organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­­oxy­benzyl­­idene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroScale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 9 October 2010; accepted 11 October 2010; online 20 October 2010)

In the title mol­ecule, C17H18O5, which was prepared by the reaction of (R)-1,5-dioxaspiro­[5.5]undecane-2,4-dione and 4-meth­oxy­benzaldehyde with ethanol, the 1,3-dioxane ring is in a distorted envelope conformation with the spiro C atom forming the flap. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background information on spiro-compounds, see: Jiang et al. (1998[Jiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185-3189.]); Lian et al. (2008[Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441-444.]); Wei et al. (2008[Wei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501-1514.]). For a related structure, see: Zeng et al. (2009[Zeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2586.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 6, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18O5

  • Mr = 302.31

  • Monoclinic, P 21 /c

  • a = 15.723 (3) Å

  • b = 10.531 (2) Å

  • c = 9.2029 (18) Å

  • β = 90.00 (3)°

  • V = 1523.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 14509 measured reflections

  • 3493 independent reflections

  • 2450 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.185

  • S = 1.11

  • 3493 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.93 2.58 3.405 (3) 149 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We have recently reported the crystal structure of (Z)-3-(3-phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (Zeng et al. 2009). As part of our ongoing studies on new spiro compounds with potentially higher bioactivity, the title compound, (I) (Fig. 1), has been synthesized and its structure is reported here.

The 1,3-dioxane ring is in a distored envelope conformation with atom C11 atom common to the cyclohexane forming the flap. The cyclohexane exists in a distorted chair comformation, with the puckering parameters Q=0.552Å, theta=175.1°, Phi=39.2°; The crystal structure is stabilized by weak intra and intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For background information on spiro-compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008). For a related structure, see: Zeng et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303 K. After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of 4-methoxybenzaldehyde (8.16 g, 0.06 mol) was added. The solution was then filtered and concentrated. Colourless blocks of (I) were obtained by evaporation of an petroleum ether-ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We have recently reported the crystal structure of (Z)-3-(3-phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (Zeng et al. 2009). As part of our ongoing studies on new spiro compounds with potentially higher bioactivity, the title compound, (I) (Fig. 1), has been synthesized and its structure is reported here.

The 1,3-dioxane ring is in a distored envelope conformation with atom C11 atom common to the cyclohexane forming the flap. The cyclohexane exists in a distorted chair comformation, with the puckering parameters Q=0.552Å, theta=175.1°, Phi=39.2°; The crystal structure is stabilized by weak intra and intermolecular C—H···O hydrogen bonds (Table 1).

For background information on spiro-compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008). For a related structure, see: Zeng et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
3-(4-Methoxybenzylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione top
Crystal data top
C17H18O5F(000) = 640
Mr = 302.31Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2450 reflections
a = 15.723 (3) Åθ = 3.2–27.5°
b = 10.531 (2) ŵ = 0.10 mm1
c = 9.2029 (18) ÅT = 293 K
β = 90.00 (3)°Block, colorless
V = 1523.8 (5) Å30.25 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2450 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
phi and ω scansh = 2020
14509 measured reflectionsk = 1113
3493 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0988P)2 + 0.1666P]
where P = (Fo2 + 2Fc2)/3
3493 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C17H18O5V = 1523.8 (5) Å3
Mr = 302.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.723 (3) ŵ = 0.10 mm1
b = 10.531 (2) ÅT = 293 K
c = 9.2029 (18) Å0.25 × 0.16 × 0.10 mm
β = 90.00 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2450 reflections with I > 2σ(I)
14509 measured reflectionsRint = 0.057
3493 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.11Δρmax = 0.34 e Å3
3493 reflectionsΔρmin = 0.41 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.35323 (7)0.60512 (11)0.18736 (14)0.0621 (4)
O40.27576 (8)0.50924 (12)0.37464 (12)0.0613 (4)
O30.14427 (8)0.56348 (16)0.42086 (13)0.0767 (4)
C120.20204 (11)0.56349 (17)0.33460 (18)0.0573 (4)
O10.22145 (8)0.60711 (16)0.16227 (16)0.0799 (5)
C90.20107 (11)0.62557 (17)0.1912 (2)0.0591 (4)
C110.34102 (10)0.49138 (15)0.26925 (17)0.0520 (4)
C50.04075 (11)0.64170 (17)0.13577 (19)0.0596 (4)
O20.29512 (10)0.73591 (18)0.0312 (2)0.1155 (7)
C20.13524 (11)0.61345 (19)0.15722 (19)0.0612 (4)
C170.31883 (13)0.38211 (18)0.1710 (2)0.0663 (5)
H17A0.26900.40360.11410.080*
H17B0.30540.30800.22930.080*
C40.01498 (12)0.72360 (19)0.0631 (2)0.0696 (5)
H4A0.00720.78810.00540.084*
C60.00472 (12)0.54299 (19)0.2157 (2)0.0661 (5)
H6A0.04020.48560.26280.079*
C130.42224 (12)0.4727 (2)0.3519 (2)0.0744 (6)
H13A0.41410.40650.42390.089*
H13B0.43640.55050.40270.089*
C80.13114 (12)0.66335 (18)0.1175 (2)0.0669 (5)
H8A0.14380.71430.03780.080*
C70.08152 (12)0.5284 (2)0.2265 (2)0.0668 (5)
H7A0.10400.46170.28030.080*
C100.28435 (12)0.66098 (19)0.1279 (2)0.0707 (5)
C30.10110 (13)0.7112 (2)0.0747 (2)0.0725 (5)
H3A0.13680.76810.02740.087*
C150.4723 (2)0.3234 (3)0.1548 (4)0.1182 (11)
H15A0.51870.30670.08800.142*
H15B0.46370.24830.21390.142*
C140.49532 (14)0.4363 (3)0.2527 (3)0.1001 (9)
H14A0.54450.41440.31120.120*
H14B0.51040.50850.19260.120*
C160.39229 (19)0.3516 (3)0.0700 (3)0.1034 (9)
H16A0.37770.27870.01070.124*
H16B0.40230.42310.00580.124*
C10.25940 (14)0.5094 (3)0.2471 (3)0.1045 (9)
H1A0.32020.51590.24090.157*
H1B0.24200.51820.34660.157*
H1C0.24160.42800.21100.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0527 (7)0.0513 (7)0.0822 (8)0.0017 (5)0.0135 (6)0.0140 (5)
O40.0618 (7)0.0751 (8)0.0470 (6)0.0023 (6)0.0115 (5)0.0021 (5)
O30.0619 (8)0.1095 (12)0.0587 (7)0.0099 (7)0.0195 (6)0.0150 (7)
C120.0573 (9)0.0596 (10)0.0549 (9)0.0089 (8)0.0141 (7)0.0117 (7)
O10.0530 (8)0.1061 (12)0.0808 (9)0.0026 (7)0.0057 (6)0.0112 (8)
C90.0532 (9)0.0508 (9)0.0732 (11)0.0017 (7)0.0182 (8)0.0042 (7)
C110.0554 (9)0.0501 (9)0.0506 (8)0.0030 (7)0.0110 (7)0.0037 (6)
C50.0575 (10)0.0563 (10)0.0650 (10)0.0027 (8)0.0121 (7)0.0050 (7)
O20.0713 (10)0.1084 (13)0.1668 (16)0.0208 (9)0.0394 (10)0.0879 (12)
C20.0524 (9)0.0747 (12)0.0563 (9)0.0010 (8)0.0056 (7)0.0017 (8)
C170.0790 (13)0.0524 (10)0.0675 (11)0.0010 (8)0.0074 (9)0.0063 (8)
C40.0639 (11)0.0664 (12)0.0787 (12)0.0033 (9)0.0108 (9)0.0185 (9)
C60.0606 (11)0.0611 (11)0.0765 (12)0.0023 (8)0.0002 (8)0.0152 (9)
C130.0626 (11)0.0894 (15)0.0710 (11)0.0060 (10)0.0017 (9)0.0195 (10)
C80.0621 (11)0.0569 (10)0.0816 (12)0.0061 (8)0.0200 (9)0.0130 (8)
C70.0622 (11)0.0716 (12)0.0666 (10)0.0104 (9)0.0009 (8)0.0157 (9)
C100.0582 (10)0.0566 (11)0.0972 (14)0.0080 (8)0.0229 (9)0.0234 (9)
C30.0640 (12)0.0718 (12)0.0816 (12)0.0103 (9)0.0032 (9)0.0159 (10)
C150.110 (2)0.105 (2)0.140 (2)0.0499 (18)0.0472 (19)0.0149 (19)
C140.0599 (12)0.129 (2)0.1108 (18)0.0150 (13)0.0135 (12)0.0447 (18)
C160.115 (2)0.0978 (19)0.0974 (16)0.0332 (16)0.0266 (15)0.0256 (14)
C10.0627 (13)0.159 (3)0.0916 (16)0.0262 (14)0.0035 (11)0.0349 (16)
Geometric parameters (Å, º) top
O5—C101.348 (2)C4—C31.365 (3)
O5—C111.4281 (19)C4—H4A0.9300
O4—C121.344 (2)C6—C71.368 (3)
O4—C111.4245 (19)C6—H6A0.9300
O3—C121.2064 (19)C13—C141.516 (3)
C12—C91.473 (3)C13—H13A0.9700
O1—C21.358 (2)C13—H13B0.9700
O1—C11.423 (3)C8—H8A0.9300
C9—C81.352 (3)C7—H7A0.9300
C9—C101.481 (2)C3—H3A0.9300
C11—C131.499 (3)C15—C161.509 (4)
C11—C171.504 (2)C15—C141.535 (5)
C5—C61.394 (3)C15—H15A0.9700
C5—C41.400 (3)C15—H15B0.9700
C5—C81.449 (3)C14—H14A0.9700
O2—C101.201 (2)C14—H14B0.9700
C2—C71.386 (3)C16—H16A0.9700
C2—C31.387 (3)C16—H16B0.9700
C17—C161.517 (3)C1—H1A0.9600
C17—H17A0.9700C1—H1B0.9600
C17—H17B0.9700C1—H1C0.9600
C10—O5—C11118.18 (13)H13A—C13—H13B107.9
C12—O4—C11119.39 (13)C9—C8—C5133.89 (17)
O3—C12—O4117.97 (17)C9—C8—H8A113.1
O3—C12—C9125.58 (18)C5—C8—H8A113.1
O4—C12—C9116.32 (14)C6—C7—C2119.86 (18)
C2—O1—C1118.23 (18)C6—C7—H7A120.1
C8—C9—C12126.06 (16)C2—C7—H7A120.1
C8—C9—C10116.61 (16)O2—C10—O5118.29 (17)
C12—C9—C10117.06 (16)O2—C10—C9125.55 (18)
O4—C11—O5110.20 (13)O5—C10—C9116.15 (15)
O4—C11—C13106.60 (14)C4—C3—C2119.86 (18)
O5—C11—C13105.28 (14)C4—C3—H3A120.1
O4—C11—C17110.06 (14)C2—C3—H3A120.1
O5—C11—C17110.83 (14)C16—C15—C14110.4 (2)
C13—C11—C17113.69 (16)C16—C15—H15A109.6
C6—C5—C4117.22 (17)C14—C15—H15A109.6
C6—C5—C8125.26 (17)C16—C15—H15B109.6
C4—C5—C8117.48 (16)C14—C15—H15B109.6
O1—C2—C7124.10 (17)H15A—C15—H15B108.1
O1—C2—C3116.19 (17)C13—C14—C15111.7 (2)
C7—C2—C3119.70 (17)C13—C14—H14A109.3
C11—C17—C16110.71 (19)C15—C14—H14A109.3
C11—C17—H17A109.5C13—C14—H14B109.3
C16—C17—H17A109.5C15—C14—H14B109.3
C11—C17—H17B109.5H14A—C14—H14B107.9
C16—C17—H17B109.5C15—C16—C17111.1 (2)
H17A—C17—H17B108.1C15—C16—H16A109.4
C3—C4—C5121.64 (18)C17—C16—H16A109.4
C3—C4—H4A119.2C15—C16—H16B109.4
C5—C4—H4A119.2C17—C16—H16B109.4
C7—C6—C5121.66 (18)H16A—C16—H16B108.0
C7—C6—H6A119.2O1—C1—H1A109.5
C5—C6—H6A119.2O1—C1—H1B109.5
C11—C13—C14111.92 (18)H1A—C1—H1B109.5
C11—C13—H13A109.2O1—C1—H1C109.5
C14—C13—H13A109.2H1A—C1—H1C109.5
C11—C13—H13B109.2H1B—C1—H1C109.5
C14—C13—H13B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.932.583.405 (3)149 (3)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H18O5
Mr302.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.723 (3), 10.531 (2), 9.2029 (18)
β (°)90, 90.00 (3), 90
V3)1523.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14509, 3493, 2450
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.185, 1.11
No. of reflections3493
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.41

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.932.57623.405 (3)149 (3)
Symmetry code: (i) x, y+3/2, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 6, 1354–1358.  CrossRef Web of Science Google Scholar
First citationJiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185–3189.  CrossRef CAS Google Scholar
First citationLian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441–444.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501–1514.  CAS Google Scholar
First citationZeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2586.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds