organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Chloro­phen­yl)-2-phenyl-3,4-di­hydro-2H-pyrrole

aShenyang Universtity of Chemical Technology, Shenyang 110142, People's Republic of China, and bAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
*Correspondence e-mail: yangguiqiu@gmail.com

(Received 25 September 2010; accepted 26 September 2010; online 9 October 2010)

In the title compound, C16H14ClN, the conformation of the five-membered ring approximates to an envelope with a C atom as the flap. The dihedral angle between the aromatic rings is 78.71 (9)°.

Related literature

For chemical background to pyrrolines, see: Tsuge et al. (1987[Tsuge, O., Ueno, K., Kanemasa, S. & Yorozu, K. (1987). Bull. Chem. Soc. Jpn, 60, 3347-3358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClN

  • Mr = 255.73

  • Monoclinic, P 21 /c

  • a = 18.2543 (18) Å

  • b = 5.6398 (5) Å

  • c = 13.0095 (13) Å

  • β = 97.129 (2)°

  • V = 1329.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.38 × 0.32 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.948

  • 6409 measured reflections

  • 2344 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.06

  • 2344 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For chemical background to pyrrolines, see: Tsuge et al. (1987).

Experimental top

To a 500 ml flask N-(4-(3-chlorophenyl)-4-oxo-1-phenylbutyl)acetamide (6.25 g, 19.79 mmol), 40 mL 6M Hydrochloric acid aqueous solution and 120 ml e thanol were added sequentially. The reaction mixture was heated to reflux and reacted for 20 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/20), The title product compound was gained as a pale yellow solid (3.50 g, 69%) and recrystallised from methylene chloride to yield colourless blocks of (I).

Anal. Calcd for C16H14Cl1N1: C, 75.14; H, 5.52; Cl, 13.86; N, 5.48. Found: C, 75.22; H, 5.50; N, 5.45. 1H NMR(CDCl3): 1.94(m,1H, N—CH—CH1),2.83 (m,1H, N—CH—CH1), 3.02(m, 1H, N=C—CH1), 3.15 (m, 1H, N=C—CH1), 5.33 (t, 1H,C=N—CH1),7.28–7.88(m, 9H, Ph—H).

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.98 Å, and included in the final refinement in the riding model approximation,with Uiso(H) = 1.1Ueq(C, N) and Uiso(H) = 1.1Ueq(C).

Structure description top

For chemical background to pyrrolines, see: Tsuge et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of (I).
5-(3-Chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyrrole top
Crystal data top
C16H14ClNF(000) = 536
Mr = 255.73Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2445 reflections
a = 18.2543 (18) Åθ = 3.2–25.0°
b = 5.6398 (5) ŵ = 0.27 mm1
c = 13.0095 (13) ÅT = 296 K
β = 97.129 (2)°Block, colourless
V = 1329.0 (2) Å30.38 × 0.32 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2344 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2121
Tmin = 0.905, Tmax = 0.948k = 64
6409 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.239P]
where P = (Fo2 + 2Fc2)/3
2344 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H14ClNV = 1329.0 (2) Å3
Mr = 255.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.2543 (18) ŵ = 0.27 mm1
b = 5.6398 (5) ÅT = 296 K
c = 13.0095 (13) Å0.38 × 0.32 × 0.20 mm
β = 97.129 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1856 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.948Rint = 0.017
6409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.13 e Å3
2344 reflectionsΔρmin = 0.18 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46600 (3)0.37904 (9)0.67127 (4)0.07239 (19)
N10.26607 (7)0.2985 (3)0.70282 (10)0.0606 (4)
C10.36885 (8)0.0215 (3)0.63059 (11)0.0477 (4)
H10.36440.02420.70100.057*
C20.41540 (8)0.1765 (3)0.59008 (12)0.0514 (4)
C30.42310 (9)0.1765 (4)0.48568 (13)0.0625 (5)
H30.45470.28340.45910.075*
C40.38333 (9)0.0163 (4)0.42214 (13)0.0669 (5)
H40.38830.01400.35180.080*
C50.33616 (9)0.1414 (3)0.46108 (12)0.0573 (4)
H50.30960.24920.41700.069*
C60.32813 (8)0.1401 (3)0.56578 (11)0.0462 (4)
C70.27682 (8)0.3056 (3)0.60801 (11)0.0480 (4)
C80.23478 (9)0.4944 (3)0.54365 (13)0.0548 (4)
H8A0.26770.61610.52330.066*
H8B0.20700.42740.48200.066*
C90.18419 (12)0.5915 (4)0.61625 (14)0.0760 (6)
H9A0.13370.54080.59570.091*
H9B0.18570.76350.61740.091*
C100.21413 (9)0.4885 (3)0.72331 (13)0.0589 (4)
H100.24200.61310.76360.071*
C110.15575 (8)0.3978 (3)0.78499 (12)0.0505 (4)
C120.13832 (10)0.5176 (3)0.87106 (13)0.0601 (5)
H120.16350.65650.89160.072*
C130.08427 (11)0.4353 (4)0.92721 (16)0.0761 (6)
H130.07350.51840.98520.091*
C140.04680 (11)0.2338 (4)0.89818 (18)0.0795 (6)
H140.01020.17930.93600.095*
C150.06289 (12)0.1112 (4)0.8137 (2)0.0839 (6)
H150.03730.02720.79370.101*
C160.11725 (11)0.1926 (4)0.75748 (16)0.0719 (5)
H160.12810.10730.70010.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0734 (3)0.0730 (3)0.0733 (3)0.0237 (2)0.0194 (2)0.0061 (2)
N10.0599 (8)0.0775 (10)0.0437 (8)0.0241 (8)0.0038 (6)0.0048 (7)
C10.0469 (8)0.0571 (10)0.0401 (8)0.0006 (7)0.0087 (6)0.0050 (7)
C20.0442 (8)0.0575 (10)0.0536 (9)0.0003 (7)0.0105 (7)0.0047 (8)
C30.0532 (9)0.0790 (13)0.0581 (10)0.0053 (9)0.0177 (8)0.0161 (10)
C40.0605 (10)0.1011 (15)0.0413 (9)0.0014 (10)0.0155 (8)0.0081 (10)
C50.0534 (9)0.0760 (12)0.0425 (9)0.0009 (9)0.0064 (7)0.0010 (8)
C60.0426 (8)0.0557 (10)0.0402 (8)0.0028 (7)0.0046 (6)0.0057 (7)
C70.0467 (8)0.0550 (10)0.0415 (8)0.0014 (7)0.0019 (6)0.0047 (7)
C80.0580 (9)0.0512 (10)0.0542 (9)0.0003 (8)0.0031 (8)0.0030 (8)
C90.0848 (13)0.0769 (14)0.0667 (12)0.0310 (11)0.0118 (10)0.0077 (10)
C100.0606 (10)0.0617 (11)0.0543 (10)0.0154 (9)0.0061 (8)0.0110 (9)
C110.0526 (9)0.0463 (9)0.0503 (9)0.0123 (7)0.0026 (7)0.0103 (7)
C120.0645 (10)0.0562 (11)0.0597 (10)0.0026 (9)0.0080 (8)0.0168 (9)
C130.0760 (13)0.0863 (15)0.0690 (12)0.0065 (11)0.0213 (10)0.0087 (11)
C140.0666 (12)0.0777 (15)0.0946 (16)0.0033 (11)0.0111 (11)0.0177 (13)
C150.0753 (13)0.0512 (12)0.1202 (19)0.0043 (10)0.0082 (13)0.0044 (12)
C160.0749 (12)0.0584 (12)0.0803 (13)0.0084 (10)0.0011 (10)0.0247 (10)
Geometric parameters (Å, º) top
Cl1—C21.7410 (17)C8—H8B0.9700
N1—C71.2733 (19)C9—C101.545 (2)
N1—C101.477 (2)C9—H9A0.9700
C1—C21.369 (2)C9—H9B0.9700
C1—C61.392 (2)C10—C111.501 (2)
C1—H10.9300C10—H100.9800
C2—C31.383 (2)C11—C161.378 (2)
C3—C41.370 (3)C11—C121.378 (2)
C3—H30.9300C12—C131.379 (3)
C4—C51.377 (2)C12—H120.9300
C4—H40.9300C13—C141.356 (3)
C5—C61.388 (2)C13—H130.9300
C5—H50.9300C14—C151.361 (3)
C6—C71.476 (2)C14—H140.9300
C7—C81.505 (2)C15—C161.382 (3)
C8—C91.504 (2)C15—H150.9300
C8—H8A0.9700C16—H160.9300
C7—N1—C10109.37 (14)C8—C9—H9A110.8
C2—C1—C6119.66 (14)C10—C9—H9A110.8
C2—C1—H1120.2C8—C9—H9B110.8
C6—C1—H1120.2C10—C9—H9B110.8
C1—C2—C3121.45 (16)H9A—C9—H9B108.9
C1—C2—Cl1119.55 (12)N1—C10—C11111.31 (15)
C3—C2—Cl1119.01 (13)N1—C10—C9105.86 (13)
C4—C3—C2118.80 (16)C11—C10—C9114.51 (14)
C4—C3—H3120.6N1—C10—H10108.3
C2—C3—H3120.6C11—C10—H10108.3
C3—C4—C5120.82 (15)C9—C10—H10108.3
C3—C4—H4119.6C16—C11—C12117.45 (17)
C5—C4—H4119.6C16—C11—C10121.35 (15)
C4—C5—C6120.29 (16)C12—C11—C10121.19 (16)
C4—C5—H5119.9C11—C12—C13121.18 (18)
C6—C5—H5119.9C11—C12—H12119.4
C5—C6—C1118.98 (15)C13—C12—H12119.4
C5—C6—C7120.74 (15)C14—C13—C12120.27 (19)
C1—C6—C7120.28 (13)C14—C13—H13119.9
N1—C7—C6121.47 (14)C12—C13—H13119.9
N1—C7—C8115.58 (14)C13—C14—C15119.9 (2)
C6—C7—C8122.94 (13)C13—C14—H14120.0
C9—C8—C7102.64 (14)C15—C14—H14120.0
C9—C8—H8A111.2C14—C15—C16120.0 (2)
C7—C8—H8A111.2C14—C15—H15120.0
C9—C8—H8B111.2C16—C15—H15120.0
C7—C8—H8B111.2C11—C16—C15121.21 (18)
H8A—C8—H8B109.2C11—C16—H16119.4
C8—C9—C10104.67 (14)C15—C16—H16119.4
C6—C1—C2—C30.0 (2)C7—C8—C9—C1012.4 (2)
C6—C1—C2—Cl1179.78 (12)C7—N1—C10—C11134.21 (15)
C1—C2—C3—C40.4 (3)C7—N1—C10—C99.2 (2)
Cl1—C2—C3—C4179.80 (14)C8—C9—C10—N113.5 (2)
C2—C3—C4—C50.4 (3)C8—C9—C10—C11136.50 (16)
C3—C4—C5—C60.1 (3)N1—C10—C11—C1648.5 (2)
C4—C5—C6—C10.5 (2)C9—C10—C11—C1671.5 (2)
C4—C5—C6—C7178.99 (16)N1—C10—C11—C12131.90 (16)
C2—C1—C6—C50.5 (2)C9—C10—C11—C12108.09 (19)
C2—C1—C6—C7179.01 (14)C16—C11—C12—C130.2 (3)
C10—N1—C7—C6178.25 (14)C10—C11—C12—C13179.46 (17)
C10—N1—C7—C81.0 (2)C11—C12—C13—C140.3 (3)
C5—C6—C7—N1176.41 (16)C12—C13—C14—C150.4 (3)
C1—C6—C7—N13.0 (2)C13—C14—C15—C160.1 (3)
C5—C6—C7—C84.4 (2)C12—C11—C16—C150.5 (3)
C1—C6—C7—C8176.10 (14)C10—C11—C16—C15179.16 (17)
N1—C7—C8—C97.8 (2)C14—C15—C16—C110.3 (3)
C6—C7—C8—C9173.00 (15)

Experimental details

Crystal data
Chemical formulaC16H14ClN
Mr255.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.2543 (18), 5.6398 (5), 13.0095 (13)
β (°) 97.129 (2)
V3)1329.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.38 × 0.32 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.905, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
6409, 2344, 1856
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.06
No. of reflections2344
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuge, O., Ueno, K., Kanemasa, S. & Yorozu, K. (1987). Bull. Chem. Soc. Jpn, 60, 3347–3358.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds