organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl­sulfanyl-3-(2,2,2-tri­fluoro­eth­oxy)pyridine

aCollege of Materials Engineering, Jinling Institute of Technology, No. 99 Hongjing Street, Nanjing, Nanjing 211169, People's Republic of China
*Correspondence e-mail: fzq@jit.edu.cn

(Received 23 October 2010; accepted 24 October 2010; online 6 November 2010)

The title compound, C14H12F3NOS, was synthesized by the reaction of 2-chloro-3-(2,2,2-trifluoro­eth­oxy)pyridine and phenyl­methane­thiol. The dihedral angle between the aromatic rings is 76.7 (2)°. In the crystal structure, weak aromatic ππ stacking between inversion-related pairs of pyridine rings [centroid-to-centroid separation = 3.776 (2) Å] may help to establish the packing.

Related literature

For background to the title compound as a precursor of weedkillers, see: Howard et al. (2001[Howard, S., Hudetz, M. & Allard, J. L. (2001). The BCPC Conference - Weeds 2001, 2A-3, pp. 29-34.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12F3NOS

  • Mr = 299.31

  • Monoclinic, P 21 /n

  • a = 8.3770 (17) Å

  • b = 16.860 (3) Å

  • c = 10.144 (2) Å

  • β = 97.32 (3)°

  • V = 1421.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.927, Tmax = 0.951

  • 2758 measured reflections

  • 2575 independent reflections

  • 1716 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.136

  • S = 1.01

  • 2575 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3-(2,2,2-trifluoroethoxy)-2-(benzylthio)pyridine, (I), is an important intermediate for a novel weed killer N-[[(4,6-Dimethoxy-2-Pyrimidinyl)Amino]Carbonyl]- 3-(2,2,2-Trifluoroethoxy)-2-Pyridinesulfonamide, which is of high herbicidal activity and friendly to the environment (Howard et al., 2001).

Here we report the crystal structure of (I). In the molecule of the title compound (Fig. 1), all bond lengths and angles (Allen et al., 1987) are within normal ranges. Rings A (C3–C6/N/C7) and B (C9–C14) are of course planar, while the dihedral angle between them is 76.7 (2)°.

Related literature top

For background to the title compound as a precursor of weedkillers, see: Howard et al. (2001). For reference bond-length data, see: Allen et al. (1987).

Experimental top

3-(2,2,2-trifluoroethoxy)-2-chloropyridine (10 mmol) and potassium carbonate (20 mmol) were dissolved in DMF (20 ml), and the mixture was stirred at reflux for 1 h. Then phenylmethanethiol (12 mmol) was added dropwise to the mixture above, refluxed for another 6 h. After cooling and filtering, crude compound (I) was obtained. Pure product suitable for X-ray diffraction was recrystallized from alcohol as colourless blocks of (I).

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 Ueq of the carrier atom.

Structure description top

3-(2,2,2-trifluoroethoxy)-2-(benzylthio)pyridine, (I), is an important intermediate for a novel weed killer N-[[(4,6-Dimethoxy-2-Pyrimidinyl)Amino]Carbonyl]- 3-(2,2,2-Trifluoroethoxy)-2-Pyridinesulfonamide, which is of high herbicidal activity and friendly to the environment (Howard et al., 2001).

Here we report the crystal structure of (I). In the molecule of the title compound (Fig. 1), all bond lengths and angles (Allen et al., 1987) are within normal ranges. Rings A (C3–C6/N/C7) and B (C9–C14) are of course planar, while the dihedral angle between them is 76.7 (2)°.

For background to the title compound as a precursor of weedkillers, see: Howard et al. (2001). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
2-Benzylsulfanyl-3-(2,2,2-trifluoroethoxy)pyridine top
Crystal data top
C14H12F3NOSF(000) = 616
Mr = 299.31Dx = 1.399 Mg m3
Monoclinic, P21/nMelting point: 353 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.3770 (17) ÅCell parameters from 25 reflections
b = 16.860 (3) Åθ = 9–13°
c = 10.144 (2) ŵ = 0.26 mm1
β = 97.32 (3)°T = 293 K
V = 1421.0 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1716 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.927, Tmax = 0.951l = 1212
2758 measured reflections3 standard reflections every 200 reflections
2575 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.027P)2 + 2.174P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2575 reflectionsΔρmax = 0.26 e Å3
182 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (2)
Crystal data top
C14H12F3NOSV = 1421.0 (5) Å3
Mr = 299.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3770 (17) ŵ = 0.26 mm1
b = 16.860 (3) ÅT = 293 K
c = 10.144 (2) Å0.30 × 0.20 × 0.20 mm
β = 97.32 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1716 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.927, Tmax = 0.9513 standard reflections every 200 reflections
2758 measured reflections intensity decay: none
2575 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
2575 reflectionsΔρmin = 0.28 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18955 (13)0.37494 (6)0.26098 (10)0.0562 (3)
O10.0642 (3)0.33867 (16)0.0614 (3)0.0602 (8)
N10.2971 (4)0.45168 (18)0.0576 (3)0.0516 (8)
F10.2695 (4)0.21214 (19)0.1032 (4)0.1275 (14)
F20.4629 (4)0.2729 (2)0.0088 (4)0.1367 (14)
F30.3439 (4)0.3240 (2)0.1674 (3)0.1163 (11)
C10.3180 (6)0.2823 (3)0.0625 (6)0.0831 (15)
C20.2097 (5)0.3222 (3)0.0197 (4)0.0667 (12)
H2A0.18970.28820.09300.080*
H2B0.25820.37100.05600.080*
C30.0459 (4)0.3844 (2)0.0070 (4)0.0463 (9)
C40.0345 (5)0.4081 (3)0.1235 (4)0.0607 (11)
H4A0.05300.39360.18460.073*
C50.1580 (5)0.4542 (3)0.1607 (4)0.0678 (12)
H5A0.15440.47140.24820.081*
C60.2844 (5)0.4742 (2)0.0694 (4)0.0592 (11)
H6A0.36610.50510.09660.071*
C70.1804 (4)0.4077 (2)0.0952 (3)0.0427 (8)
C80.3643 (5)0.4284 (2)0.3398 (4)0.0550 (10)
H8A0.40750.40040.42010.066*
H8B0.44630.42850.28040.066*
C90.3294 (4)0.5127 (2)0.3752 (3)0.0432 (9)
C100.4057 (4)0.5758 (2)0.3243 (4)0.0499 (9)
H10A0.47800.56630.26370.060*
C110.3776 (5)0.6527 (2)0.3611 (4)0.0591 (11)
H11A0.43100.69430.32540.071*
C120.2721 (5)0.6681 (3)0.4494 (5)0.0704 (13)
H12A0.25280.72000.47390.084*
C130.1939 (5)0.6058 (3)0.5023 (5)0.0730 (13)
H13A0.12260.61570.56350.088*
C140.2214 (5)0.5291 (3)0.4647 (4)0.0593 (11)
H14A0.16680.48770.49970.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0704 (7)0.0507 (6)0.0449 (5)0.0104 (5)0.0025 (5)0.0047 (5)
O10.0537 (16)0.0634 (17)0.0608 (17)0.0163 (14)0.0029 (13)0.0096 (14)
N10.0501 (19)0.054 (2)0.0519 (19)0.0038 (16)0.0119 (15)0.0019 (16)
F10.113 (3)0.073 (2)0.206 (4)0.0068 (19)0.059 (3)0.037 (2)
F20.063 (2)0.165 (4)0.182 (4)0.039 (2)0.013 (2)0.008 (3)
F30.119 (3)0.121 (3)0.120 (3)0.018 (2)0.055 (2)0.021 (2)
C10.063 (3)0.076 (4)0.114 (4)0.014 (3)0.024 (3)0.016 (3)
C20.054 (3)0.065 (3)0.080 (3)0.016 (2)0.005 (2)0.012 (2)
C30.045 (2)0.046 (2)0.047 (2)0.0015 (17)0.0027 (17)0.0018 (17)
C40.059 (3)0.076 (3)0.044 (2)0.002 (2)0.0020 (19)0.001 (2)
C50.077 (3)0.084 (3)0.043 (2)0.002 (3)0.012 (2)0.010 (2)
C60.060 (3)0.065 (3)0.056 (3)0.004 (2)0.022 (2)0.002 (2)
C70.044 (2)0.0412 (19)0.0415 (19)0.0020 (16)0.0023 (16)0.0037 (16)
C80.059 (2)0.057 (2)0.045 (2)0.004 (2)0.0091 (18)0.0034 (18)
C90.0396 (19)0.051 (2)0.0363 (19)0.0028 (17)0.0076 (15)0.0015 (16)
C100.044 (2)0.058 (2)0.045 (2)0.0031 (19)0.0003 (17)0.0016 (18)
C110.054 (2)0.055 (2)0.065 (3)0.000 (2)0.006 (2)0.008 (2)
C120.067 (3)0.057 (3)0.083 (3)0.011 (2)0.005 (3)0.015 (2)
C130.067 (3)0.083 (3)0.072 (3)0.007 (3)0.019 (2)0.017 (3)
C140.059 (3)0.064 (3)0.056 (2)0.004 (2)0.011 (2)0.001 (2)
Geometric parameters (Å, º) top
S1—C71.762 (4)C5—H5A0.9300
S1—C81.816 (4)C6—H6A0.9300
O1—C31.371 (4)C8—C91.504 (5)
O1—C21.409 (4)C8—H8A0.9700
N1—C71.321 (4)C8—H8B0.9700
N1—C61.334 (5)C9—C101.375 (5)
F1—C11.300 (6)C9—C141.389 (5)
F2—C11.341 (6)C10—C111.378 (5)
F3—C11.316 (6)C10—H10A0.9300
C1—C21.472 (6)C11—C121.361 (6)
C2—H2A0.9700C11—H11A0.9300
C2—H2B0.9700C12—C131.382 (6)
C3—C41.374 (5)C12—H12A0.9300
C3—C71.403 (5)C13—C141.375 (6)
C4—C51.385 (6)C13—H13A0.9300
C4—H4A0.9300C14—H14A0.9300
C5—C61.358 (5)
C7—S1—C8101.50 (18)N1—C7—C3122.4 (3)
C3—O1—C2116.9 (3)N1—C7—S1120.5 (3)
C7—N1—C6117.9 (3)C3—C7—S1117.0 (3)
F1—C1—F3107.8 (5)C9—C8—S1113.8 (3)
F1—C1—F2106.8 (4)C9—C8—H8A108.8
F3—C1—F2105.6 (4)S1—C8—H8A108.8
F1—C1—C2113.9 (4)C9—C8—H8B108.8
F3—C1—C2113.0 (4)S1—C8—H8B108.8
F2—C1—C2109.2 (5)H8A—C8—H8B107.7
O1—C2—C1108.0 (4)C10—C9—C14117.7 (4)
O1—C2—H2A110.1C10—C9—C8121.8 (3)
C1—C2—H2A110.1C14—C9—C8120.5 (4)
O1—C2—H2B110.1C9—C10—C11121.5 (4)
C1—C2—H2B110.1C9—C10—H10A119.2
H2A—C2—H2B108.4C11—C10—H10A119.2
O1—C3—C4125.7 (3)C12—C11—C10120.3 (4)
O1—C3—C7115.3 (3)C12—C11—H11A119.8
C4—C3—C7119.0 (3)C10—C11—H11A119.8
C3—C4—C5117.6 (4)C11—C12—C13119.4 (4)
C3—C4—H4A121.2C11—C12—H12A120.3
C5—C4—H4A121.2C13—C12—H12A120.3
C6—C5—C4119.9 (4)C14—C13—C12120.2 (4)
C6—C5—H5A120.1C14—C13—H13A119.9
C4—C5—H5A120.1C12—C13—H13A119.9
N1—C6—C5123.2 (4)C13—C14—C9121.0 (4)
N1—C6—H6A118.4C13—C14—H14A119.5
C5—C6—H6A118.4C9—C14—H14A119.5
C3—O1—C2—C1172.3 (4)O1—C3—C7—S10.3 (4)
F1—C1—C2—O166.8 (6)C4—C3—C7—S1179.5 (3)
F3—C1—C2—O156.8 (6)C8—S1—C7—N17.5 (3)
F2—C1—C2—O1174.0 (4)C8—S1—C7—C3173.0 (3)
C2—O1—C3—C47.7 (6)C7—S1—C8—C981.3 (3)
C2—O1—C3—C7172.6 (3)S1—C8—C9—C10120.4 (3)
O1—C3—C4—C5179.8 (4)S1—C8—C9—C1461.7 (4)
C7—C3—C4—C50.1 (6)C14—C9—C10—C110.5 (5)
C3—C4—C5—C60.1 (6)C8—C9—C10—C11177.5 (3)
C7—N1—C6—C50.1 (6)C9—C10—C11—C120.1 (6)
C4—C5—C6—N10.1 (7)C10—C11—C12—C130.3 (6)
C6—N1—C7—C30.1 (5)C11—C12—C13—C140.8 (7)
C6—N1—C7—S1179.5 (3)C12—C13—C14—C91.1 (7)
O1—C3—C7—N1179.8 (3)C10—C9—C14—C130.9 (6)
C4—C3—C7—N10.1 (6)C8—C9—C14—C13177.1 (4)

Experimental details

Crystal data
Chemical formulaC14H12F3NOS
Mr299.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3770 (17), 16.860 (3), 10.144 (2)
β (°) 97.32 (3)
V3)1421.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.927, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
2758, 2575, 1716
Rint0.036
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.136, 1.01
No. of reflections2575
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoward, S., Hudetz, M. & Allard, J. L. (2001). The BCPC Conference – Weeds 2001, 2A-3, pp. 29–34.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds