organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6α-Hy­dr­oxy-5,6-di­hydro­salviasperanol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 15 October 2010; accepted 17 October 2010; online 23 October 2010)

In the title compound, C20H28O4, a diterpenoid isolated from the roots of Premna obtusifolia (Verbenaceae), the five-membered ring is in a half-chair conformation. One six-membered ring exists in a twisted-boat conformation while the other is in half-boat conformation. The crystal packing is stabilized by inter­molecular O—H⋯O and weak C—H⋯O inter­actions, generating (001) sheets.

Related literature

For background to Verbenaceae, diterpenes and their bio­log­ical activity, see: Hymavathi et al. (2009[Hymavathi, A., Babu, K. S., Naidu, V. G. M., Krishna, S. R., Diwan, P. V. & Rao, J. M. (2009). Bioorg. Med. Chem. Lett. 19, 5727-5731.]); Bunluepuech & Tewtrakul (2009[Bunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289-292.]); Esquivel et al. (1995[Esquivel, B., Flores, M., Hernandez-Ortega, S., Toscano, R. A. & Ramamoorthy, T. P. (1995). Phytochemistry, 39, 139-143.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28O4

  • Mr = 332.42

  • Orthorhombic, P 21 21 21

  • a = 6.2767 (2) Å

  • b = 11.7358 (4) Å

  • c = 23.7496 (7) Å

  • V = 1749.45 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.49 × 0.36 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) Tmin = 0.959, Tmax = 0.979

  • 15028 measured reflections

  • 3534 independent reflections

  • 3079 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.15

  • 3534 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 0.85 (3) 2.01 (3) 2.8504 (17) 169 (3)
O4—H1O4⋯O1ii 0.84 (3) 1.89 (3) 2.7089 (16) 165 (3)
C18—H18B⋯O3iii 0.96 2.55 3.407 (2) 149
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Plants of the family Verbenaceae were found to possess interesting biological properties such as cytotoxicity (Hymavathi et al., 2009) and anti-HIV-1 integrase activities (Bunluepuech & Tewtrakul, 2009). The phytochemistry study of the aerial parts of Premna obtusifolia (Verbenaceae), a small tree found in the mangrove forests which were collected from Satun province in the southern part of Thailand, led to the isolation of diterpenes. The title compound which is known as 5,6-dihydro-6α-hydroxysalviasperanol (Esquivel et al., 1995) is one of the isolated compounds from this plant. Herein we report the crystal structure of the title compound (I).

The bond lengths show normal values (Allen et al., 1987). The pyrocatechol, C8/C9/C11–C14/O3/O4, is planar with the maximum deviation of 0.006Å for atom C12. The five-membered ring, C5–C7/C10/O1, is in half-chair conformation with the puckering parameter Q = 0.4588 (16)Å, φ = 194.0 (2)°. The six-membered ring, C1–C5/C10 adopts twisted-boat conformation with puckering parameter Q = 0.6536 (18)Å, θ = 79.56 (16)° and φ = 156.60 (16)°. The other six-membered ring , C7–C10/C20/O1, is in half-boat conformation with puckering parameter Q = 0.5929 (15)Å, θ = 47.83 (15)° and φ = 347.9 (2)° (Cremer & Pople 1975). The torsion angles of propanyl group attached to the pyrocatechol ring are C14–C13–C15–C17 = -101.80 (19)° and C14–C13–C15–C16 = 78.55 (19)°.

The crystal packing of (I) is stabilized by intermolecular O3—H1O3···O2 and O4—H1O4···O1 and weak C18—H18B···O3 interactions. The molecules are linked into infinite two dimensional networks parallel to ab plane.

Related literature top

For background to Verbenaceae, diterpenes and their biological activity, see: Hymavathi et al. (2009); Bunluepuech & Tewtrakul (2009); Esquivel et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The air-dried roots of Premna obtusifolia (4.5 kg) were extracted with CH2Cl2 (2 x 20 L) under room temperature. The combined extracts were concentrated under reduced pressure to give a dark yellow extract (40.5g) which was subjected to quick column chromatography (QCC) over silicagel using solvents of increasing polarity from n–hexane to EtOAc to afford 12 fractions (F1–F12). Fraction F10 was further purified by QCC using CH2Cl2–EtOAc (3:7), yielding compound (I) (145.8 mg). Colorless block-shaped single crystals of (I) were recrystallized from CH2Cl2 after several days (m.p.461–463 K).

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. O bound H atoms were located from the difference map and isotropically refined.The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH2, 0.96 for CH3 and 0.93 Å for CH in benzene group. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Plants of the family Verbenaceae were found to possess interesting biological properties such as cytotoxicity (Hymavathi et al., 2009) and anti-HIV-1 integrase activities (Bunluepuech & Tewtrakul, 2009). The phytochemistry study of the aerial parts of Premna obtusifolia (Verbenaceae), a small tree found in the mangrove forests which were collected from Satun province in the southern part of Thailand, led to the isolation of diterpenes. The title compound which is known as 5,6-dihydro-6α-hydroxysalviasperanol (Esquivel et al., 1995) is one of the isolated compounds from this plant. Herein we report the crystal structure of the title compound (I).

The bond lengths show normal values (Allen et al., 1987). The pyrocatechol, C8/C9/C11–C14/O3/O4, is planar with the maximum deviation of 0.006Å for atom C12. The five-membered ring, C5–C7/C10/O1, is in half-chair conformation with the puckering parameter Q = 0.4588 (16)Å, φ = 194.0 (2)°. The six-membered ring, C1–C5/C10 adopts twisted-boat conformation with puckering parameter Q = 0.6536 (18)Å, θ = 79.56 (16)° and φ = 156.60 (16)°. The other six-membered ring , C7–C10/C20/O1, is in half-boat conformation with puckering parameter Q = 0.5929 (15)Å, θ = 47.83 (15)° and φ = 347.9 (2)° (Cremer & Pople 1975). The torsion angles of propanyl group attached to the pyrocatechol ring are C14–C13–C15–C17 = -101.80 (19)° and C14–C13–C15–C16 = 78.55 (19)°.

The crystal packing of (I) is stabilized by intermolecular O3—H1O3···O2 and O4—H1O4···O1 and weak C18—H18B···O3 interactions. The molecules are linked into infinite two dimensional networks parallel to ab plane.

For background to Verbenaceae, diterpenes and their biological activity, see: Hymavathi et al. (2009); Bunluepuech & Tewtrakul (2009); Esquivel et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis, showing infinite two dimensional networks parallel to ab plane. Hydrogen bonds are shown as dashed lines.
6α-Hydroxy-5,6-dihydrosalviasperanol top
Crystal data top
C20H28O4F(000) = 720
Mr = 332.42Dx = 1.262 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6222 reflections
a = 6.2767 (2) Åθ = 2.4–32.3°
b = 11.7358 (4) ŵ = 0.09 mm1
c = 23.7496 (7) ÅT = 100 K
V = 1749.45 (10) Å3Block, colourless
Z = 40.49 × 0.36 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3534 independent reflections
Radiation source: sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 32.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 89
Tmin = 0.959, Tmax = 0.979k = 1716
15028 measured reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.2019P]
where P = (Fo2 + 2Fc2)/3
3534 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H28O4V = 1749.45 (10) Å3
Mr = 332.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2767 (2) ŵ = 0.09 mm1
b = 11.7358 (4) ÅT = 100 K
c = 23.7496 (7) Å0.49 × 0.36 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3079 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.979Rint = 0.037
15028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.36 e Å3
3534 reflectionsΔρmin = 0.25 e Å3
233 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7000 (2)0.51248 (9)0.29871 (5)0.0162 (2)
O20.3927 (2)0.76867 (10)0.28241 (5)0.0179 (2)
H1O20.295 (4)0.730 (2)0.2677 (10)0.035 (7)*
O30.1349 (2)0.42654 (11)0.15694 (5)0.0212 (3)
H1O30.199 (5)0.379 (2)0.1782 (10)0.036 (7)*
O40.0204 (2)0.35135 (9)0.26393 (5)0.0175 (2)
H1O40.122 (5)0.391 (2)0.2762 (10)0.034 (7)*
C10.6494 (3)0.43356 (13)0.39056 (7)0.0193 (3)
H1A0.72020.36760.37460.023*
H1B0.54070.40580.41620.023*
C20.8142 (3)0.50212 (15)0.42483 (7)0.0231 (3)
H2A0.80180.48110.46420.028*
H2B0.95600.48110.41240.028*
C30.7889 (3)0.63252 (15)0.41961 (7)0.0200 (3)
H3A0.84830.66840.45290.024*
H3B0.86990.65880.38730.024*
C40.5563 (3)0.67027 (13)0.41290 (6)0.0162 (3)
C50.4707 (3)0.62326 (12)0.35629 (6)0.0141 (3)
H5A0.31470.62570.35740.017*
C60.5467 (3)0.69065 (12)0.30370 (6)0.0141 (3)
H6A0.67530.73340.31380.017*
C70.6093 (3)0.59624 (12)0.26148 (6)0.0146 (3)
H7A0.71520.62390.23440.018*
C80.4169 (3)0.54859 (12)0.23181 (6)0.0145 (3)
C90.2902 (3)0.47081 (12)0.26130 (6)0.0144 (3)
C100.5406 (3)0.49841 (12)0.34320 (6)0.0147 (3)
C110.1059 (3)0.43033 (12)0.23603 (6)0.0145 (3)
C120.0464 (3)0.46583 (13)0.18190 (6)0.0155 (3)
C130.1739 (3)0.54262 (13)0.15161 (6)0.0161 (3)
C140.3583 (3)0.58331 (12)0.17780 (6)0.0154 (3)
H14A0.44430.63500.15870.018*
C150.1063 (3)0.57665 (14)0.09244 (6)0.0196 (3)
H15A0.04680.50850.07450.023*
C160.2922 (3)0.61702 (16)0.05555 (7)0.0237 (4)
H16A0.24310.62810.01770.036*
H16B0.40300.56060.05590.036*
H16C0.34680.68760.07000.036*
C170.0714 (3)0.66608 (18)0.09427 (8)0.0286 (4)
H17A0.19050.63640.11500.043*
H17B0.11530.68410.05660.043*
H17C0.01970.73380.11240.043*
C180.5432 (3)0.80127 (14)0.41448 (7)0.0205 (3)
H18A0.58620.82800.45100.031*
H18B0.39940.82480.40720.031*
H18C0.63590.83260.38630.031*
C190.4188 (3)0.62608 (15)0.46181 (6)0.0213 (3)
H19A0.47980.65010.49690.032*
H19B0.41360.54440.46060.032*
H19C0.27710.65610.45850.032*
C200.3572 (3)0.42821 (12)0.31863 (6)0.0158 (3)
H20A0.40120.34920.31560.019*
H20B0.23630.43160.34400.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0152 (6)0.0138 (5)0.0197 (5)0.0030 (4)0.0026 (4)0.0022 (4)
O20.0206 (6)0.0119 (5)0.0213 (5)0.0033 (5)0.0016 (5)0.0015 (4)
O30.0204 (7)0.0206 (5)0.0226 (5)0.0081 (5)0.0026 (5)0.0026 (4)
O40.0182 (6)0.0109 (5)0.0234 (5)0.0024 (4)0.0037 (5)0.0006 (4)
C10.0231 (9)0.0138 (6)0.0211 (6)0.0039 (6)0.0016 (6)0.0029 (5)
C20.0221 (9)0.0215 (8)0.0257 (7)0.0055 (7)0.0053 (7)0.0015 (6)
C30.0194 (8)0.0193 (7)0.0214 (7)0.0001 (7)0.0029 (6)0.0001 (6)
C40.0188 (8)0.0126 (6)0.0173 (6)0.0004 (6)0.0016 (6)0.0002 (5)
C50.0145 (7)0.0107 (6)0.0171 (6)0.0005 (6)0.0002 (5)0.0004 (5)
C60.0144 (7)0.0111 (6)0.0168 (6)0.0006 (6)0.0005 (5)0.0001 (5)
C70.0153 (7)0.0120 (6)0.0165 (6)0.0000 (6)0.0008 (5)0.0015 (5)
C80.0147 (8)0.0115 (6)0.0174 (6)0.0003 (5)0.0014 (5)0.0010 (5)
C90.0162 (7)0.0102 (6)0.0168 (6)0.0009 (5)0.0023 (6)0.0011 (5)
C100.0139 (7)0.0122 (6)0.0180 (6)0.0007 (6)0.0007 (5)0.0013 (5)
C110.0161 (7)0.0086 (5)0.0189 (6)0.0002 (5)0.0037 (5)0.0002 (5)
C120.0146 (8)0.0120 (6)0.0198 (6)0.0009 (6)0.0003 (6)0.0019 (5)
C130.0184 (8)0.0130 (6)0.0168 (6)0.0008 (6)0.0011 (6)0.0012 (5)
C140.0169 (8)0.0118 (6)0.0174 (6)0.0009 (6)0.0027 (5)0.0009 (5)
C150.0236 (9)0.0180 (7)0.0171 (6)0.0057 (7)0.0017 (6)0.0002 (5)
C160.0324 (10)0.0202 (7)0.0186 (6)0.0058 (8)0.0027 (7)0.0002 (6)
C170.0235 (10)0.0304 (9)0.0318 (8)0.0020 (8)0.0039 (7)0.0089 (7)
C180.0269 (9)0.0144 (6)0.0203 (6)0.0009 (7)0.0026 (7)0.0020 (5)
C190.0262 (9)0.0206 (7)0.0171 (6)0.0005 (7)0.0028 (6)0.0013 (6)
C200.0193 (8)0.0100 (6)0.0181 (6)0.0015 (6)0.0011 (6)0.0006 (5)
Geometric parameters (Å, º) top
O1—C71.4395 (18)C8—C141.395 (2)
O1—C101.4647 (19)C8—C91.399 (2)
O2—C61.4244 (19)C9—C111.387 (2)
O2—H1O20.84 (3)C9—C201.510 (2)
O3—C121.363 (2)C10—C201.531 (2)
O3—H1O30.85 (3)C11—C121.402 (2)
O4—C111.3882 (18)C12—C131.404 (2)
O4—H1O40.84 (3)C13—C141.398 (2)
C1—C101.520 (2)C13—C151.521 (2)
C1—C21.543 (3)C14—H14A0.9300
C1—H1A0.9700C15—C171.532 (3)
C1—H1B0.9700C15—C161.534 (2)
C2—C31.544 (2)C15—H15A0.9800
C2—H2A0.9700C16—H16A0.9600
C2—H2B0.9700C16—H16B0.9600
C3—C41.535 (3)C16—H16C0.9600
C3—H3A0.9700C17—H17A0.9600
C3—H3B0.9700C17—H17B0.9600
C4—C191.537 (2)C17—H17C0.9600
C4—C181.540 (2)C18—H18A0.9600
C4—C51.549 (2)C18—H18B0.9600
C5—C61.553 (2)C18—H18C0.9600
C5—C101.561 (2)C19—H19A0.9600
C5—H5A0.9800C19—H19B0.9600
C6—C71.545 (2)C19—H19C0.9600
C6—H6A0.9800C20—H20A0.9700
C7—C81.506 (2)C20—H20B0.9700
C7—H7A0.9800
C7—O1—C10104.47 (12)O1—C10—C20107.42 (12)
C6—O2—H1O2107.5 (18)C1—C10—C20110.51 (12)
C12—O3—H1O3110.8 (18)O1—C10—C5103.28 (11)
C11—O4—H1O4103.5 (18)C1—C10—C5116.68 (12)
C10—C1—C2115.50 (13)C20—C10—C5111.72 (13)
C10—C1—H1A108.4C9—C11—O4119.91 (13)
C2—C1—H1A108.4C9—C11—C12121.15 (14)
C10—C1—H1B108.4O4—C11—C12118.93 (14)
C2—C1—H1B108.4O3—C12—C11121.38 (14)
H1A—C1—H1B107.5O3—C12—C13118.05 (13)
C3—C2—C1113.94 (14)C11—C12—C13120.57 (15)
C3—C2—H2A108.8C14—C13—C12117.61 (14)
C1—C2—H2A108.8C14—C13—C15123.51 (14)
C3—C2—H2B108.8C12—C13—C15118.88 (15)
C1—C2—H2B108.8C8—C14—C13121.84 (14)
H2A—C2—H2B107.7C8—C14—H14A119.1
C4—C3—C2113.11 (15)C13—C14—H14A119.1
C4—C3—H3A109.0C13—C15—C17110.89 (14)
C2—C3—H3A109.0C13—C15—C16113.37 (15)
C4—C3—H3B109.0C17—C15—C16111.00 (15)
C2—C3—H3B109.0C13—C15—H15A107.1
H3A—C3—H3B107.8C17—C15—H15A107.1
C3—C4—C19111.00 (13)C16—C15—H15A107.1
C3—C4—C18109.66 (15)C15—C16—H16A109.5
C19—C4—C18106.77 (14)C15—C16—H16B109.5
C3—C4—C5108.49 (13)H16A—C16—H16B109.5
C19—C4—C5109.94 (14)C15—C16—H16C109.5
C18—C4—C5110.99 (13)H16A—C16—H16C109.5
C4—C5—C6114.20 (12)H16B—C16—H16C109.5
C4—C5—C10114.19 (13)C15—C17—H17A109.5
C6—C5—C10103.40 (11)C15—C17—H17B109.5
C4—C5—H5A108.3H17A—C17—H17B109.5
C6—C5—H5A108.3C15—C17—H17C109.5
C10—C5—H5A108.3H17A—C17—H17C109.5
O2—C6—C7113.77 (12)H17B—C17—H17C109.5
O2—C6—C5113.85 (13)C4—C18—H18A109.5
C7—C6—C5103.57 (11)C4—C18—H18B109.5
O2—C6—H6A108.5H18A—C18—H18B109.5
C7—C6—H6A108.5C4—C18—H18C109.5
C5—C6—H6A108.5H18A—C18—H18C109.5
O1—C7—C8110.55 (12)H18B—C18—H18C109.5
O1—C7—C6101.05 (11)C4—C19—H19A109.5
C8—C7—C6111.48 (13)C4—C19—H19B109.5
O1—C7—H7A111.1H19A—C19—H19B109.5
C8—C7—H7A111.1C4—C19—H19C109.5
C6—C7—H7A111.1H19A—C19—H19C109.5
C14—C8—C9120.06 (15)H19B—C19—H19C109.5
C14—C8—C7122.22 (13)C9—C20—C10112.02 (12)
C9—C8—C7117.66 (13)C9—C20—H20A109.2
C11—C9—C8118.76 (14)C10—C20—H20A109.2
C11—C9—C20120.60 (14)C9—C20—H20B109.2
C8—C9—C20120.59 (14)C10—C20—H20B109.2
O1—C10—C1106.44 (13)H20A—C20—H20B107.9
C10—C1—C2—C319.7 (2)C2—C1—C10—C20171.02 (14)
C1—C2—C3—C433.4 (2)C2—C1—C10—C542.0 (2)
C2—C3—C4—C1956.16 (18)C4—C5—C10—O1106.69 (14)
C2—C3—C4—C18173.89 (13)C6—C5—C10—O117.99 (15)
C2—C3—C4—C564.74 (16)C4—C5—C10—C19.7 (2)
C3—C4—C5—C677.19 (16)C6—C5—C10—C1134.36 (14)
C19—C4—C5—C6161.26 (14)C4—C5—C10—C20138.16 (14)
C18—C4—C5—C643.4 (2)C6—C5—C10—C2097.16 (14)
C3—C4—C5—C1041.52 (17)C8—C9—C11—O4178.72 (13)
C19—C4—C5—C1080.04 (17)C20—C9—C11—O41.1 (2)
C18—C4—C5—C10162.07 (14)C8—C9—C11—C120.2 (2)
C4—C5—C6—O2100.27 (16)C20—C9—C11—C12177.48 (14)
C10—C5—C6—O2135.06 (13)C9—C11—C12—O3179.81 (14)
C4—C5—C6—C7135.67 (14)O4—C11—C12—O31.6 (2)
C10—C5—C6—C711.00 (16)C9—C11—C12—C130.7 (2)
C10—O1—C7—C867.98 (14)O4—C11—C12—C13177.83 (14)
C10—O1—C7—C650.16 (14)O3—C12—C13—C14179.36 (14)
O2—C6—C7—O1160.80 (13)C11—C12—C13—C141.2 (2)
C5—C6—C7—O136.69 (15)O3—C12—C13—C151.0 (2)
O2—C6—C7—C843.34 (17)C11—C12—C13—C15178.49 (14)
C5—C6—C7—C880.77 (14)C9—C8—C14—C130.1 (2)
O1—C7—C8—C14149.31 (14)C7—C8—C14—C13176.94 (14)
C6—C7—C8—C1499.13 (16)C12—C13—C14—C80.8 (2)
O1—C7—C8—C933.56 (18)C15—C13—C14—C8178.89 (15)
C6—C7—C8—C977.99 (16)C14—C13—C15—C17101.80 (19)
C14—C8—C9—C110.6 (2)C12—C13—C15—C1778.55 (19)
C7—C8—C9—C11176.60 (13)C14—C13—C15—C1623.9 (2)
C14—C8—C9—C20177.05 (14)C12—C13—C15—C16155.80 (15)
C7—C8—C9—C205.8 (2)C11—C9—C20—C10169.78 (14)
C7—O1—C10—C1166.58 (12)C8—C9—C20—C1012.6 (2)
C7—O1—C10—C2075.03 (13)O1—C10—C20—C946.44 (16)
C7—O1—C10—C543.17 (14)C1—C10—C20—C9162.17 (13)
C2—C1—C10—O172.64 (16)C5—C10—C20—C966.15 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.85 (3)2.01 (3)2.8504 (17)169 (3)
O4—H1O4···O1ii0.84 (3)1.89 (3)2.7089 (16)165 (3)
C18—H18B···O3iii0.962.553.407 (2)149
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H28O4
Mr332.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.2767 (2), 11.7358 (4), 23.7496 (7)
V3)1749.45 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.36 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
15028, 3534, 3079
Rint0.037
(sin θ/λ)max1)0.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.15
No. of reflections3534
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.85 (3)2.01 (3)2.8504 (17)169 (3)
O4—H1O4···O1ii0.84 (3)1.89 (3)2.7089 (16)165 (3)
C18—H18B···O3iii0.962.553.407 (2)148.8
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SIJA, IAR and HKF thank Universiti Sains Malaysia for the Research University Grant (No.1001/PFIZIK/811151). SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289–292.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEsquivel, B., Flores, M., Hernandez-Ortega, S., Toscano, R. A. & Ramamoorthy, T. P. (1995). Phytochemistry, 39, 139–143.  CSD CrossRef CAS Web of Science Google Scholar
First citationHymavathi, A., Babu, K. S., Naidu, V. G. M., Krishna, S. R., Diwan, P. V. & Rao, J. M. (2009). Bioorg. Med. Chem. Lett. 19, 5727–5731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds