organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-3-Meth­­oxy-5-nitro-4-(4-nitro­benz­yl­oxy)benzyl­­idene­amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aSchool of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang City, Sichuan Province 621010, People's Republic of China
*Correspondence e-mail: liao_lei99@163.com

(Received 27 September 2010; accepted 30 September 2010; online 9 October 2010)

In the title compound, C26H23N5O7, the central benzene ring makes dihedral angles of 35.08 (6), 48.75 (7) and 69.55 (8)° with the pyrazolone ring, the nitro­benzene ring and the terminal phenyl ring, respectively. An intra­molecular C—H⋯O inter­action generates an S(6) ring. The packing is stabilized by weak nonclassical inter­molecular C—H⋯O=C hydrogen bonds that link adjacent mol­ecules into chains.

Related literature

For general background to related compounds, see: Chen & Yu (2006[Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4728-o4729.]); Li et al. (2005[Li, J.-Z., Xu, B., Li, S.-X., Zeng, W. & Qin, S.-Y. (2005). Transition Met. Chem. 30, 669-676.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]); Zhang et al. (2006[Zhang, W.-J., Duan, Z.-Y. & Zhao, X. (2006). Acta Cryst. E62, o2834-o2835.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23N5O7

  • Mr = 517.49

  • Monoclinic, C 2/c

  • a = 25.671 (11) Å

  • b = 11.933 (5) Å

  • c = 16.617 (7) Å

  • β = 103.972 (7)°

  • V = 4940 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.989

  • 12593 measured reflections

  • 4363 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.02

  • 4363 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O7 0.93 2.35 2.997 (3) 127
C4—H4⋯O7i 0.93 2.56 3.447 (3) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have extensively been studied because of their significant biological activity such as protein and enzyme mimics (Santos et al., 2001). Consequently, many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics such as models to mimic hydrolase in the hydrolysis of p-nitrophenyl picolinate (Li et al., 2005).

Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-4-(4-(4-chlorobenzyloxy)-3-ethoxybenzylideneamino) -1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one (Zhang et al., 2006) and (E)-2-(2-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino) methyl)phenoxy)ethyl 4-methylbenzenesulfonate(Chen & Yu, 2006) have been reported.

Structural information is useful when investigating the coordination properties of Schiff bases functioning as ligands. We report here the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The pyrazolone ring (C16—C18/N3—N5/O7) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0379 Å. It makes a dihedral angle of 44.37 (9)° with the attached phenyl ring (C21—C26). The central benzene ring (C8—C13/C15/O3/O4) is almost planar, with an r.m.s. deviation for fitted atoms of 0.0342 Å. This group makes dihedral angles of 35.08 (6)°, 48.75 (7)° and 69.55 (8)°, respectively, with the the pyrazolone ring (C16—C18/N3—N5/O7), the nitrobenzene ring (C1—C6) and the terminal phenyl ring (C21—C26).

An intramolecular C15—H15···O7C17 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. Packing is stabilized by weak, non-classical intermolecular C4—H4···O7C117 hydrogen bonds that link adjacent molecules into one-dimensional chains (Table 1, Fig. 2).

Related literature top

For general background to related compounds, see: Chen & Yu (2006); Li et al. (2005); Santos et al. (2001); Zhang et al. (2006). For reference bond lengths, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (100 ml) of 3-methoxy-5-nitro-4-(4-nitrobenzyloxy)benzaldehyde (3.32 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 79% yield. Yellow blocks of (I) were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Structure description top

Schiff bases have extensively been studied because of their significant biological activity such as protein and enzyme mimics (Santos et al., 2001). Consequently, many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics such as models to mimic hydrolase in the hydrolysis of p-nitrophenyl picolinate (Li et al., 2005).

Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-4-(4-(4-chlorobenzyloxy)-3-ethoxybenzylideneamino) -1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one (Zhang et al., 2006) and (E)-2-(2-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino) methyl)phenoxy)ethyl 4-methylbenzenesulfonate(Chen & Yu, 2006) have been reported.

Structural information is useful when investigating the coordination properties of Schiff bases functioning as ligands. We report here the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The pyrazolone ring (C16—C18/N3—N5/O7) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0379 Å. It makes a dihedral angle of 44.37 (9)° with the attached phenyl ring (C21—C26). The central benzene ring (C8—C13/C15/O3/O4) is almost planar, with an r.m.s. deviation for fitted atoms of 0.0342 Å. This group makes dihedral angles of 35.08 (6)°, 48.75 (7)° and 69.55 (8)°, respectively, with the the pyrazolone ring (C16—C18/N3—N5/O7), the nitrobenzene ring (C1—C6) and the terminal phenyl ring (C21—C26).

An intramolecular C15—H15···O7C17 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. Packing is stabilized by weak, non-classical intermolecular C4—H4···O7C117 hydrogen bonds that link adjacent molecules into one-dimensional chains (Table 1, Fig. 2).

For general background to related compounds, see: Chen & Yu (2006); Li et al. (2005); Santos et al. (2001); Zhang et al. (2006). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I), with hydrogen bonds drawn as dashed lines.
4-[(E)-3-Methoxy-5-nitro-4-(4-nitrobenzyloxy)benzylideneamino]- 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C26H23N5O7F(000) = 2160
Mr = 517.49Dx = 1.392 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3086 reflections
a = 25.671 (11) Åθ = 2.5–23.1°
b = 11.933 (5) ŵ = 0.10 mm1
c = 16.617 (7) ÅT = 294 K
β = 103.972 (7)°Block, yellow
V = 4940 (4) Å30.20 × 0.18 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
4363 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.938, Tmax = 0.989k = 1014
12593 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0693P)2 + 1.2662P]
where P = (Fo2 + 2Fc2)/3
4363 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H23N5O7V = 4940 (4) Å3
Mr = 517.49Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.671 (11) ŵ = 0.10 mm1
b = 11.933 (5) ÅT = 294 K
c = 16.617 (7) Å0.20 × 0.18 × 0.10 mm
β = 103.972 (7)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2652 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.989Rint = 0.039
12593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
4363 reflectionsΔρmin = 0.21 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17786 (9)0.1619 (2)0.12948 (15)0.0577 (6)
N20.45460 (10)0.1575 (2)0.1025 (2)0.0746 (8)
N30.65269 (7)0.10798 (16)0.27094 (12)0.0441 (5)
N40.79727 (7)0.09102 (16)0.33957 (12)0.0442 (5)
N50.78530 (8)0.18315 (16)0.38510 (13)0.0456 (5)
O10.14745 (8)0.0959 (2)0.10853 (15)0.0924 (8)
O20.16274 (8)0.23197 (19)0.18340 (15)0.0838 (7)
O30.41585 (6)0.06411 (14)0.08900 (11)0.0522 (5)
O40.48334 (7)0.23900 (15)0.14053 (13)0.0675 (6)
O50.45720 (10)0.2406 (2)0.1478 (2)0.1103 (9)
O60.42595 (15)0.1535 (3)0.0360 (2)0.1733 (17)
O70.74844 (6)0.04709 (15)0.25573 (11)0.0559 (5)
C10.30688 (10)0.06890 (19)0.00891 (16)0.0471 (6)
H10.31900.01990.05300.057*
C20.25251 (10)0.0791 (2)0.02563 (16)0.0471 (6)
H20.22790.03690.00560.057*
C30.23550 (9)0.15309 (19)0.09037 (15)0.0402 (6)
C40.27074 (10)0.2174 (2)0.12056 (16)0.0479 (6)
H40.25840.26790.16360.057*
C50.32471 (10)0.2054 (2)0.08570 (16)0.0524 (7)
H50.34910.24830.10580.063*
C60.34367 (9)0.1309 (2)0.02133 (15)0.0442 (6)
C70.40340 (11)0.1185 (3)0.01048 (19)0.0792 (10)
H7A0.42010.19190.01560.095*
H7B0.41760.07520.02870.095*
C80.46952 (9)0.0463 (2)0.12145 (15)0.0445 (6)
C90.50518 (9)0.1341 (2)0.14976 (16)0.0454 (6)
C100.55822 (9)0.1122 (2)0.18748 (16)0.0462 (6)
H100.58180.17160.20420.055*
C110.57716 (9)0.0028 (2)0.20097 (15)0.0411 (6)
C120.54226 (9)0.0855 (2)0.17466 (15)0.0455 (6)
H120.55390.15930.18390.055*
C130.48995 (9)0.0621 (2)0.13456 (16)0.0459 (6)
C140.51973 (13)0.3321 (2)0.1583 (2)0.0860 (11)
H14A0.54250.33210.12020.129*
H14B0.49970.40070.15280.129*
H14C0.54140.32560.21400.129*
C150.63347 (9)0.0136 (2)0.24335 (16)0.0452 (6)
H150.65630.04800.25050.054*
C160.70778 (9)0.11570 (18)0.30688 (14)0.0391 (6)
C170.74983 (9)0.0415 (2)0.29486 (15)0.0418 (6)
C180.73083 (9)0.20013 (19)0.35782 (15)0.0414 (6)
C190.70450 (11)0.3001 (2)0.38397 (17)0.0575 (7)
H19A0.71460.36580.35800.086*
H19B0.71570.30800.44310.086*
H19C0.66620.29100.36770.086*
C200.82277 (11)0.2781 (2)0.39304 (18)0.0595 (7)
H20A0.82050.31020.33940.089*
H20B0.85870.25220.41600.089*
H20C0.81350.33370.42900.089*
C210.84699 (9)0.03300 (19)0.36710 (16)0.0447 (6)
C220.87379 (10)0.0311 (2)0.45004 (18)0.0596 (7)
H220.86010.06950.48910.072*
C230.92118 (12)0.0284 (3)0.4743 (2)0.0748 (10)
H230.93940.02960.52990.090*
C240.94167 (12)0.0855 (3)0.4174 (3)0.0758 (10)
H240.97340.12580.43460.091*
C250.91524 (11)0.0832 (2)0.3348 (2)0.0677 (9)
H250.92920.12190.29620.081*
C260.86791 (10)0.0234 (2)0.30924 (19)0.0549 (7)
H260.85020.02120.25340.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0418 (14)0.0746 (16)0.0518 (15)0.0035 (12)0.0019 (12)0.0040 (13)
N20.0522 (16)0.0634 (18)0.095 (2)0.0082 (13)0.0074 (15)0.0167 (16)
N30.0350 (12)0.0457 (12)0.0496 (13)0.0031 (9)0.0065 (10)0.0016 (10)
N40.0339 (12)0.0459 (12)0.0482 (13)0.0017 (9)0.0009 (9)0.0022 (10)
N50.0396 (12)0.0440 (12)0.0499 (13)0.0071 (9)0.0045 (10)0.0059 (10)
O10.0398 (12)0.141 (2)0.0917 (18)0.0139 (13)0.0061 (11)0.0275 (15)
O20.0578 (14)0.0940 (16)0.0865 (17)0.0192 (11)0.0082 (12)0.0233 (13)
O30.0289 (9)0.0750 (12)0.0497 (11)0.0002 (8)0.0037 (8)0.0143 (9)
O40.0459 (11)0.0504 (11)0.0977 (16)0.0049 (9)0.0007 (10)0.0121 (10)
O50.0948 (19)0.0689 (16)0.159 (3)0.0270 (14)0.0149 (17)0.0107 (17)
O60.175 (3)0.122 (2)0.155 (3)0.037 (2)0.093 (3)0.025 (2)
O70.0407 (10)0.0532 (11)0.0691 (13)0.0016 (8)0.0043 (9)0.0156 (10)
C10.0434 (16)0.0509 (15)0.0441 (16)0.0005 (12)0.0050 (12)0.0112 (12)
C20.0387 (15)0.0512 (15)0.0504 (16)0.0070 (11)0.0089 (12)0.0030 (13)
C30.0353 (14)0.0419 (14)0.0409 (15)0.0028 (11)0.0043 (11)0.0061 (11)
C40.0480 (16)0.0460 (15)0.0449 (16)0.0012 (12)0.0020 (12)0.0068 (12)
C50.0468 (17)0.0593 (17)0.0493 (17)0.0116 (12)0.0082 (13)0.0090 (13)
C60.0351 (14)0.0553 (15)0.0395 (15)0.0038 (11)0.0037 (11)0.0042 (12)
C70.0435 (18)0.134 (3)0.057 (2)0.0033 (17)0.0059 (15)0.0360 (19)
C80.0284 (13)0.0637 (17)0.0404 (15)0.0015 (12)0.0061 (11)0.0036 (12)
C90.0333 (14)0.0495 (15)0.0525 (17)0.0038 (12)0.0087 (12)0.0087 (12)
C100.0361 (15)0.0474 (15)0.0532 (17)0.0056 (11)0.0070 (12)0.0056 (12)
C110.0319 (13)0.0514 (15)0.0404 (15)0.0003 (11)0.0095 (11)0.0023 (11)
C120.0378 (15)0.0454 (15)0.0516 (17)0.0024 (11)0.0075 (12)0.0027 (12)
C130.0344 (14)0.0513 (16)0.0498 (16)0.0056 (12)0.0057 (12)0.0061 (12)
C140.072 (2)0.0483 (18)0.129 (3)0.0055 (16)0.009 (2)0.0209 (18)
C150.0331 (14)0.0484 (15)0.0519 (17)0.0025 (11)0.0061 (12)0.0009 (12)
C160.0342 (14)0.0410 (13)0.0400 (14)0.0017 (10)0.0050 (11)0.0034 (11)
C170.0350 (14)0.0425 (14)0.0450 (15)0.0034 (11)0.0040 (11)0.0025 (12)
C180.0394 (15)0.0420 (14)0.0420 (15)0.0020 (11)0.0081 (11)0.0037 (11)
C190.0559 (17)0.0566 (17)0.0601 (19)0.0004 (13)0.0140 (14)0.0072 (14)
C200.0500 (17)0.0547 (17)0.069 (2)0.0153 (13)0.0060 (14)0.0055 (14)
C210.0302 (14)0.0433 (14)0.0566 (18)0.0069 (11)0.0027 (12)0.0102 (12)
C220.0435 (16)0.0712 (19)0.0592 (19)0.0060 (14)0.0028 (14)0.0157 (15)
C230.0453 (18)0.085 (2)0.082 (2)0.0057 (16)0.0090 (17)0.0290 (19)
C240.0403 (18)0.059 (2)0.123 (3)0.0019 (14)0.009 (2)0.023 (2)
C250.0491 (19)0.0482 (17)0.106 (3)0.0026 (13)0.0195 (18)0.0006 (16)
C260.0462 (17)0.0502 (16)0.066 (2)0.0015 (12)0.0085 (14)0.0014 (14)
Geometric parameters (Å, º) top
N1—O11.218 (3)C8—C91.396 (3)
N1—O21.218 (3)C9—C101.379 (3)
N1—C31.469 (3)C10—C111.392 (3)
N2—O61.171 (4)C10—H100.9300
N2—O51.238 (3)C11—C121.385 (3)
N2—C131.473 (3)C11—C151.460 (3)
N3—C151.270 (3)C12—C131.376 (3)
N3—C161.399 (3)C12—H120.9300
N4—C171.396 (3)C14—H14A0.9600
N4—N51.410 (3)C14—H14B0.9600
N4—C211.427 (3)C14—H14C0.9600
N5—C181.377 (3)C15—H150.9300
N5—C201.471 (3)C16—C181.356 (3)
O3—C81.370 (3)C16—C171.447 (3)
O3—C71.423 (3)C18—C191.487 (3)
O4—C91.365 (3)C19—H19A0.9600
O4—C141.435 (3)C19—H19B0.9600
O7—C171.237 (3)C19—H19C0.9600
C1—C21.380 (3)C20—H20A0.9600
C1—C61.386 (3)C20—H20B0.9600
C1—H10.9300C20—H20C0.9600
C2—C31.379 (3)C21—C221.384 (4)
C2—H20.9300C21—C261.384 (4)
C3—C41.371 (3)C22—C231.382 (4)
C4—C51.374 (3)C22—H220.9300
C4—H40.9300C23—C241.369 (5)
C5—C61.385 (3)C23—H230.9300
C5—H50.9300C24—C251.376 (5)
C6—C71.504 (3)C24—H240.9300
C7—H7A0.9700C25—C261.385 (4)
C7—H7B0.9700C25—H250.9300
C8—C131.393 (3)C26—H260.9300
O1—N1—O2122.8 (2)C11—C12—H12120.7
O1—N1—C3118.3 (2)C12—C13—C8123.4 (2)
O2—N1—C3118.9 (2)C12—C13—N2117.6 (2)
O6—N2—O5122.4 (3)C8—C13—N2119.0 (2)
O6—N2—C13120.1 (3)O4—C14—H14A109.5
O5—N2—C13117.5 (3)O4—C14—H14B109.5
C15—N3—C16118.5 (2)H14A—C14—H14B109.5
C17—N4—N5109.92 (18)O4—C14—H14C109.5
C17—N4—C21124.28 (19)H14A—C14—H14C109.5
N5—N4—C21120.02 (19)H14B—C14—H14C109.5
C18—N5—N4105.89 (18)N3—C15—C11123.1 (2)
C18—N5—C20120.4 (2)N3—C15—H15118.5
N4—N5—C20115.20 (19)C11—C15—H15118.5
C8—O3—C7114.45 (18)C18—C16—N3124.0 (2)
C9—O4—C14117.2 (2)C18—C16—C17108.3 (2)
C2—C1—C6120.7 (2)N3—C16—C17127.7 (2)
C2—C1—H1119.6O7—C17—N4123.5 (2)
C6—C1—H1119.6O7—C17—C16131.9 (2)
C3—C2—C1118.6 (2)N4—C17—C16104.6 (2)
C3—C2—H2120.7C16—C18—N5110.6 (2)
C1—C2—H2120.7C16—C18—C19128.2 (2)
C4—C3—C2122.1 (2)N5—C18—C19121.3 (2)
C4—C3—N1118.8 (2)C18—C19—H19A109.5
C2—C3—N1119.1 (2)C18—C19—H19B109.5
C3—C4—C5118.3 (2)H19A—C19—H19B109.5
C3—C4—H4120.8C18—C19—H19C109.5
C5—C4—H4120.8H19A—C19—H19C109.5
C4—C5—C6121.5 (2)H19B—C19—H19C109.5
C4—C5—H5119.2N5—C20—H20A109.5
C6—C5—H5119.2N5—C20—H20B109.5
C5—C6—C1118.6 (2)H20A—C20—H20B109.5
C5—C6—C7118.2 (2)N5—C20—H20C109.5
C1—C6—C7123.1 (2)H20A—C20—H20C109.5
O3—C7—C6110.6 (2)H20B—C20—H20C109.5
O3—C7—H7A109.5C22—C21—C26120.1 (2)
C6—C7—H7A109.5C22—C21—N4121.2 (2)
O3—C7—H7B109.5C26—C21—N4118.7 (2)
C6—C7—H7B109.5C23—C22—C21119.3 (3)
H7A—C7—H7B108.1C23—C22—H22120.3
O3—C8—C13120.7 (2)C21—C22—H22120.3
O3—C8—C9122.1 (2)C24—C23—C22120.9 (3)
C13—C8—C9116.9 (2)C24—C23—H23119.6
O4—C9—C10123.9 (2)C22—C23—H23119.6
O4—C9—C8115.6 (2)C23—C24—C25119.9 (3)
C10—C9—C8120.4 (2)C23—C24—H24120.0
C9—C10—C11121.3 (2)C25—C24—H24120.0
C9—C10—H10119.4C24—C25—C26120.1 (3)
C11—C10—H10119.4C24—C25—H25120.0
C12—C11—C10119.3 (2)C26—C25—H25120.0
C12—C11—C15122.7 (2)C21—C26—C25119.8 (3)
C10—C11—C15118.0 (2)C21—C26—H26120.1
C13—C12—C11118.7 (2)C25—C26—H26120.1
C13—C12—H12120.7
C17—N4—N5—C189.2 (2)O3—C8—C13—N28.4 (4)
C21—N4—N5—C18163.58 (19)C9—C8—C13—N2177.2 (2)
C17—N4—N5—C20145.0 (2)O6—N2—C13—C12135.8 (4)
C21—N4—N5—C2060.7 (3)O5—N2—C13—C1243.2 (4)
C6—C1—C2—C30.6 (4)O6—N2—C13—C842.7 (5)
C1—C2—C3—C40.8 (4)O5—N2—C13—C8138.2 (3)
C1—C2—C3—N1178.0 (2)C16—N3—C15—C11176.8 (2)
O1—N1—C3—C4172.0 (2)C12—C11—C15—N311.5 (4)
O2—N1—C3—C45.4 (3)C10—C11—C15—N3168.0 (2)
O1—N1—C3—C26.8 (3)C15—N3—C16—C18161.3 (2)
O2—N1—C3—C2175.8 (2)C15—N3—C16—C1721.5 (4)
C2—C3—C4—C51.3 (4)N5—N4—C17—O7173.0 (2)
N1—C3—C4—C5177.5 (2)C21—N4—C17—O720.0 (4)
C3—C4—C5—C60.3 (4)N5—N4—C17—C166.8 (2)
C4—C5—C6—C11.0 (4)C21—N4—C17—C16159.8 (2)
C4—C5—C6—C7176.9 (3)C18—C16—C17—O7178.0 (3)
C2—C1—C6—C51.5 (4)N3—C16—C17—O74.5 (4)
C2—C1—C6—C7176.4 (3)C18—C16—C17—N41.8 (3)
C8—O3—C7—C6178.1 (2)N3—C16—C17—N4175.7 (2)
C5—C6—C7—O3164.2 (2)N3—C16—C18—N5178.4 (2)
C1—C6—C7—O317.9 (4)C17—C16—C18—N54.0 (3)
C7—O3—C8—C13116.4 (3)N3—C16—C18—C191.7 (4)
C7—O3—C8—C969.5 (3)C17—C16—C18—C19175.9 (2)
C14—O4—C9—C1011.0 (4)N4—N5—C18—C168.1 (3)
C14—O4—C9—C8171.8 (3)C20—N5—C18—C16141.0 (2)
O3—C8—C9—O42.0 (3)N4—N5—C18—C19171.8 (2)
C13—C8—C9—O4176.2 (2)C20—N5—C18—C1939.0 (3)
O3—C8—C9—C10175.3 (2)C17—N4—C21—C22123.6 (3)
C13—C8—C9—C101.1 (4)N5—N4—C21—C2226.8 (3)
O4—C9—C10—C11174.8 (2)C17—N4—C21—C2655.4 (3)
C8—C9—C10—C112.3 (4)N5—N4—C21—C26154.1 (2)
C9—C10—C11—C121.2 (4)C26—C21—C22—C230.6 (4)
C9—C10—C11—C15178.3 (2)N4—C21—C22—C23178.4 (2)
C10—C11—C12—C131.1 (4)C21—C22—C23—C240.2 (4)
C15—C11—C12—C13179.4 (2)C22—C23—C24—C250.6 (4)
C11—C12—C13—C82.3 (4)C23—C24—C25—C260.1 (4)
C11—C12—C13—N2176.2 (2)C22—C21—C26—C251.1 (4)
O3—C8—C13—C12173.1 (2)N4—C21—C26—C25178.0 (2)
C9—C8—C13—C121.2 (4)C24—C25—C26—C210.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O70.932.352.997 (3)127
C4—H4···O7i0.932.563.447 (3)159
Symmetry code: (i) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H23N5O7
Mr517.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)25.671 (11), 11.933 (5), 16.617 (7)
β (°) 103.972 (7)
V3)4940 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
12593, 4363, 2652
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.02
No. of reflections4363
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O70.932.352.997 (3)127
C4—H4···O7i0.932.563.447 (3)159
Symmetry code: (i) x1/2, y1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. & Yu, M. (2006). Acta Cryst. E62, o4728–o4729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-Z., Xu, B., Li, S.-X., Zeng, W. & Qin, S.-Y. (2005). Transition Met. Chem. 30, 669–676.  Web of Science CrossRef CAS Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-J., Duan, Z.-Y. & Zhao, X. (2006). Acta Cryst. E62, o2834–o2835.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds