)N4—C25—N3—C2757.6 (3)
N11—Ag3—O9—O9'137.2 (6)N4—C25—N3—Ag3iii176.85 (19)
N3ii—Ag3—O9—S33.3 (4)N2—C27—N3—C2258.0 (3)
N8—Ag3—O9—S3127.9 (4)N2—C27—N3—C2558.7 (3)
N11—Ag3—O9—S3120.5 (4)N2—C27—N3—Ag3iii179.78 (19)
O9'—Ag3—O9—S316.7 (5)N3—C25—N4—C2659.8 (3)
Ag3—O9—O9'—S3165.5 (4)N3—C25—N4—C2457.9 (3)
S3—O9—O9'—O78.3 (10)N3—C25—N4—Ag2174.78 (18)
Ag3—O9—O9'—O7157.3 (14)N1—C26—N4—C2560.1 (3)
S3—O9—O9'—Ag3165.5 (4)N1—C26—N4—C2457.5 (3)
O7'—O7—O9'—O934 (2)N1—C26—N4—Ag2179.2 (2)
S3—O7—O9'—O99.4 (12)N2—C24—N4—C2558.8 (3)
O7'—O7—O9'—S325.1 (11)N2—C24—N4—C2658.1 (3)
O7'—O7—O9'—Ag3178.1 (10)N2—C24—N4—Ag2174.1 (2)
S3—O7—O9'—Ag3153.0 (11)N5—Ag2—N4—C2539.8 (2)
N3ii—Ag3—O9'—O9162.5 (6)N7ii—Ag2—N4—C25136.98 (19)
N8—Ag3—O9'—O969.6 (6)N5—Ag2—N4—C26156.63 (18)
N11—Ag3—O9'—O945.6 (6)N7ii—Ag2—N4—C2620.2 (2)
N3ii—Ag3—O9'—S3132.5 (14)N5—Ag2—N4—C2484.9 (2)
N8—Ag3—O9'—S399.6 (14)N7ii—Ag2—N4—C2498.3 (2)
N11—Ag3—O9'—S315.5 (15)N6—C30—N5—C2859.2 (3)
O9—Ag3—O9'—S330.1 (10)N6—C30—N5—C2958.5 (3)
N3ii—Ag3—O9'—O75.8 (10)N6—C30—N5—Ag2179.4 (2)
N8—Ag3—O9'—O7133.7 (9)N7—C28—N5—C3059.2 (3)
N11—Ag3—O9'—O7111.2 (9)N7—C28—N5—C2958.5 (3)
O9—Ag3—O9'—O7156.8 (14)N7—C28—N5—Ag2177.2 (2)
O3—O3'—S1—O1'27.9 (7)N8—C29—N5—C3058.5 (3)
O2—O3'—S1—O1'132.0 (5)N8—C29—N5—C2858.7 (3)
O3—O3'—S1—O2159.9 (6)N8—C29—N5—Ag2178.0 (2)
O3—O3'—S1—O165.9 (9)N7ii—Ag2—N5—C30115.7 (2)
O2—O3'—S1—O194.1 (7)N4—Ag2—N5—C3067.7 (2)
O2—O3'—S1—O3159.9 (6)N7ii—Ag2—N5—C28123.9 (2)
O3—O3'—S1—O2'155.7 (5)N4—Ag2—N5—C2852.7 (2)
O2—O3'—S1—O2'4.2 (5)N7ii—Ag2—N5—C295.1 (2)
O3—O3'—S1—C197.2 (5)N4—Ag2—N5—C29171.48 (19)
O2—O3'—S1—C1102.9 (3)N8—C31—N6—C3059.7 (4)
O1—O1'—S1—O3'138.9 (7)N8—C31—N6—C3358.1 (3)
O1—O1'—S1—O248.7 (9)N5—C30—N6—C3158.7 (4)
O1—O1'—S1—O3159.1 (7)N5—C30—N6—C3359.1 (4)
O1—O1'—S1—O2'14.5 (8)N7—C33—N6—C3158.9 (3)
O1—O1'—S1—C195.5 (6)N7—C33—N6—C3058.7 (4)
O2'—O2—S1—O3'173.3 (8)N8—C32—N7—C3357.1 (3)
O2'—O2—S1—O1'59.7 (9)N8—C32—N7—C2858.5 (3)
O3'—O2—S1—O1'113.6 (6)N8—C32—N7—Ag2iii176.5 (2)
O2'—O2—S1—O132.9 (7)N6—C33—N7—C3258.0 (3)
O3'—O2—S1—O1140.3 (4)N6—C33—N7—C2857.6 (3)
O2'—O2—S1—O3157.7 (7)N6—C33—N7—Ag2iii178.89 (19)
O3'—O2—S1—O315.5 (5)N5—C28—N7—C3257.7 (4)
O3'—O2—S1—O2'173.3 (8)N5—C28—N7—C3358.2 (3)
O2'—O2—S1—C184.2 (7)N5—C28—N7—Ag2iii174.2 (2)
O3'—O2—S1—C1102.5 (4)N7—C32—N8—C2959.4 (4)
O1'—O1—S1—O3'67.8 (10)N7—C32—N8—C3156.7 (3)
O1'—O1—S1—O2146.7 (6)N7—C32—N8—Ag3178.3 (2)
O1'—O1—S1—O322.2 (7)N5—C29—N8—C3258.7 (4)
O1'—O1—S1—O2'166.3 (7)N5—C29—N8—C3158.2 (3)
O1'—O1—S1—C195.3 (6)N5—C29—N8—Ag3174.5 (2)
O3'—O3—S1—O1'156.3 (6)N6—C31—N8—C3257.1 (3)
O3'—O3—S1—O219.8 (6)N6—C31—N8—C2959.4 (3)
O3'—O3—S1—O1143.9 (5)N6—C31—N8—Ag3176.2 (2)
O3'—O3—S1—O2'42.9 (9)N3ii—Ag3—N8—C32145.73 (18)
O3'—O3—S1—C198.8 (5)N11—Ag3—N8—C3267.5 (2)
O2—O2'—S1—O3'6.4 (8)O9—Ag3—N8—C3221.0 (2)
O2—O2'—S1—O1'140.5 (6)O9'—Ag3—N8—C3244.7 (3)
O2—O2'—S1—O1148.7 (7)N3ii—Ag3—N8—C2928.8 (2)
O2—O2'—S1—O337.1 (11)N11—Ag3—N8—C29175.6 (2)
O2—O2'—S1—C1105.9 (6)O9—Ag3—N8—C2995.9 (2)
C2—C1—S1—O3'3.4 (5)O9'—Ag3—N8—C2972.2 (3)
C6—C1—S1—O3'175.2 (5)N3ii—Ag3—N8—C3193.7 (2)
C2—C1—S1—O1'130.3 (4)N11—Ag3—N8—C3153.0 (2)
C6—C1—S1—O1'51.1 (5)O9—Ag3—N8—C31141.5 (2)
C2—C1—S1—O274.7 (4)O9'—Ag3—N8—C31165.2 (3)
C6—C1—S1—O2103.9 (4)N11—C34—N9—C3557.2 (3)
C2—C1—S1—O1166.0 (4)N11—C34—N9—C3659.0 (3)
C6—C1—S1—O115.4 (4)N11—C34—N9—Ag1iv175.7 (2)
C2—C1—S1—O345.7 (4)N12—C35—N9—C3458.5 (3)
C6—C1—S1—O3135.7 (4)N12—C35—N9—C3657.6 (3)
C2—C1—S1—O2'112.6 (5)N12—C35—N9—Ag1iv179.08 (19)
C6—C1—S1—O2'66.0 (5)N10—C36—N9—C3458.6 (3)
C16—C15—S2—O4109.5 (3)N10—C36—N9—C3557.4 (3)
C20—C15—S2—O468.6 (3)N10—C36—N9—Ag1iv174.05 (17)
C16—C15—S2—O510.3 (4)N11—C38—N10—C3957.6 (3)
C20—C15—S2—O5171.6 (3)N11—C38—N10—C3659.1 (3)
C16—C15—S2—O6130.8 (3)N11—C38—N10—Ag1iii176.3 (2)
C20—C15—S2—O651.1 (3)N12—C39—N10—C3857.8 (3)
O9—O9'—S3—O871.8 (8)N12—C39—N10—C3658.6 (3)
O7—O9'—S3—O8114.3 (5)N12—C39—N10—Ag1iii177.78 (18)
Ag3—O9'—S3—O8101.0 (13)N9—C36—N10—C3858.4 (3)
O9—O9'—S3—O7173.9 (8)N9—C36—N10—C3958.1 (3)
Ag3—O9'—S3—O7144.8 (15)N9—C36—N10—Ag1iii178.29 (18)
O7—O9'—S3—O9173.9 (8)N9—C34—N11—C3859.0 (3)
Ag3—O9'—S3—O929.2 (10)N9—C34—N11—C3757.5 (3)
O9—O9'—S3—O7'173.8 (6)N9—C34—N11—Ag3178.53 (19)
O7—O9'—S3—O7'12.2 (6)N10—C38—N11—C3459.3 (3)
Ag3—O9'—S3—O7'157.0 (13)N10—C38—N11—C3757.6 (3)
O9—O9'—S3—C873.8 (7)N10—C38—N11—Ag3178.8 (2)
O7—O9'—S3—C8100.2 (4)N12—C37—N11—C3458.4 (3)
Ag3—O9'—S3—C844.6 (15)N12—C37—N11—C3857.9 (3)
O7'—O7—S3—O9'161.0 (9)N12—C37—N11—Ag3179.5 (2)
O7'—O7—S3—O841.1 (8)N3ii—Ag3—N11—C3466.1 (2)
O9'—O7—S3—O8119.9 (5)N8—Ag3—N11—C3485.2 (2)
O7'—O7—S3—O9165.5 (7)O9—Ag3—N11—C34172.0 (2)
O9'—O7—S3—O94.5 (6)O9'—Ag3—N11—C34170.1 (3)
O9'—O7—S3—O7'161.0 (9)N3ii—Ag3—N11—C38175.77 (19)
O7'—O7—S3—C887.0 (7)N8—Ag3—N11—C3832.9 (2)
O9'—O7—S3—C8112.0 (5)O9—Ag3—N11—C3853.9 (2)
Ag3—O9—S3—O9'20.2 (6)O9'—Ag3—N11—C3871.8 (3)
O9'—O9—S3—O8127.9 (7)N3ii—Ag3—N11—C3755.2 (2)
Ag3—O9—S3—O8148.0 (3)N8—Ag3—N11—C37153.4 (2)
O9'—O9—S3—O76.0 (7)O9—Ag3—N11—C3766.6 (2)
Ag3—O9—S3—O714.2 (5)O9'—Ag3—N11—C3748.8 (3)
O9'—O9—S3—O7'11.3 (11)N11—C37—N12—C3559.2 (3)
Ag3—O9—S3—O7'31.5 (10)N11—C37—N12—C3959.1 (3)
O9'—O9—S3—C8119.9 (7)N9—C35—N12—C3759.7 (3)
Ag3—O9—S3—C899.7 (4)N9—C35—N12—C3958.6 (3)
O7—O7'—S3—O9'18.1 (8)N10—C39—N12—C3759.0 (3)
O7—O7'—S3—O8146.3 (6)N10—C39—N12—C3558.8 (3)
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8ii0.87 (2)1.92 (2)2.782 (5)175 (4)
O1W—H1WB···O6ii0.82 (2)2.10 (2)2.907 (4)166 (4)
O2W—H2WA···O5iii0.83 (2)2.16 (2)2.958 (4)163 (4)
O2W—H2WB···O1iv0.84 (2)1.83 (3)2.612 (6)155 (4)
O3W—H3WA···O2v0.80 (2)2.45 (3)3.096 (7)139 (4)
O3W—H3WB···O50.80 (2)2.15 (2)2.908 (5)160 (4)
O4W—H4WB···O7iii0.88 (2)1.99 (3)2.838 (7)160 (4)
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag3(C7H7O3S)3(C6H12N4)3(H2O)]·3H2O
Mr1329.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)17.3181 (5), 10.7028 (3), 26.9110 (11)
β (°) 95.657 (3)
V3)4963.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.672, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
21413, 11446, 7890
Rint0.021
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 0.99
No. of reflections11446
No. of parameters650
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 1.05

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.362 (2)Ag2—N42.374 (2)
Ag1—N9i2.367 (3)Ag3—N3ii2.315 (3)
Ag1—N10ii2.388 (3)Ag3—N82.358 (3)
Ag2—N52.347 (2)Ag3—N112.394 (2)
Ag2—N7ii2.365 (3)
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8ii0.87 (2)1.92 (2)2.782 (5)175 (4)
O1W—H1WB···O6ii0.82 (2)2.10 (2)2.907 (4)166 (4)
O2W—H2WA···O5iii0.83 (2)2.16 (2)2.958 (4)163 (4)
O2W—H2WB···O1iv0.84 (2)1.83 (3)2.612 (6)155 (4)
O3W—H3WA···O2v0.80 (2)2.45 (3)3.096 (7)139 (4)
O3W—H3WB···O50.80 (2)2.15 (2)2.908 (5)160 (4)
O4W—H4WB···O7iii0.88 (2)1.99 (3)2.838 (7)160 (4)
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the Heilongjiang Province Education Department for support (project `The Study of Silver Sulfonates containing Neutral Ligands', serial No. 11535035).

References

First citationCôté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev., 245, 49-64.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-L., Tong, M.-L., Fu, R.-W., Cheng, X.-M. & Ng, S.-W. (2001). Inorg. Chem. 40, 3562–3569.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds